Transition temperature and Equation of State from RBC-Bielefeld Collaboration

Takashi Umeda (BNL)

for the RBC – Bielefeld Collaboration

Riken Lunch Seminar, BNL, Nov. 9, 2006

QCD Thermodynamics from Lattice QCD

Lattice QCD enables us to perform the first principle calculations of QCD

What are necessary to control some systematic uncertainties ?

What were not sufficient in previous studies ?

What are improved in our calculation ?

This talk (of first part) is based on our recent publication *M.Chen et al., Phys. Rev. D74 (2006) 054507.* $\rightarrow T_c = 192(7)(4) \text{ MeV}$

There is no section for comparison with other group's results. You should check the Frithjof's talk in QM2006 !!

Contents of this talk

Source of uncertainties

We have to control many sources of uncertainties.

Dynamical quark effects

- Finite volume effects
- Continuum extrapolation ($a \rightarrow 0$ limit)

Statistical error

Sufficient calculation needs huge computational cost !! but one can compromise some of them depending on aim of study.

Riken Lunch Seminar

Source of uncertainties

We have to control many sources of uncertainties.

- Dynamical quark effects
 - Num. of flavors: N_f=2+1 increases parameter space
 - quark masses : lighter quark masses increase comp. cost chiral extrapolation with heavier quarks \rightarrow source of sys. error
- Finite volume effects
 - $-L^3 = (N_s/a)^3$: larger volume increases comp. cost

lighter quark mass needs larger volume at T=0 e.g. $Lm_{\pi} \ge 3-4$ Continuum extrapolation (a $\rightarrow 0$ limit)

- the extrapolation has to be performed in scaling region
- $-L^3 = (N_s/a)^3$: smaller "a" increase comp. cost

Improved actions allow some observables to scale with larger "a"
Statistical error

Sufficient calculation needs huge computational cost !! but one can compromise some of them depending on aim of study.

Riken Lunch Seminar

Case of QCD thermodynamics

One can compromise some of them depending on aim of study

For example, qualitative study of hadron spectroscopy \rightarrow (quenched/small V/no a \rightarrow 0 limit) are not so bad

However, our aim is

"Quantitative study of QCD thermodynamics in Lattice QCD"

- Some observables are sensitive to N_f & m_q
- Study of critical phenomena requires large volume (volume dep.)
- Determination of transition point requires (very) large statistics

Although basic methodology has been established, there is no calculation in which systematic uncertainties are controlled in a few % level

Previous studies

F.Karsch et al., Nucl. Phys. B605 (2001) 579. F.Karsch et al., Phys. Lett. B478 (2000) 447.

 $T_c = 173(8)$ MeV at chiral limit

- $N_f = 2$ ($N_f = 3 : 154(8) \text{ MeV}$)
- only $N_t = 4$, no continuum limit
- pion mass ~ 400 1000 MeV
- scale setting by rho meson mass
- $N_{\rm s}/N_{\rm t} = 2 4$
- Improved Staggered quark p4fat3 action

¹_{.0} These were the first systematic studies for QCD thermodynamics in full QCD !! T.Umeda (BNL) 7

Our approach

Quantitative study of QCD thermodynamics

T_c, EoS, phase diagram, small μ , etc...

- from recent studies, we know these quantities strongly depend on $m_{\rm q} \ \& \ N_{\rm f}$
- $N_f = 2+1$ with physics strange quark mass
- $N_t = 4 \& 6$, \rightarrow continuum limit
- **p**ion mass \simeq 150 500 MeV with kaon mass \simeq 500 MeV
- scale setting by static quark potential: r₀ (Sommer scale)

$$N_{\rm s}/N_{\rm t} = 2 - 4$$

Improved Staggered quark : p4fat3 action

These calculations require high performance computers !!

