Study of constant mode in charmonium correlators at finite temperature

Takashi Umeda

This talk is based on the Phys. Rev. D75 094502 (2007) [hep-lat/0701005]

Lattice 2007, Regensburg, Germany, 2 Aug. 2007

Introduction

 ${\rm J}/\psi$ suppression is one of the most promising probe to find the QGP formation in HIC experiment.

Lattice QCD studies of charmonium spectral function suggest the survival of J/ ψ state above T_c (1.5T_c?)

Indirect (sequential) J/ ψ suppression

total yield of J/ ψ =

direct production of J/ ψ (60%)

+ decay from higher states, ψ ' & $\chi_{\rm c}$ (40%)

L. Antoniazzi et al. (E705 Collab.), PRL70, 383, (1993).

→ A part of the J/ ψ suppression may be observed at T_{dis.}(ψ ' or χ _c) when T_{dis.}(ψ ' or χ _c) < T_{dis.}(J/ ψ)

Lattice QCD results

Lattice setup

- Quenched approximation (no dynamical guark effect)
- Anisotropic lattices (tadpole imp. Clover quark + plaq. gauge)

lattice size : $20^3 \times N_{+}$ lattice spacing : $1/a_s = 2.03(1)$ GeV,

anisotropy :

160

 ~ 0

60

Quark mass

charm quark (tuned with J/ ψ mass)

32

0.88

300

 r_s =1 to reduce cutoff effects in higher energy states

F. Karsch et al., PRD68, 014504 (2003),

20

1.4

300

 N_{τ}

 T/T_c

of conf.

26

1.08

300

equilib. is 20K sweeps each config. is separated by 500 sweeps

1				
t				
0				
		→ x	,y,z	

 $a_{s}/a_{t} = 4$

0.9 0.70 m_{₽ff}(t) 0-----0 Ps m___(t) Ps 0.8 0.65 •----• V -<u>^</u> S T=0.88T_ 0.7 T=1.08T 0.60 ♦ T=1.4T₂ 0.6 0.55 0.5 0.50 $0.1a_t=800MeV$ 0.4 0.45 0.3 0.40 T=0 88T T=1.08T_ T=1.4T_ 0.2 0.35 8 12 8 12 8 16 8 12 0.70 S 0.65 ■ small change in S-wave states =0.88T 0.60 \rightarrow survival of J/ ψ & $\eta_{\rm c}$ at T>T_c 0.55 ■ drastic change in P-wave states 0.50 \rightarrow dissociation of χ_{c} just above Tc (?) 0.45 0.40 S. Datta et al.. 0.35 PRD69, 094507 (2004). etc... 0.30

v

12

12

Av

16

8

8

16

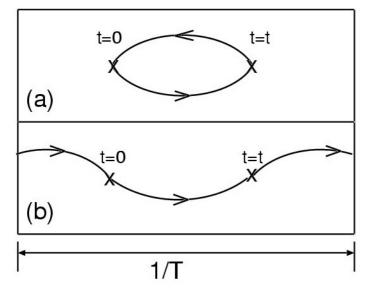
8

12

16

A constant mode

Now we consider the meson correlator with $p=0 \& m_{q1}=m_{q2}$



Pentaquark (KN state): two pion state: → Dirichlet b.c. c.f. T.T.Takahashi et al., PRD71, 114509 (2005). $exp(-m_qt) x exp(-m_qt)$ $= exp(-2m_qt) m_q \text{ is quark mass} or single quark energy$ $exp(-m_qt) x exp(-m_q(L_t-t))$ $= exp(-m_qL_t) L_t = temporal extent$

in imaginary time formalism
L_t = 1/Temp.
gauge field : periodic b.c.
quark field : anti-periodic b.c.
in confined phase: mq is infinite
→ the effect appears
only in deconfined phase

