Constant mode in meson correlators at finite temperature

Takashi Umeda

This talk is based on the hep-lat/0701005. to appear in Phys. Rev. D

Tsukuba Theory Seminar, Univ. of Tsukuba, Apr. 20, 2007

Contents

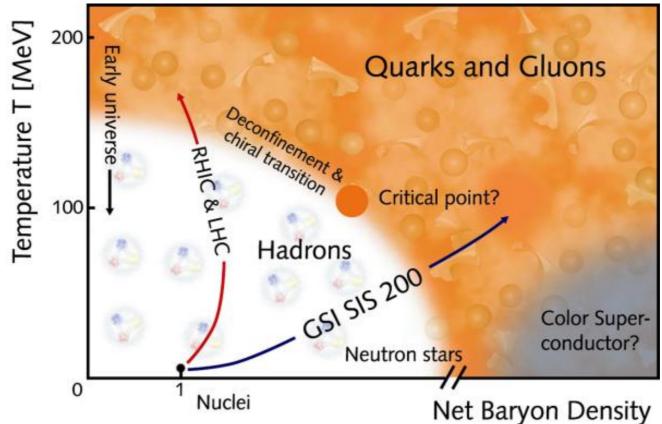
Introduction

- Overview
- Search for Quark Gluon Plasma
- (Sequential) J/ ψ suppression

Quenched QCD calculations

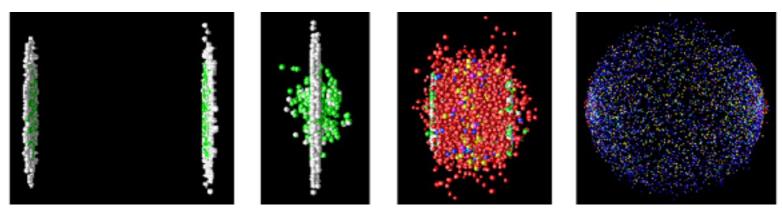
- Lattice setup
- T dependence of charmonium correlators
- Constant mode in meson correlators
- Discussion & summary

Quark Gluon Plasma (QGP)



Experiments

 SPS : CERN (- 2005) Super Proton Synchrotron
 RHIC: BNL (2000 - now) Relativistic Heavy Ion Collider
 LHC : CERN (2009 -) Large Hadron Collider



Tsukuba Theory Seminar

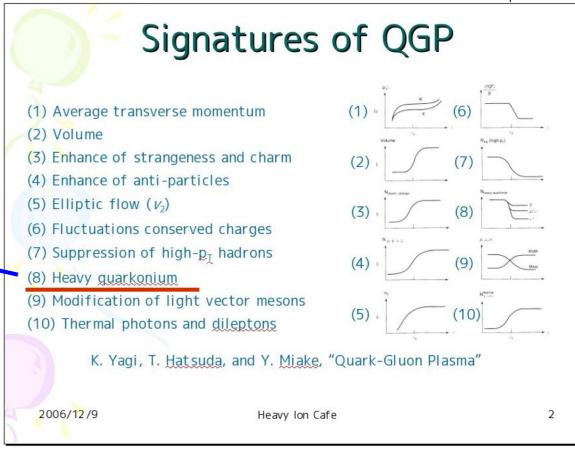
T.Umeda (Tsukuba)

from the Phoenix group web-site

Signatures of QGP

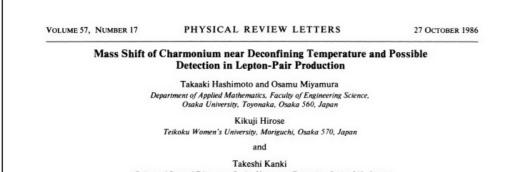
J/ ψ suppression 🚤

T.Hashimoto et al., PRL57 (1986) 2123. T.Matsui & H.Satz, PLB178 (1986) 416.