US/RBRC QCDOC 20.000.000.000 ops/sec

BI – apeNEXT 5.000.000.000 ops/sec

http://quark.phy.bnl.gov/~hotqcd

WINC

flavor sym. is also improved by fat link

Contents of this talk

- [1] Aim of this talk
- [2] For the first principle calculation
- [3] Our approach
- [4] Transition temperature M.Chen et al. Phys.Rev.D74 054507 (2006)
 - Simulation parameters
 - Critical β search
 - Scale setting by static quark potential
 - Transition temperature
 - Summary for $T_{\rm c}$
- [5] Equation of State on going calculation
- [6] Conclusion

Simulation parameters

Input parameters in Lattice QCD

 β : (= 6/g²) gauge coupling (\rightarrow lattice spacing) m₁ : light quark masses (up & down) m_s : strange quark mass

Critical β search at T>0 calculations

 $\begin{array}{c|c} - N_t = 4, & m_s = 0.065 \\ V = 8^3, & 16^3, & m_l/m_s = 0.05 - 0.4 \\ - N_t = 6, & m_s = 0.04 \\ V = 16^3, & m_l/m_s = 0.1 - 0.4 \end{array} \right) \\ \end{array} \\ \begin{array}{c} \text{about 10 } \beta \text{ values} \\ \times \\ 20K - 60K \text{ config.} \\ \text{for each simulations} \end{array}$

to check m_s dependence on T_c \rightarrow $N_t{=}4,$ $m_s{=}0.1,$ $m_l/m_s{=}0.2{-}0.5$

Scale settings at each critical β on 16³x32 lattices (T=0)

Exact algorithm (RHMC) is used (Path integral is rigorously performed \rightarrow only stat. error).

 $\beta_{\rm c}$ are determined by peak positions of the susceptibilities

Volume dependence of β_c

No large change in peak height & position

 \rightarrow consistent with crossover transition rather than true transition

Reliable calculation of susceptibilities requires large statistics at least tens thousands of trajectories are necessary at T>0

$\beta_{\rm l}$, $\beta_{\rm s}$: peak position of chiral (strange quark) susceptibility. $\beta_{\rm L}$: peak position of Polyakov loop susceptibility

Ambiguites in β_{c}

- no quark mass dependence
- the difference is negligible at $16^3 x4 (N_s/N_t=4)$
- the difference at $16^3 \times 6$ are taken into account as a systematic error in β_c

Finally we obtain $T_c = 192(7)(4) MeV$ using $r_0=0.469(7)$ fm determined from quarkonium spectroscopy A. Gray et al. Phys. Rev. D72 (2005) 094507 Why we use r_0 for scale setting ? [1] We can, of course, use other observables, e.g. m_{ρ} but it is difficult to control stat. & syst. error of m_{ρ} on course lattice $\begin{bmatrix} 2 \end{bmatrix}$ r₀ seems to be the best controlled lattice observable for scale setting to determine the T_{c} The physical value of r₀ have been deduced from lattice calculations through a comparison with bottomonium level splitting by MILC Colalb. \rightarrow also consistent with exp. value in light sector,

e.g.
$$f_{\pi}$$
, f_{K}

T_c in physical units

Finally we obtain $T_c=192(7)(4)MeV$

using $r_0=0.469(7)$ fm determined from quarkonium spectroscopy

A. Gray et al. Phys. Rev. D72 (2005) 094507

Why we use r_0 for scale setting ?

[3] small scaling violation from "a" at $T_c(N_t=4)$

T=0 calculations at corresponding lattice spacing for various Temp.

no significant cut-off dependence when cut-off vaires by a factor 4

Summary for T_c

 N_f =2+1 simulation with almost realistic quark masses at N_t =4, 6

transition temperature in our study

 $T_c r_0 = 0.456(7)$, ($T_c = 192(7)(4)$ MeV using $r_0 = 0.469(7)$ fm)

- T_cr₀ is consistent with previous p4 result difference in T_c mainly comes from physical value of r₀
 most systematic uncertainties are taken into account remaining uncertainty is in continuum extrapolation
 however, our value is about 10% larger than MILC result and about 20% larger than Wuppertal group result
 - \rightarrow you should check the Frithjof's talk in QM2006

toward the finial result from the first principle calculation

- remaining uncertainty has to be evaluated with N_t =8 and more
- consistency with Wilson type fermion (Domain-wall, overlap) results

Contents of this talk

- [1] Aim of this talk
- [2] For the first principle calculation
- [3] Our approach
- [4] Transition temperature *M.Chen et al. Phys.Rev.D74 054507 (2006)*
- [5] Equation of State on going calculation
 - Integral method
 - Line of Constant Physics
 - Interaction measure & Pressure
 - Summary for EoS
- [6] Conclusion

