QCD thermodynamics on QCDOC and APEnext supercomputers

Takashi Umeda (BNL)

for the RBC – Bielefeld Collaboration

QCD on Teraflops Computer, Bielefeld, Oct. 11-13, 2006

Motivation & Approach

Quantitative study of QCD thermodynamics from first principle calculation (Lattice QCD) T_c , EoS, phase diagram, small μ , etc...

from recent studies, we know these quantities strongly depend on $m_q \& N_f$

Our aim is QCD thermodynamics with 2+1 flavor at almost realistic guark masses e.g. pion mass $\simeq 150 \text{MeV}$, kaon mass $\simeq 500 \text{MeV}$

- Choice of quark action
 - → Improved Staggered quark action
- Continuum limit

 $-N_{+} = 4.6.(8) \rightarrow a \simeq 0.24.0.17.(0.12) \text{ fm}$

US/RBRC QCDOC 20.000.000.000 ops/sec

BI – apeNEXT 5.000.000.000 ops/sec

_today: 4.0 TFlops

http://quark.phy.bnl.gov/~hotqcd

1

Choice of Lattice Action

Improved Staggered action : p4fat3 action

Karsch, Heller, Sturm (1999)

- gluonic part : Symanzik improvement scheme
 - remove cut-off effects of $O(a^2)$
 - tree level improvement $O(g^0)$
- fermion part : improved staggered fermion
 - remove cut-off effects & improve rotational sym.
 - improve flavor symmetry by smeared 1-link term

rotational invariant up to $O(p^4)$

Bulk thermodynamic quantities show drastically reduced cut-off effects

flavor sym. is also improved by fat link

Contents of this talk

- Motivation and Approach
- Choice of lattice action
- Critical temperature M.Chen et al. Phys.Rev.D74 054507 (2006)
 - Simulation parameters
 - Critical β search
 - Scale setting by Static quark potential
 - Critical temperature
- Equation of State
 - Line of Constant Physics
 - Beta-functions
 - Interaction measure & Pressure

Conclusion

Simulation parameters

Critical β search at T > 0

	N_{τ}	\widehat{m}_s	\widehat{m}_l		$\#\beta$ values	max.# conf.
ſ	4	0.1	$0.5 \ \hat{m}_s$	8 ³	10	40,000
l			0.2 \hat{m}_s	8 ³	6	12,000
	4	0.065	0.4 \hat{m}_s	8 ³ , 16 ³	10, 11	30,000, 60,000
			0.2 \hat{m}_s	8 ³ , 16 ³	8, 7	30,000, 60,000
			0.1 \hat{m}_s	8 ³ , 16 ³	9,6	34,000, 50,000
			0.05 \widehat{m}_s	8 ³ , 16 ³	8, 5	30,000, 42,000
	6	0.0040	0.4 \hat{m}_s	16 ³	11	20,000
			0.2 \hat{m}_s	16 ³	9	60,000
			0.1 \widehat{m}_s	16 ³	7	60,000

T=0 scale setting at $\beta_{\rm c}(N_{\rm t})$ on $16^3 \times 32$

N_{τ}	\widehat{m}_s	\widehat{m}_l	β	# conf.	m_{ps}/m_v	a [fm]
4	0.1	0.5 \hat{m}_s	3.409	600	0.520(2)	0.2273(4)
		0.2 \widehat{m}_s	3.371	238	0.372(5)	0.2336(7)
4	0.065	0.4 \hat{m}_s	3.362	500	0.410(2)	0.2312(7)
		0.2 \widehat{m}_s	3.335	400	0.303(7)	0.2365(6)
		0.1 \widehat{m}_s	3.310	750	0.212(7)	0.2458(5)
		0.05 \widehat{m}_s	3.300	400	0.154(5)	0.2475(8)
6	0.0040	0.4 \hat{m}_s	3.500	294	0.461(4)	0.1558(7)
		0.2 \widehat{m}_s	3.470	500	0.343(6)	0.1617(5)
		0.1 \hat{m}_s	3.455	410	0.248(4)	0.1670(5)

m_s dependence for Tc

to check

(*) conf. = 0.5 MD traj.

(*) conf. = 5 MD traj. after thermalization

Exact RHMC is used.