Talk by Ozawa @ Heavy Ion Cafe

First paper on the J/ \$\$\$ suppression



College of General Education, Osaka University, Toyonaka, Osaka 560, Japan (Received 27 May 1986)

photo : Prof. Osamu Miyamura

VOLUME 57, NUMBER 17

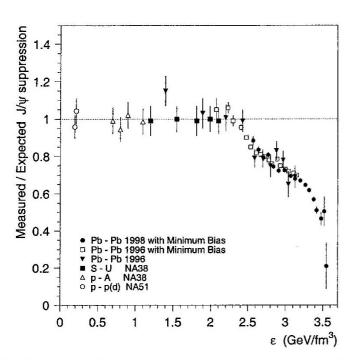
PHYSICAL REVIEW LETTERS

27 OCTOBER 1986

in Monte Carlo analyses.^{7,8} A related question is whether charmoniumlike clusters may still exist in a quark-gluon plasma. We have made tentative calculations by screened Coulombic potential and found that possibility small. Thus, contribution to lepton pair in the J/ψ mass region from the deconfinement phase would be mainly thermal quark-antiquark annihilation.¹⁸ In connection with this point, we make a com-

lin, 1985), p. 1.

- ⁴R. D. Pisarski, Phys. Lett. 110B, 155 (1982).
- ⁵R. D. Pisarski and F. Wilczek, Phys. Rev. D 29, 338 (1984).
- ⁶L. McLerran and B. Svetitsky, Phys. Rev. D 24, 450 (1981).
- ⁷M. Fukugita, T. Kaneko, and A. Ukawa, Phys. Lett. 154B, 185 (1985).
 - SC Dorninger H Leeh and H Markum 7 Phys C 20



 J/ψ suppression in Exp.

Fig. 7. Measured J/ψ production yields, normalised to the yields expected assuming that the only source of suppression is the ordinary absorption by the nuclear medium. The data is shown as a function of the energy density reached in the several collision systems.

Phys.Lett.B477(2000)28 NA50 Collaboration

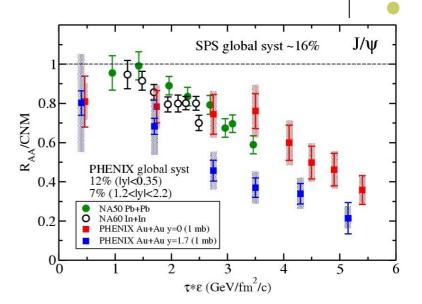
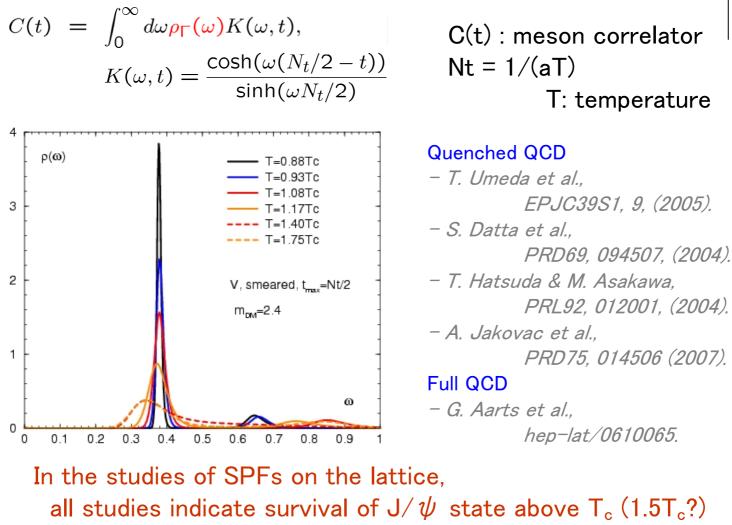


Figure 10: Survival fraction (R_{AA}/CNM) vs energy density comparison of PHENIX Au+Au suppression to that from NA38/50 at CERN.