Equation of State at N_t =4 lattices (Nt=6 is on progress)

by using the Integral method on a Line of Constant Physics (LCP)

T>0 calculations are performed on 16³x4 lattices

Temp. range is T/Tc = 0.8 - 4.3 (12 data points now) zero temp. subtraction is calculated on 16^3x32 lattices

Integral method

For example: calculation of pressure p

$$p = -f = \frac{T}{V} \ln Z$$
 for large homogeneous system

Lattice QCD can not calculate the partition function $\ln Z$ however can calculate its derivative $\frac{\partial}{\partial\beta} \ln Z = -\left\langle \frac{\partial S_{QCD}}{\partial\beta} \right\rangle$

One can get p as an integral of derivative of p

high temp.

$$\begin{aligned} \sum_{\substack{p \\ T^4}} \Big|_{\beta_0}^{\beta} &= \frac{1}{VT^3} \int_{\beta_0}^{\beta} d\beta' \frac{\partial}{\partial\beta'} \ln Z \\ \text{low temp.} & = -N_t^4 \int_{\beta_0}^{\beta} d\beta' \frac{1}{N_s^3 N_t} \left(\langle S_{QCD} \rangle_{T>0} - \langle S_{QCD} \rangle_{T=0} \right) \\ \text{with } p \approx 0 \end{aligned}$$

Riken Lunch Seminar

Now we have three parameters: β , m_l and m_s

The physics (observables) should be kept along the integral path, only lattice spacing (temperature) varies along the path
 → Line of Constant Physics (LCP)

 $\beta\,$ is only parameter on the LCP $\rm m_{l}~and~m_{s}~are~function~of~\beta$

We define the LCP to keep ($m_{PS}/m_K \& m_{PS}r_0$) \rightarrow two parameters ($m_I \& m_s$) are determined

Our approach for LCP

Our approach for LCP

The other parameter to determin the LCP : $\widehat{m}_l = \widehat{m}_l(eta)$

 \widehat{m}_l is determined by the condition for 'm_{\rm PS} r_{\rm 0}'

calculations of m_{PS} and r₀ at various params. \rightarrow fits with appropriate ansatz $\begin{cases} am_{PS}(\beta, \hat{m}_l, \Delta) \\ r_0/a(\beta, \hat{m}_l, \Delta) \end{cases}$

■ To calculate the interaction measure (ε −3p)/T some beta-functions are needed.

$$R_{\beta} = a \frac{\mathrm{d}\beta}{\mathrm{d}a} \Big|_{\hat{m}_{l},\hat{m}_{s}} = \frac{a}{r_{0}} \left(\frac{\partial(a/r_{0})}{\partial\beta} \Big|_{LCP} \right)^{-1}$$
$$R_{\hat{m}_{l}} = \left(\frac{\partial \hat{m}_{l}}{\partial\beta} \right)_{\Delta}$$
$$R_{\Delta} = \left(\frac{\partial \Delta}{\partial\beta} \right)_{\hat{m}_{l}}$$

Our approach for LCP

The other parameter to determin the LCP :

 \widehat{m}_l is determined by the condition for 'm_{PS}r_0'

calculations of m_{PS} and r_0 at various params. \rightarrow fits with appropriate ansatz

To calculate the interaction measure (ε -3p)/T some beta-functions are needed.

$$R_{\beta} = a \frac{d\beta}{da} \Big|_{\hat{m}_{l},\hat{m}_{s}} = \frac{a}{r_{0}} \left(\frac{\partial (a/r_{0})}{\partial \beta} \Big|_{LCP} \right)^{-1}$$
$$R_{\hat{m}_{l}} = \left(\frac{\partial \hat{m}_{l}}{\partial \beta} \right)_{\Delta}$$
$$R_{\Delta} = \left(\frac{\partial \Delta}{\partial \beta} \right)_{\hat{m}_{l}} = 0 \text{ on our LCP} \qquad 0$$

details are rather technical I skip these steps

 $r_0/a(\beta, \hat{m}_l, \Delta)$ $\hat{m}_l = \hat{m}_l(\beta)$

Integral method with (m_{l}, Δ)