QCD on Teraflops computer

multi-histogram method (Ferrenberg-Swendson) is used
 β_c are determined by peak positions of the susceptibilities

Transition becomes stronger for smaller light quark masses

QCD on Teraflops computer

No large change in peak height & position

 \rightarrow consistent with crossover transition rather than true transition

Reliable calculation of susceptibilities requires large statistics at least tens thousands of trajectories are necessary at T>0(we have sometimes 60,000traj.)

QCD on Teraflops computer

Uncertainties in β_c

Statistical error

ightarrow jackknife analysis for peak-position of susceptibility

■ We can find a difference between β_{\perp} and β_{\perp} → small difference but statistically significant β_{\perp} : peak position of chiral susceptibility. β_{\perp} : peak position of Polyakov loop susceptibility

- the difference is negligible at 16^3x4 (N_s/N_t=4)
- no quark mass dependence
- the difference at $16^3 \times 6$ are taken into account as a systematic error in β_c

Scale setting at T=0

Lattice scale is determined by a static quark potential V(r)

QCD on Teraflops computer

QCD on Teraflops computer

Comment on r₀ scale setting

We use r_0 for scale setting.

 \blacksquare We can, of course, use other obserbables, e.g. m_o but it is difficult to control stat. & syst. error of m_{ρ} on course lattice r0 seems to be the best controlled lattice observable for scale setting to determine the T_{c} The physical value of r_0 have been deduced from lattice calculations through a comparison with bottomonium level splitting by MILC Colalb. Phys. Rev. D70 (2004) 094505 \rightarrow also consistent with exp. value in light sector, e.g. f_{π} . f_{κ}

Equation of State at Nt=4 lattices (Nt=6 is on progress)

by using Integral method on a Line of Constant Physics (LCP)

T>0 calculations are performed on 16^3x4 lattices

Temp. range is T/Tc = 0.8 - 4.3 (12 data points now) zero temp. subtraction is calculated on 16^3x32 lattices

Contents of EoS calculation

- i) Line of Constant Physics
- ii) Beta-functions
- iii) Interaction measure & Pressure

Line of Constant Physics (LCP)

On a LCP, m_l & m_s are function of β $\hat{m}_l = \hat{m}_l(\beta), \ \hat{m}_s = \hat{m}_s(\beta) \leftarrow \text{determined by physical conditions}$

Line of Constant Physics (LCP)

The other parameter to determin the LCP : $\hat{m}_l = \hat{m}_l(\beta)$

 \hat{m}_l is determined by the condition for 'm_{\rm PS} r_{\rm 0}'

Integral method with (m_l, Δ)

$$\begin{split} \frac{p}{T^4} \Big|_{\beta_0}^{\beta} &= N_{\tau}^4 \int_{\beta_0}^{\beta} d\beta' \left[\frac{1}{N_{\sigma}^3 N_{\tau}} (\langle S_g \rangle_0 - \langle S_g \rangle_T) \right. \\ &- (2(\langle \bar{\psi}\psi \rangle_{l0} - \langle \bar{\psi}\psi \rangle_{lT}) + \Delta(\langle \bar{\psi}\psi \rangle_{s0} - \langle \bar{\psi}\psi \rangle_{sT})) \left(\frac{\partial \hat{m}_l}{\partial \beta'} \right)_{\Delta} \\ &- \hat{m}_l \left((\langle \bar{\psi}\psi \rangle_{s0} - \langle \bar{\psi}\psi \rangle_{sT}) \right) \left(\frac{\partial \Delta}{\partial \beta'} \right)_{\hat{m}_l} \right] \\ \frac{\epsilon - 3p}{T^4} &= T \frac{d}{dT} \left(\frac{p}{T^4} \right) = a \frac{d\beta}{da} \frac{\partial p/T^4}{\partial \beta} \\ &= \left(\frac{\epsilon - 3p}{T^4} \right)_g + \left(\frac{\epsilon - 3p}{T^4} \right)_{\hat{m}_l} + \left(\frac{\epsilon - 3p}{T^4} \right)_{\Delta} \\ \left(\left(\frac{\epsilon - 3p}{T^4} \right)_g = \left(\frac{N_{\tau}}{N_{\sigma}} \right)^3 \left(\frac{d\beta}{da} \right) (\langle S_g \rangle_0 - \langle S_g \rangle_T) \\ \left(\frac{\epsilon - 3p}{T^4} \right)_{\hat{m}_l} &= N_{\tau}^4 \left(\frac{d\beta}{da} \right) \left(\frac{\partial \hat{m}_l}{\partial \beta} \right) \left[2 \left(\langle \bar{\psi}\psi \rangle_{l,0} - \langle \bar{\psi}\psi \rangle_{l,T} \right) + \Delta \left(\langle \bar{\psi}\psi \rangle_{s,0} - \langle \bar{\psi}\psi \rangle_{s,T} \right) \right] \\ \left(\frac{\epsilon - 3p}{T^4} \right)_{\Delta} &= N_{\tau}^4 \left(\frac{d\beta}{da} \right) \left(\frac{\partial \Delta}{\partial \beta} \right) \left(\langle \bar{\psi}\psi \rangle_{s,0} - \langle \bar{\psi}\psi \rangle_{s,T} \right) \end{split}$$