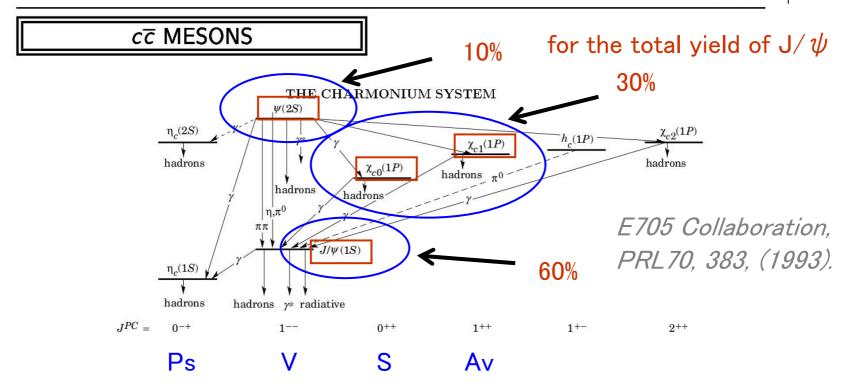
QM2006 PHENIX Collaboration

Spectral Function in lattice QCD

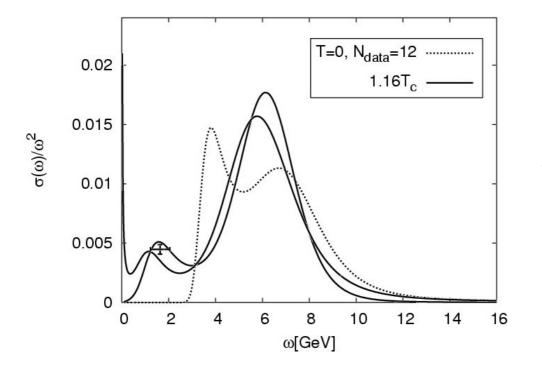


Sequential J/ \$\$\$ suppression

Particle Data Group (2006)



Dissociation temperatures of J/ψ and $\psi' \& \chi_c$ are important for QGP phenomenology.



S. Datta et al., PRD69, 094507 (2004). A.Jakovac et al., PRD75, 014506 (2007).

FIG. 19: The scalar spectral function for $\beta = 6.1$ at $T = 1.16T_c$ and at zero temperature reconstructed using $N_{data} = 12$. At finite temperature two default models $m(\omega) = 0.01$ and $m(\omega) = 0.038\omega^2$ have been used.

Contents

Introduction

- Overview
- Search for Quark Gluon Plasma
- (Sequential) J/ ψ suppression

Quenched QCD calculations

- Lattice setup
- T dependence of charmonium correlators
- Constant mode in meson correlators
- Discussion & summary

Quenched QCD at T>0

Lattice setup

anisotropic lattices : $20^3 \times N_t$ 1/a_s = 2.03(1) GeV, a_s/a_t = 4 Clover quark action with tadpole imp. on anisotropic lattice

H. Matsufuru et al., PRD64, 114503 (2001).

r_s=1 to reduce cutoff effects in higher energy states *F. Karsch et al., PRD68, 014504 (2003).*

quark mass is tuned with $M_{J/\psi}$ (= 3097MeV)

N_{τ}	160	32	26	20
T/T_c	~ 0	0.88	1.08	1.4
# of conf.	60	300	300	300

equilib. is 20K sweeps each config. is separated by 500 sweeps

Effective mass (local mass)

Definition of effective mass

$$C(t) = A_0 e^{-m_0 t} + A_1 e^{-m_1 t} + \cdots$$

$$\equiv A e^{-m_{eff}(t)t}$$

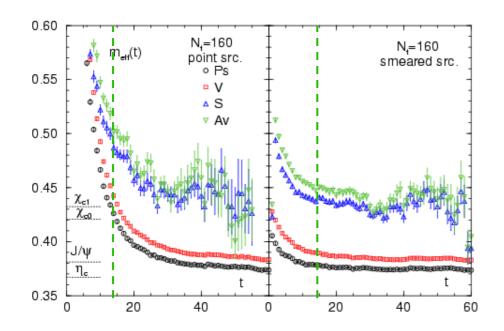
$$\frac{C(t)}{C(t+1)} = e^{-m_{eff}(t)}$$

$$m_{eff}(t)
ightarrow m_0$$
 when $(m_1 - m_0)t \gg 1$

In the (anti) periodic b.c.

$$\frac{C(t)}{C(t+1)} = \frac{\cosh[m_{eff}(t)(N_t/2 - t)]}{\cosh[m_{eff}(t)(N_t/2 - t - 1)]}$$