Physical interpretation

Spectral function at high temp. limit

$$\rho_{\Gamma}(\omega) = \Theta(\omega^2 - 4m_q^2) \frac{N_c}{8\pi\omega} \sqrt{\omega^2 - 4m_q^2} [1 - 2n_F(\omega/2)] \\ \times [\omega^2(a_H^{(1)} - a_H^{(2)}) + 4m^2(a_H^{(2)} - a_H^{(3)})] \\ + 2\pi\omega\delta(\omega)N_c[(a_H^{(1)} + a_H^{(2)})I_1 + (a_H^{(2)} - a_H^{(3)})I_2]$$

F. Karsch et al., PRD68, 014504 (2003). G. Aarts et al., NPB726, 93 (2005).

	Г	$a_H^{(1)} + a_H^{(2)}$	$a_{H}^{(2)} - a_{H}^{(3)}$	
Ps	γ_5	0	0	
V	γ_i	2	2	
S	1	0	-2	
Av	$\gamma_i\gamma_5$	2	-4	

constant mode remains in the continuum & infinite volume

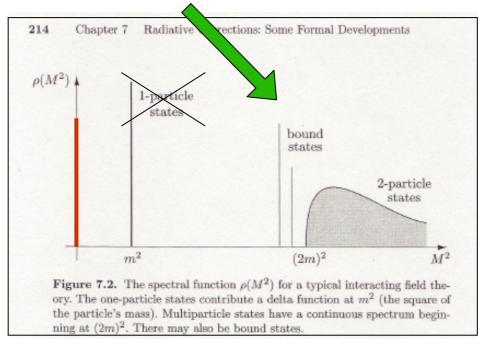
The constant term is related to some transport coefficients. From Kubo-formula, for example, a derivative of the SPF in the V channel is related to the electrical conductivity σ .

$$\sigma = \frac{1}{6} \frac{\partial}{\partial \omega} \rho_V(\omega) \Big|_{\omega = 0}$$

Without constant mode

Our motivation is to study

whether bound state peaks exist or not in QGP phase



from "An Introduction to Quantum Field Theory" Michael E. Peskin, Perseus books (1995)