$$\begin{split} \frac{p}{T^4} \Big|_{\beta_0}^{\beta} &= N_{\tau}^4 \int_{\beta_0}^{\beta} d\beta' \left[\frac{1}{N_{\sigma}^3 N_{\tau}} (\langle S_g \rangle_0 - \langle S_g \rangle_T) \right. \\ &- (2(\langle \bar{\psi}\psi \rangle_{l0} - \langle \bar{\psi}\psi \rangle_{lT}) + \Delta(\langle \bar{\psi}\psi \rangle_{s0} - \langle \bar{\psi}\psi \rangle_{sT})) \left(\frac{\partial \hat{m}_l}{\partial \beta'} \right)_{\Delta} \\ &- \hat{m}_l \left((\langle \bar{\psi}\psi \rangle_{s0} - \langle \bar{\psi}\psi \rangle_{sT}) \right) \left(\frac{\partial \Delta}{\partial \beta'} \right)_{\hat{m}_l} \right] \\ \frac{\epsilon - 3p}{T^4} &= T \frac{d}{dT} \left(\frac{p}{T^4} \right) = a \frac{d\beta}{da} \frac{\partial p/T^4}{\partial \beta} \\ &= \left(\frac{\epsilon - 3p}{T^4} \right)_g + \left(\frac{\epsilon - 3p}{T^4} \right)_{\hat{m}_l} + \left(\frac{\epsilon - 3p}{T^4} \right)_{\Delta} \\ \left(\left(\frac{\epsilon - 3p}{T^4} \right)_g = \left(\frac{N_{\tau}}{N_{\sigma}} \right)^3 \left(\frac{d\beta}{da} \right) (\langle S_g \rangle_0 - \langle S_g \rangle_T) \\ \left(\frac{\epsilon - 3p}{T^4} \right)_{\hat{m}_l} &= N_{\tau}^4 \left(\frac{d\beta}{da} \right) \left(\frac{\partial \hat{m}_l}{\partial \beta} \right) \left[2 \left(\langle \bar{\psi}\psi \rangle_{l,0} - \langle \bar{\psi}\psi \rangle_{l,T} \right) + \Delta \left(\langle \bar{\psi}\psi \rangle_{s,0} - \langle \bar{\psi}\psi \rangle_{s,T} \right) \right] \\ \left(\frac{\epsilon - 3p}{T^4} \right)_{\Delta} &= N_{\tau}^4 \left(\frac{d\beta}{da} \right) \left(\frac{\partial \Delta}{\partial \beta} \right) \left(\langle \bar{\psi}\psi \rangle_{s,0} - \langle \bar{\psi}\psi \rangle_{s,T} \right) \end{split}$$

We need beta-functions : $R_{\beta} = \frac{d\beta}{da}, R_{\widehat{m}_l} = \left(\frac{\partial \widehat{m}_l}{\partial \beta}\right)_{\Delta}, R_{\Delta} = \left(\frac{\partial \delta}{\partial \beta}\right)_{m_l}$

Summary for EoS

 $N_{\rm f}{=}2{+}1$ simulation with almost realistic quark masses at $N_{\rm t}{=}4,\,6$

- Equation of state
 - We calculate EoS on a Line of Constant Physics at $N_{\rm t} \mbox{=} 4$
 - using $\Delta = m_l/m_s$
 - N_t =6 is on progress

Conclusion

N_f =2+1 simulation with almost realistic quark masses at N_t =4, 6

critical temperature

 $T_c r_0 = 0.456(7)$, ($T_c = 192(7)(4)$ MeV using $r_0 = 0.469(7)$ fm)

 most systematic uncertainties are taken into account remaining uncertainty is in continuum extrapolation

Equation of state

- We calculate EoS on a Line of Constant Physics at $N_{\rm t} \mbox{=} 4$
- using $\Delta = m_l/m_s$
- N_t =6 is on progress
- toward the finial result from the first principle calculation
 - remaining uncertainty has to be evaluated with $N_{\rm t} \mbox{=} 8$ and more
 - consistency with Wilson type fermion (Domain-wall, overlap) results

appendix

Choice of Lattice Action

gluonic part : Symanzik improvement scheme

- remove cut-off effects of $O(a^2)$
- tree level improvement $O(g^0)$

fermion part : improved Staggered fermion : p4fat3 action

Karsch, Heller, Sturm (1999)