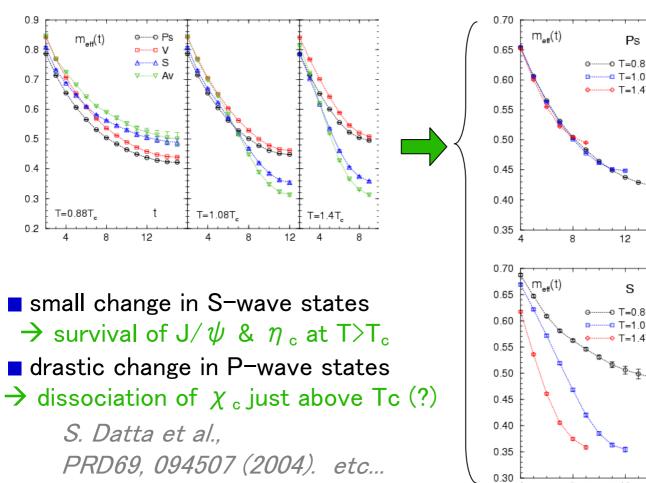
At zero temperature

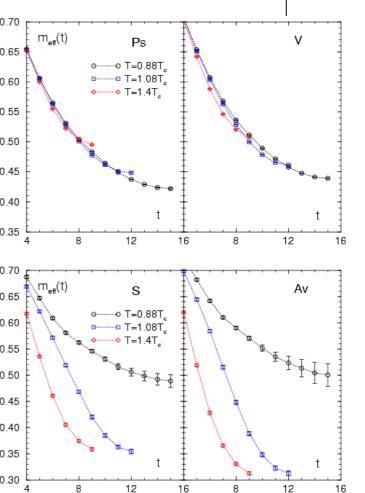


(our lattice results) $M_{PS} = 3033(19) \text{ MeV}$ $M_V = 3107(19) \text{ MeV}$

(exp. results from PDG06) $M_{\eta c} = 2980 \text{ MeV}$ $M_{J/\psi} = 3097 \text{ MeV}$ $M_{\chi c0} = 3415 \text{ MeV}$ $M_{\chi c1} = 3511 \text{ MeV}$

 In our lattice N_t ~ 28 at T_c t = 1 - 14 is available near T_c
 Spatially extended (smeared) op. is discussed later





0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

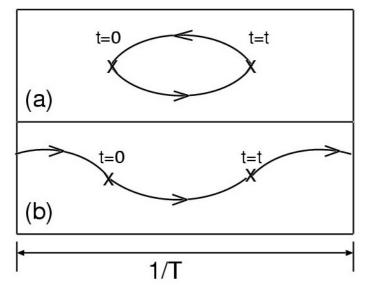
T=0.88T

8

m___(t)

Constant mode

Now we consider the meson correlator with $p=0 \& m_{q1}=m_{q2}$



Pentaquark (KN state): two pion state: → Dirichlet b.c. c.f. T.T.Takahashi et al., PRD71, 114509 (2005). $exp(-m_qt) x exp(-m_qt)$ $= exp(-2m_qt) m_q \text{ is quark mass} or single quark energy$ $exp(-m_qt) x exp(-m_q(L_t-t))$ $= exp(-m_qL_t) L_t = temporal extent$

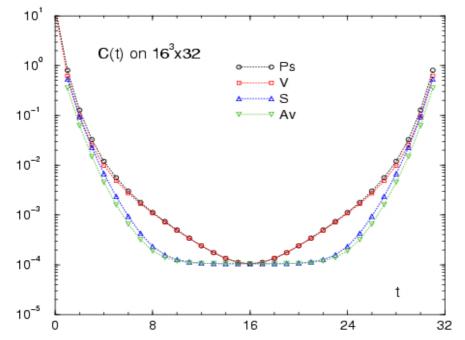
in imaginary time formalism
 L_t = 1/Temp.
 gauge field : periodic b.c.
 quark field : anti-periodic b.c.
 in confined phase: m_q is infinite
 → the effect appears
 only in deconfined phase

Free quark calculations

$$C(t) = \sum_{\vec{x}} \langle O_{\Gamma}(\vec{x}, t) O_{\Gamma}^{\dagger}(\vec{0}, 0) \rangle,$$

$$O_{\Gamma}(\vec{x}, t) = \bar{q}(\vec{x}, t) \Gamma q(\vec{x}, t),$$

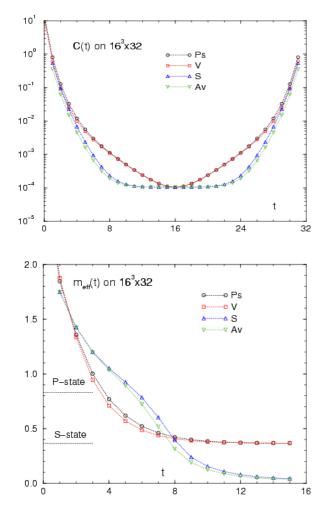
$$\Gamma = \gamma_5, \gamma_i, 1 \text{ and } \gamma_i \gamma_5 \quad \text{for Ps, V, S and Av channels}$$



