Constant mode in charmonium correlation functions

Takashi Umeda

This is based on the Phys. Rev. D75 094502 (2007) [hep-lat/0701005]

> *Thermal Field Theory and their applications YITP Kyoto, 5–7 September 2007*

Experiments

- Super Proton Synchrotron
- RHIC: BNL (2000) Relativistic Heavy Ion Collider
- LHC : CERN (2009) Large Hadron Collider

First paper on the J/ \$\$\$ suppression

College of General Education, Osaka University, Toyonaka, Osaka 560, Japan (Received 27 May 1986)

photo : Prof. Osamu Miyamura

VOLUME 57, NUMBER 17

PHYSICAL REVIEW LETTERS

27 OCTOBER 1986

in Monte Carlo analyses.^{7,8} A related question is whether charmoniumlike clusters may still exist in a quark-gluon plasma. We have made tentative calculations by screened Coulombic potential and found that possibility small. Thus, contribution to lepton pair in the J/ψ mass region from the deconfinement phase would be mainly thermal quark-antiquark annihilation.¹⁸ In connection with this point, we make a com-

lin, 1985), p. 1.

- ⁴R. D. Pisarski, Phys. Lett. 110B, 155 (1982).
- ⁵R. D. Pisarski and F. Wilczek, Phys. Rev. D 29, 338 (1984).
- ⁶L. McLerran and B. Svetitsky, Phys. Rev. D 24, 450 (1981).
- ⁷M. Fukugita, T. Kaneko, and A. Ukawa, Phys. Lett. 154B, 185 (1985).
 - SC Dorninger H Leeh and H Markum 7 Phys C 20

Fig. 7. Measured J/ψ production yields, normalised to the yields expected assuming that the only source of suppression is the ordinary absorption by the nuclear medium. The data is shown as a function of the energy density reached in the several collision systems.

Phys.Lett.B477(2000)28 NA50 Collaboration

Figure 10: Survival fraction (R_{AA}/CNM) vs energy density comparison of PHENIXAu+Au suppression to that fromNA38/50 at CERN.Energy density

QM2006 PHENIX Collaboration

 $0.5-1.5 \text{GeV/fm}^3 = 1.0 \text{Tc}$ 10 GeV/fm³ = 1.5 Tc 30 GeV/fm³ = 2.0 Tc

"Charmonium states in QGP exist or not ?" from Lattice QCD

Lattice QCD enables us to perform nonperturbative calculations of QCD

Charmonium in Lattice QCD

$$\langle X \rangle = \frac{1}{Z_{QCD}} \int Dq(x) D\bar{q}(x) DA_{\mu}(x) X(q, \bar{q}, A_{\mu}) e^{-S_{QCD}}$$

Path integral by MC integration

QCD action on a lattice

Wilson quark, Staggered (KS) quark, Domain Wall quark, etc

```
Input parameters (lattice setup) :
(1) gauge coupling → lattice spacing (a) → continuum limit
(2) quark masses
(3) (Imaginary) time extent → Temperature (T=1/Nta)
```


Thermal 2007

Example of lattice results

Charmonium spectral function

$$C(t) = \langle O(t)O^{\dagger}(0) \rangle$$

=
$$\int d\omega \rho(\omega) \frac{e^{-\omega t} + e^{-\omega(N_t - t)}}{1 - e^{-\omega N_t}}$$

Maximum entropy method $C(t) \rightarrow \rho(\omega)$

 Quenched QCD

 - T. Umeda et al.,

 EPJC39S1, 9, (2005).

 - S. Datta et al.,

 PRD69, 094507, (2004).

 - T. Hatsuda & M. Asakawa,

 PRL92, 012001, (2004).

 - A. Jakovac et al.,

 PRD75, 014506 (2007).

 Full QCD

 - G. Aarts et al.,

 hep-lat/0610065.

All studies indicate survival of J/ ψ state above T_c (1.5T_c?)

Sequential J/ \$\$\$ suppression

Particle Data Group (2006)

Dissociation temperatures of J/ψ and $\psi' \& \chi_c$ are important for QGP phenomenology.

Discussion

Studies for P-wave charmonium SPFs

S. Datta et al., PRD69, 094507 (2004). A.Jakovac et al., PRD75, 014506 (2007).

- (*) They concluded that
- the results of SPFs for P-states are not so reliable.

e.g. large default model dep.

the drastic change just above Tc is reliable results.

Lattice QCD results

Lattice setup

- Quenched approximation (no dynamical quark effect)
- Anisotropic lattices

lattice size : $20^3 \times N_t$ lattice spacing : $1/a_s = 2.03(1)$ GeV,anisotropy : $a_s/a_t = 4$

Quark mass

charm quark (tuned with J/ ψ mass)

$N_{ au}$	160	32	26	20
T/T_c	~ 0	0.88	1.08	1.4
# of conf.	60	300	300	300

Effective mass (local mass)

Definition of effective mass

$$C(t) = A_0 e^{-m_0 t} + A_1 e^{-m_1 t} + \cdots$$

$$\equiv A e^{-m_{eff}(t)t}$$

$$\frac{C(t)}{C(t+1)} = e^{-m_{eff}(t)}$$

$$m_{eff}(t)
ightarrow m_0$$
 when $(m_1 - m_0)t \gg 1$

In the (anti) periodic b.c.