We need beta-functions :
$$R_{\beta} = \frac{d\beta}{da}, R_{\widehat{m}_l} = \left(\frac{\partial \widehat{m}_l}{\partial \beta}\right)_{\Delta}, \begin{bmatrix} R_{\Delta} = \left(\frac{\partial \delta}{\partial \beta}\right)_{m_l} \end{bmatrix}$$

$$Beta-function -R_{\beta}-$$

$$R_{\beta} = a\frac{d\beta}{da}\Big|_{\hat{m}_{l},\hat{m}_{s}} = \frac{a}{r_{0}} \left(\frac{\partial(a/r_{0})}{\partial\beta}\Big|_{LCP}\right)^{-1}$$

$$\frac{a}{r_{0}} = e^{A\hat{m}_{l}(2+\Delta)}R(\beta) \left(1+B\hat{a}^{2}(\beta)+C\hat{a}^{4}(\beta)\right)e^{D}$$

$$\frac{\partial(a/r_{0})}{\partial\beta} = \hat{e}(\beta)\frac{a}{r_{0}} + R(\beta) \left(2B\hat{e}(\beta)\hat{a}^{2}(\beta) + 4C\hat{e}(\beta)\hat{a}^{4}(\beta)\right)e^{D+A\hat{m}_{l}(2+\Delta)}$$
where
$$\hat{e}(\beta) = -\frac{1}{12b_{0}} + \frac{b_{1}}{2b_{0}^{2}\beta} \text{ and } \hat{a}(\beta) = R(\beta)/R(3.4)$$

Finally we obtain

$$R_{\beta} = \frac{1 + B\hat{a}^2(\beta) + C\hat{a}^4(\beta)}{\hat{e}(\beta) \left(1 + 3B\hat{a}^2(\beta) + 5C\hat{a}^4(\beta)\right)}$$

Conclusion

 N_f =2+1 simulation with almost realistic quark masses at N_t =4, 6

critical temperature

 $T_c r_0 = 0.456(7)$, $(T_c = 192(7)(4) MeV \text{ from } r_0 = 0.469(7) \text{fm})$

- $T_c r_0$ is consistent with previous p4 result difference in T_c mainly comes from physical value of r_0
- however, our value is about 10% larger than MILC result and about 30% larger than Fodor et al. result
- most systematic uncertainties are taken into account remaining uncertainty is in continuum extrapolation

Equation of state

- We calculate EoS on a Line of Constant Physics at Nt=4
- using $\Delta = m_l/m_s$
- Nt=6 is on progress

appendix

A new determination of the transition temperature in QCD

- calculation of transition temperature with almost physical quark masses and different lattice cut-off values
 - \Rightarrow extrapolation to physical limit ($m_{\pi} = 135$ MeV) and continuum limit ($a \rightarrow 0$)

Line of Constant Physics (LCP)

On a LCP, $m_l \& m_s$ are function of β $\hat{m}_l = \hat{m}_l(\beta), \ \hat{m}_s = \hat{m}_s(\beta) \leftarrow$ determined by physical conditions