 16³ x 32 isotropic lattice
 Wilson quark action with m_qa = 0.2

Obvious constant contribution in P-wave states

Free quark calculations



Continuum form of the correlators calculated by S. Sasaki

$$C(t) = \sum_{\vec{p}} \frac{4}{\cosh(E_p N_t/2)} \times$$

$$\left(E_p^2 \cosh\left[2E_p(t - N_t/2)\right] \right) \quad \text{for } \Gamma = \gamma_5$$

$$\left((E_p^2 - p_i^2) \cosh\left[2E_p(t - N_t/2)\right] + p_i^2 \right) \quad \text{for } \Gamma = \gamma_i$$

$$- \left(p^2 \cosh\left[2E_p(t - N_t/2)\right] + \left(E_p^2 - p^2\right) \right) \quad \text{for } \Gamma = 1$$

$$- \left((p^2 - p_i^2) \cosh\left[2E_p(t - N_t/2)\right] + \left(E_p^2 - p^2 + p_i^2\right) \right)$$

$$\text{for } \Gamma = \gamma_i \gamma_5$$

where

 E_p : single quark energy with relative mom. p

$$p^2 = \sum_i p_i^2$$

Tsukuba Theory Seminar

Spectral representation

Spectral function of the correlator

$$C(t) = \int_0^\infty d\omega \rho_{\Gamma}(\omega) K(\omega, t),$$

$$K(\omega, t) = \frac{\cosh(\omega(N_t/2 - t))}{\sinh(\omega N_t/2)}$$

F. Karsch et al., PRD68, 014504 (2003). G. Aarts et al., NPB726, 93 (2005).

$$\rho_{\Gamma}(\omega) = \Theta(\omega^{2} - 4m_{q}^{2}) \frac{N_{c}}{8\pi\omega} \sqrt{\omega^{2} - 4m_{q}^{2}} [1 - 2n_{F}(\omega/2)] \qquad I_{1} = -2 \int_{\vec{k}} n_{F}'(\omega_{\vec{k}}) \times [\omega^{2}(a_{H}^{(1)} - a_{H}^{(2)}) + 4m^{2}(a_{H}^{(2)} - a_{H}^{(3)})] \qquad \text{with} \qquad I_{2} = -2 \int_{\vec{k}} \frac{k^{2}}{\omega_{\vec{k}}^{2}} n_{F}'(\omega_{\vec{k}}) \times [n_{F}^{(1)}(\omega_{\vec{k}}) + 2\pi\omega\delta(\omega)N_{c}[(a_{H}^{(1)} + a_{H}^{(2)})I_{1} + (a_{H}^{(2)} - a_{H}^{(3)})I_{2}] \qquad I_{2} = -2 \int_{\vec{k}} \frac{k^{2}}{\omega_{\vec{k}}^{2}} n_{F}'(\omega_{\vec{k}}) \times [n_{F}^{(1)}(\omega_{\vec{k}}) + 2\pi\omega\delta(\omega)N_{c}[(a_{H}^{(1)} + a_{H}^{(2)})] + (a_{H}^{(2)} - a_{H}^{(3)})I_{2}] \qquad I_{2} = -2 \int_{\vec{k}} \frac{k^{2}}{\omega_{\vec{k}}^{2}} n_{F}'(\omega_{\vec{k}}) \times [n_{F}^{(1)}(\omega_{\vec{k}}) + 2\pi\omega\delta(\omega)N_{c}[(a_{H}^{(1)} + a_{H}^{(2)})] + (a_{H}^{(2)} - a_{H}^{(3)})I_{2}] \qquad I_{2} = -2 \int_{\vec{k}} \frac{k^{2}}{\omega_{\vec{k}}^{2}} n_{F}'(\omega_{\vec{k}}) \times [n_{F}^{(1)}(\omega_{\vec{k}}) + 2\pi\omega\delta(\omega)N_{c}[(a_{H}^{(1)} + a_{H}^{(2)})] + (a_{H}^{(2)} - a_{H}^{(3)})I_{2}] \qquad I_{2} = -2 \int_{\vec{k}} \frac{k^{2}}{\omega_{\vec{k}}^{2}} n_{F}'(\omega_{\vec{k}}) \times [n_{F}^{(1)}(\omega_{\vec{k}}) + 2\pi\omega\delta(\omega)N_{c}[(a_{H}^{(1)} + a_{H}^{(2)})] + (a_{H}^{(2)} - a_{H}^{(3)})I_{2}] \qquad I_{2} = -2 \int_{\vec{k}} \frac{k^{2}}{\omega_{\vec{k}}^{2}} n_{F}'(\omega_{\vec{k}}) \times [n_{F}^{(1)}(\omega_{\vec{k}}) + 2\pi\omega\delta(\omega)N_{c}[(a_{H}^{(1)} + a_{H}^{(2)})] + (a_{H}^{(2)} - a_{H}^{(3)})I_{2}] \qquad I_{2} = -2 \int_{\vec{k}} \frac{k^{2}}{\omega_{\vec{k}}^{2}} n_{F}'(\omega_{\vec{k}}) \times [n_{F}^{(1)}(\omega_{\vec{k}}) + 2\pi\omega\delta(\omega)N_{c}[(a_{H}^{(1)} + a_{H}^{(2)})] + (a_{H}^{(2)} - a_{H}^{(3)})I_{2}] \qquad I_{2} = -2 \int_{\vec{k}} \frac{k^{2}}{\omega_{\vec{k}}^{2}} n_{F}'(\omega_{\vec{k}}) \times [n_{F}^{(1)}(\omega_{\vec{k}}) + 2\pi\omega\delta(\omega)N_{c}[(a_{H}^{(1)} + a_{H}^{(2)})] + (a_{H}^{(2)} - a_{H}^{(3)})I_{2}] \qquad I_{2} = -2 \int_{\vec{k}} \frac{k^{2}}{\omega_{\vec{k}}^{2}} n_{F}'(\omega_{\vec{k}}) \times [n_{F}^{(1)}(\omega_{\vec{k}}) + 2\pi\omega\delta(\omega)N_{c}[(a_{H}^{(1)} + a_{H}^{(2)})] + (a_{H}^{(2)} - a_{H}^{(3)})I_{2} \qquad I_{2} = -2 \int_{\vec{k}} \frac{k^{2}}{\omega_{\vec{k}}^{2}} n_{F}'(\omega_{\vec{k}}) \times [n_{F}^{(1)}(\omega_{\vec{k}}) + 2\pi\omega\delta(\omega)N_{c}[(a_{H}^{(1)} + a_{H}^{(2)})] + (a_{H}^{(2)} - a_{H}^{(3)})I_{2} \qquad I_{2} = -2 \int_{\vec{k}} \frac{k^{2}}{\omega_{\vec{k}}^{2}} n_{F}'(\omega_{\vec{k}}) \times [n_{F}^{(1)}(\omega_{\vec{k}}) + 2\pi\omega\delta(\omega)N_{c}[(a_{H}^{(1)} + a_{H}^{(2)})] + (a_{H}^{(1)} - a_{H}^{(2)})I_{$$