- remove cut-off effects & improve rotational sym.
- smeared 1-link term improves flavor symmetry

A new determination of the transition temperature in QCD

- calculation of transition temperature with almost physical quark masses and different lattice cut-off values
 - \Rightarrow extrapolation to physical limit ($m_{\pi} = 135$ MeV) and continuum limit ($a \rightarrow 0$)

Simulation parameters

Critical β search at T > 0

	N_{τ}	\widehat{m}_s	\widehat{m}_l		$\#\beta$ values	max.# conf.
ſ	4	0.1	$0.5 \ \hat{m}_s$	8 ³	10	40,000
l			0.2 \hat{m}_s	8 ³	6	12,000
	4	0.065	0.4 \hat{m}_s	8 ³ , 16 ³	10, 11	30,000, 60,000
			0.2 \hat{m}_s	8 ³ , 16 ³	8, 7	30,000, 60,000
			0.1 \hat{m}_s	8 ³ , 16 ³	9,6	34,000, 50,000
			0.05 \widehat{m}_s	8 ³ , 16 ³	8, 5	30,000, 42,000
	6	0.0040	0.4 \hat{m}_s	16 ³	11	20,000
			0.2 \hat{m}_s	16 ³	9	60,000
			0.1 \widehat{m}_s	16 ³	7	60,000

T=0 scale setting at $\beta_{\rm c}(N_{\rm t})$ on $16^3 \times 32$

N_{τ}	\widehat{m}_s	\widehat{m}_l	β	# conf.	m_{ps}/m_v	a [fm]
4	0.1	0.5 \hat{m}_s	3.409	600	0.520(2)	0.2273(4)
		0.2 \widehat{m}_s	3.371	238	0.372(5)	0.2336(7)
4	0.065	0.4 \hat{m}_s	3.362	500	0.410(2)	0.2312(7)
		0.2 \widehat{m}_s	3.335	400	0.303(7)	0.2365(6)
		0.1 \widehat{m}_s	3.310	750	0.212(7)	0.2458(5)
		0.05 \widehat{m}_s	3.300	400	0.154(5)	0.2475(8)
6	0.0040	0.4 \hat{m}_s	3.500	294	0.461(4)	0.1558(7)
		0.2 \widehat{m}_s	3.470	500	0.343(6)	0.1617(5)
		0.1 \hat{m}_s	3.455	410	0.248(4)	0.1670(5)

to check m_s dependence for Tc

(*) conf. = 5 MD traj. after thermalization

Line of Constant Physics (LCP)

The other parameter to determin the LCP : $\hat{m}_l = \hat{m}_l(\beta)$

 \hat{m}_l is determined by the condition for 'm_{\rm PS} r_{\rm 0}'

$$Beta-function -R_{\beta}-$$

$$R_{\beta} = a\frac{d\beta}{da}\Big|_{\hat{m}_{l},\hat{m}_{s}} = \frac{a}{r_{0}} \left(\frac{\partial(a/r_{0})}{\partial\beta}\Big|_{LCP}\right)^{-1}$$

$$\frac{a}{r_{0}} = e^{A\hat{m}_{l}(2+\Delta)}R(\beta) \left(1+B\hat{a}^{2}(\beta)+C\hat{a}^{4}(\beta)\right)e^{D}$$

$$\frac{\partial(a/r_{0})}{\partial\beta} = \hat{e}(\beta)\frac{a}{r_{0}} + R(\beta) \left(2B\hat{e}(\beta)\hat{a}^{2}(\beta) + 4C\hat{e}(\beta)\hat{a}^{4}(\beta)\right)e^{D+A\hat{m}_{l}(2+\Delta)}$$
where
$$\hat{e}(\beta) = -\frac{1}{12b_{0}} + \frac{b_{1}}{2b_{0}^{2}\beta} \text{ and } \hat{a}(\beta) = R(\beta)/R(3.4)$$

Finally we obtain

$$R_{\beta} = \frac{1 + B\hat{a}^2(\beta) + C\hat{a}^4(\beta)}{\hat{e}(\beta) \left(1 + 3B\hat{a}^2(\beta) + 5C\hat{a}^4(\beta)\right)}$$