Removing the constant mode

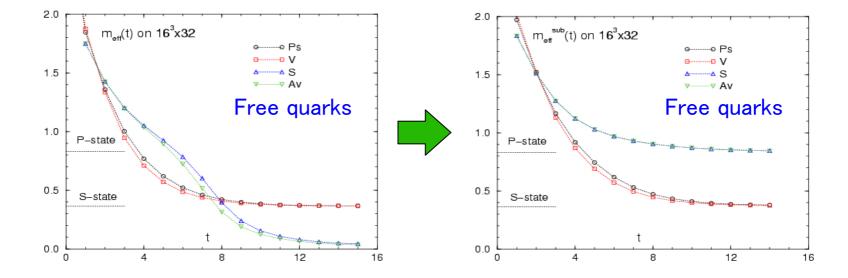
An analysis to avoid the constant mode

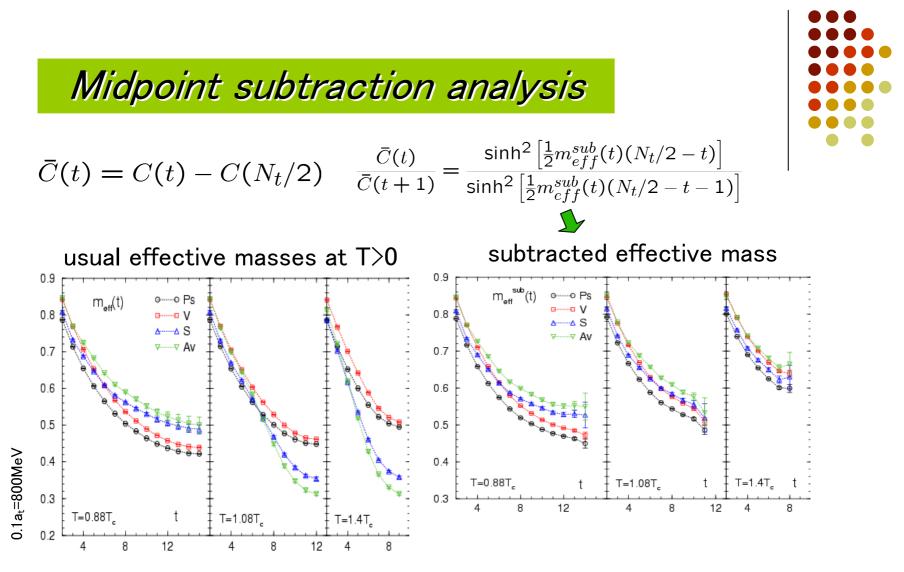
Midpoint subtracted correlator

$$\bar{C}(t) = C(t) - C(N_t/2) \quad \bullet$$

$$\frac{\bar{C}(t)}{\bar{C}(t+1)} = \frac{\sinh^2 \left[\frac{1}{2}m_{eff}^{sub}(t)(N_t/2 - t)\right]}{\sinh^2 \left[\frac{1}{2}m_{eff}^{sub}(t)(N_t/2 - t - 1)\right]}$$

- -

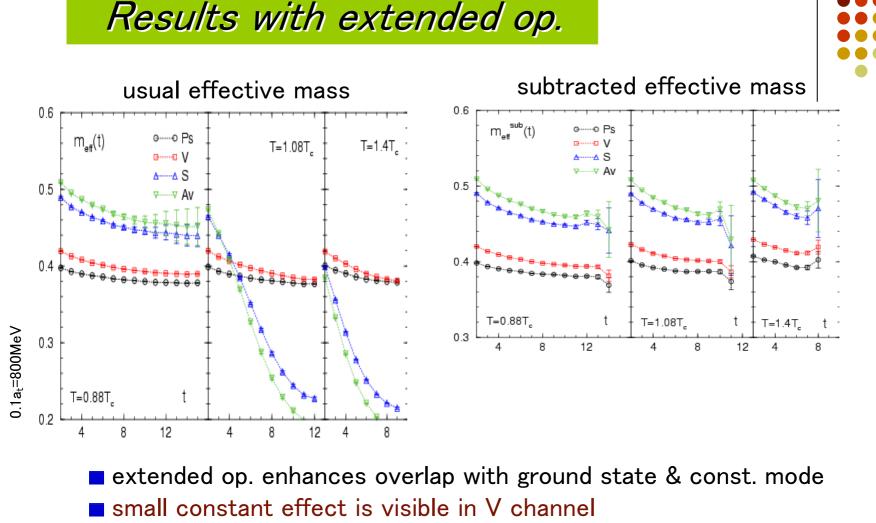




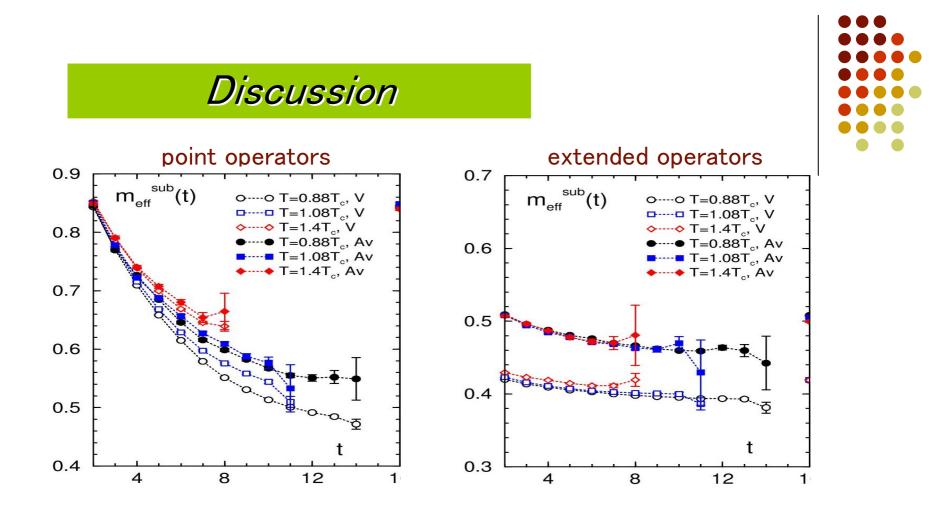
the drastic change in P-wave states disappears in $m_{eff}^{sub}(t)$

 \rightarrow the change is due to the constant mode

T.Umeda (Tsukuba)



no large change above T_c in $m_{eff}^{sub}(t)$



The drastic change of P-wave states is due to the const. contribution. \rightarrow The changes in SPFs should be small(except for ω =0 peak).