$$\frac{C(t)}{C(t+1)} = \frac{\cosh[m_{eff}(t)(N_t/2 - t)]}{\cosh[m_{eff}(t)(N_t/2 - t - 1)]}$$

Effective mass (local mass)

At zero temperature

(our lattice results) $M_{PS} = 3033(19) \text{ MeV}$ $M_V = 3107(19) \text{ MeV}$

(exp. results from PDG06) $M_{\eta c} = 2980 \text{ MeV}$ $M_{J/\psi} = 3097 \text{ MeV}$ $M_{\chi c0} = 3415 \text{ MeV}$ $M_{\chi c1} = 3511 \text{ MeV}$

 In our lattice N_t ~ 28 at T_c t = 1 - 14 is available near T_c
 Spatially extended (smeared) op. is discussed later

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

Constant mode

Pentaquark (KN state): two pion state: → Dirichlet b.c. c.f. T.T.Takahashi et al., PRD71, 114509 (2005). $exp(-m_qt) \times exp(-m_qt)$ $= exp(-2m_qt) \qquad m_q \text{ is quark mass} \\ or single quark energy$ $exp(-m_qt) \times exp(-m_q(L_t-t))$ $= exp(-m_qL_t)$

 L_t = temporal extent

in imaginary time formalism
 L_t = 1/Temp.
 gauge field : periodic b.c.
 quark field : anti−periodic b.c.
 in confined phase: m_q is infinite
 → the effect appears
 only in deconfined phase

Free quark calculations

Continuum form of the correlators *calculated by S. Sasaki* $C(t) = \sum_{\vec{p}} \frac{4}{\cosh(E_p N_t/2)} \times$

 $\left(E_p^2 \cosh\left[2E_p(t-N_t/2)\right]\right)$ for $\Gamma = \gamma_5$

$$\left((E_p^2 - p_i^2) \cosh\left[2E_p(t - N_t/2)\right] + p_i^2\right)$$
 for $\Gamma = \gamma_i$

$$-\left(p^2 \cosh\left[2E_p(t-N_t/2)\right] + (E_p^2 - p^2)\right) \text{ for } \Gamma = 1$$
$$-\left((p^2 - p_i^2) \cosh\left[2E_p(t-N_t/2)\right] + (E_p^2 - p^2 + p_i^2)\right)$$

for $\Gamma = \gamma_i \gamma_5$

where

 E_p : single quark energy with relative mom. p

$$p^2 = \sum_i p_i^2$$

Thermal 2007

Physical interpretation

 $\rho_{\Gamma}(\omega) = \Theta(\omega^2 - 4m_q^2) \frac{N_c}{8\pi\omega} \sqrt{\omega^2 - 4m_q^2} [1 - 2n_F(\omega/2)]$

 $\times [\omega^2 (a_H^{(1)} - a_H^{(2)}) + 4m^2 (a_H^{(2)} - a_H^{(3)})]$

 $+2\pi\omega\delta(\omega)N_c[(a_H^{(1)}+a_H^{(2)})I_1+(a_H^{(2)}-a_H^{(3)})I_2]$

F. Karsch et al., PRD68, 014504 (2003). G. Aarts et al., NPB726, 93 (2005).

constant contribution remains in the continuum form & infinite volume

The constant term is related to some transport coefficients.

From Kubo-formula, for example, a derivative of the SPF in the V channel is related to the electrical conductivity σ .

$$\sigma = \frac{1}{6} \frac{\partial}{\partial \omega} \rho_V(\omega) \Big|_{\omega = 0}$$

Without constant mode

from "An Introduction to Quantum Field Theory" Michael E. Peskin, Perseus books (1995)

the drastic change in P-wave states disappears in $m_{eff}^{sub}(t)$

 \rightarrow the change is due to the constant mode

Results with extended op.

extended op. enhances overlap
 small constant effect in V channel
 no large change above T_c in m_{eff}^{sub}(t)

 $O_{\Gamma}(\vec{x},t) = \sum_{\vec{y}} \phi(\vec{y}) \bar{q}(\vec{x}-\vec{y},t) \Gamma q(\vec{x},t)$ with a smearing func. $\phi(\mathbf{x})$ in Coulomb gauge

The drastic change of P-wave states is due to the const. contribution. \rightarrow There are small changes in SPFs (except for ω =0 peak).

Why several MEM studies show the dissociation of $\chi_{\rm c}$ states ?

Conclusion

There is the constant mode in charmonium correlators above T_c

- The drastic change in $\chi_{\rm c}$ states is due to the constant mode
 - \rightarrow the survival of χ_c states above T_c, at least T=1.4T_c.

The result may affect the scenario of J/ψ suppression.

In the MEM analysis,

one has to check consistency of the results at $\omega \gg T$ using, e.g., midpoint subtracted correlators.

$$\bar{C}(t) = C(t) - C(N_t/2)$$

$$\bar{C}(t) = \int_0^\infty d\omega \rho_{\Gamma}(\omega) K^{sub}(\omega, t),$$
$$K^{sub}(\omega, t) = \frac{\sinh^2(\frac{\omega}{2}(N_t/2 - t))}{\sinh(\omega N_t/2)}$$