Conclusion

There is the constant mode in charmonium correlators above T_c

- The drastic change in $\chi_{\rm c}$ states is due to the constant mode
 - \rightarrow the survival of χ_c states above T_c, at least T=1.4T_c.

The result may affect the scenario of J/ψ suppression.

Conclusion

There is the constant mode in charmonium correlators above T_c

- The drastic change in $\chi_{\rm c}$ states is due to the constant mode
 - \rightarrow the survival of χ_c states above T_c, at least T=1.4T_c.

The result may affect the scenario of J/ψ suppression.

In the MEM analysis,

one has to check consistency of the results using, e.g., midpoint subtracted correlators.

$$\bar{C}(t) = C(t) - C(N_t/2)$$

$$(t) = \int_0^\infty d\omega \rho_{\Gamma}(\omega) K^{sub}(\omega, t),$$
$$K^{sub}(\omega, t) = \frac{\sinh^2(\frac{\omega}{2}(N_t/2 - t))}{\sinh(\omega N_t/2)}$$

 \bar{C}

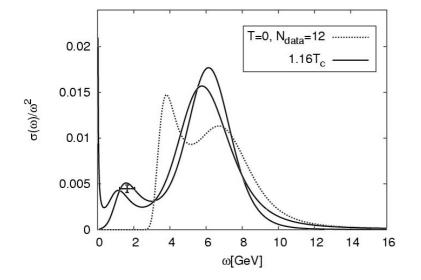
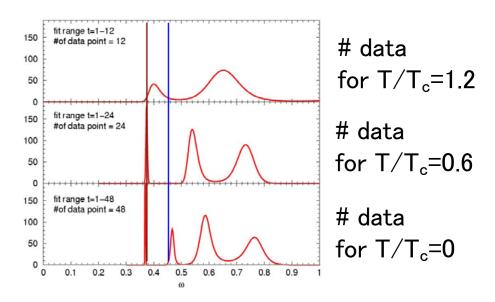


FIG. 19: The scalar spectral function for $\beta = 6.1$ at $T = 1.16T_c$ and at zero temperature reconstructed using $N_{data} = 12$. At finite temperature two default models $m(\omega) = 0.01$ and $m(\omega) = 0.038\omega^2$ have been used.

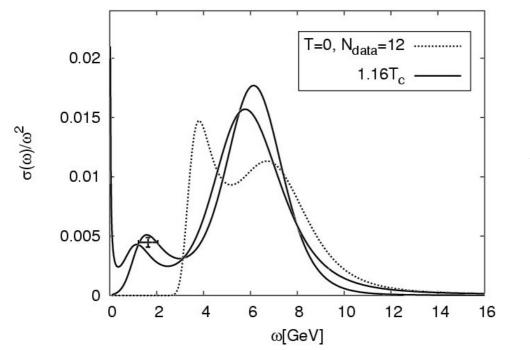
A.Jakovac et al., PRD75, 014506 (2007). (also S. Datta et al., PRD69, 094507 (2004).)

MEM test using T=0 data



MEM sometimes fails when (# or quality) of data point is not sufficient.

Introduction



S. Datta et al., PRD69, 094507 (2004). A.Jakovac et al., PRD75, 014506 (2007).

FIG. 19: The scalar spectral function for $\beta = 6.1$ at $T = 1.16T_c$ and at zero temperature reconstructed using $N_{data} = 12$. At finite temperature two default models $m(\omega) = 0.01$ and $m(\omega) = 0.038\omega^2$ have been used.