chiral symmetry in massless limit

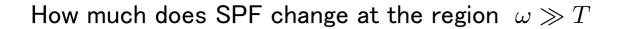
Physical interpretation

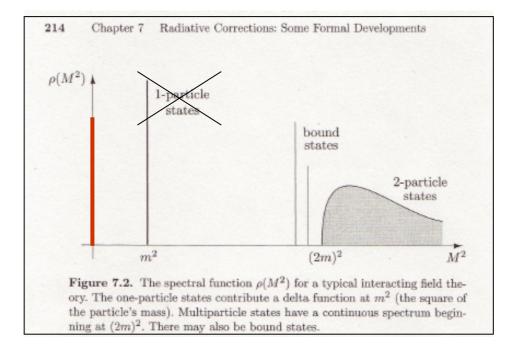
The constant term is related to some transport coefficients.

From Kubo-formula, for example, a derivative of the SPF in the V channel is related to the electrical conductivity σ .

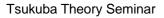
$$\sigma = \frac{1}{6} \frac{\partial}{\partial \omega} \rho_V(\omega) \Big|_{\omega = 0}$$

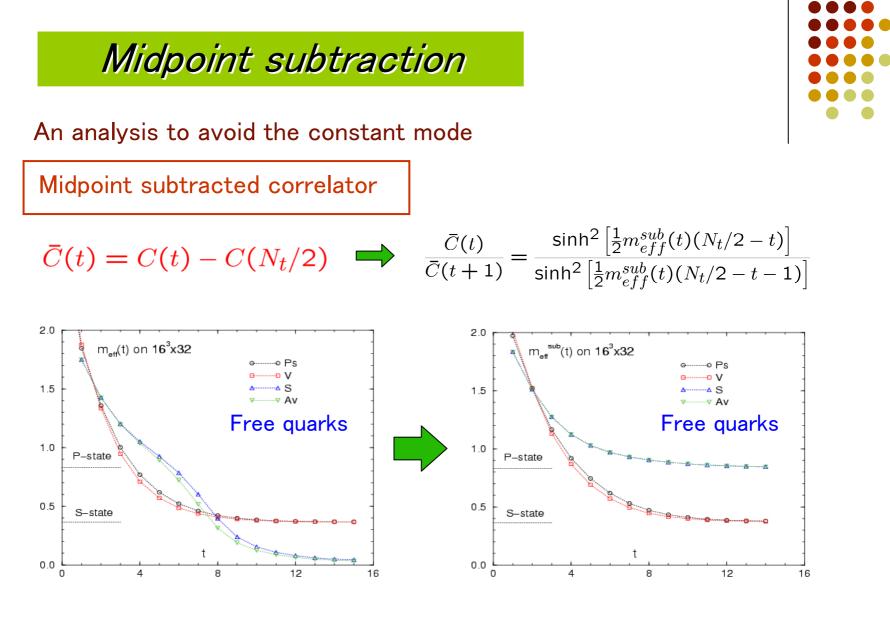
Without constant mode

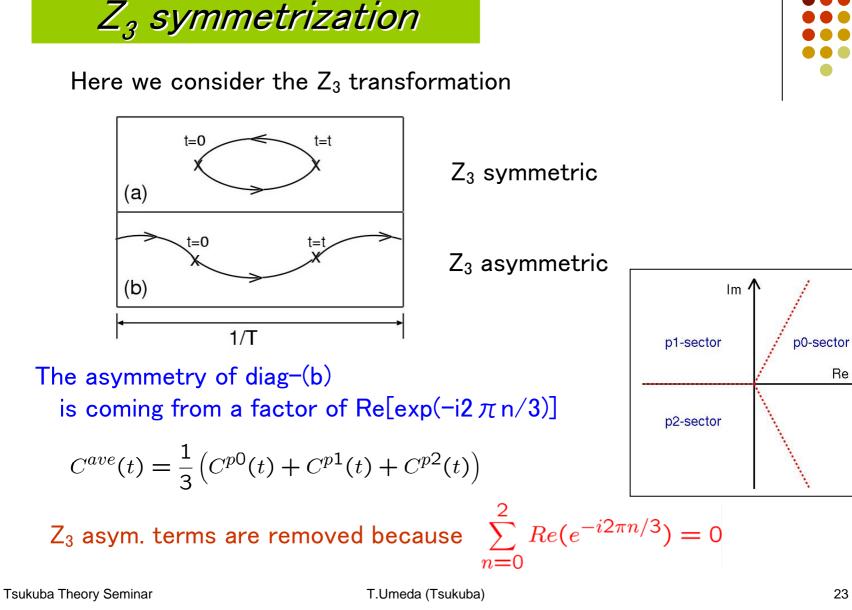


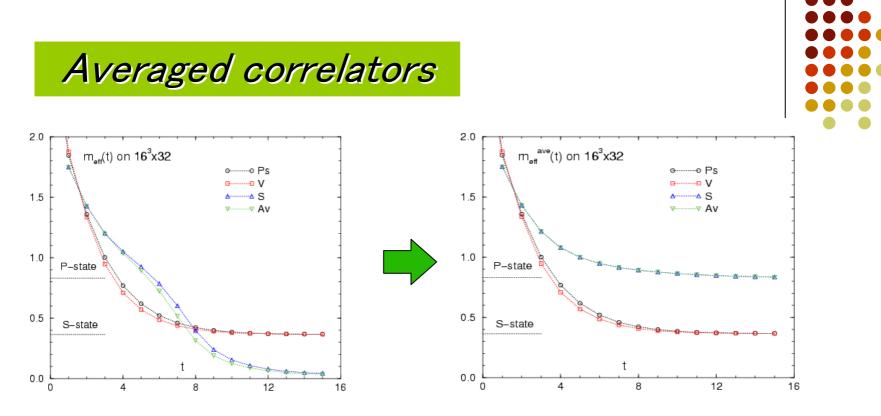


from "An Introduction to Quantum Field Theory" Michael E. Peskin, Perseus books (1995)

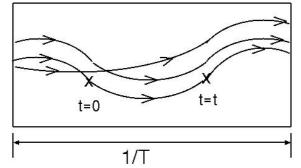




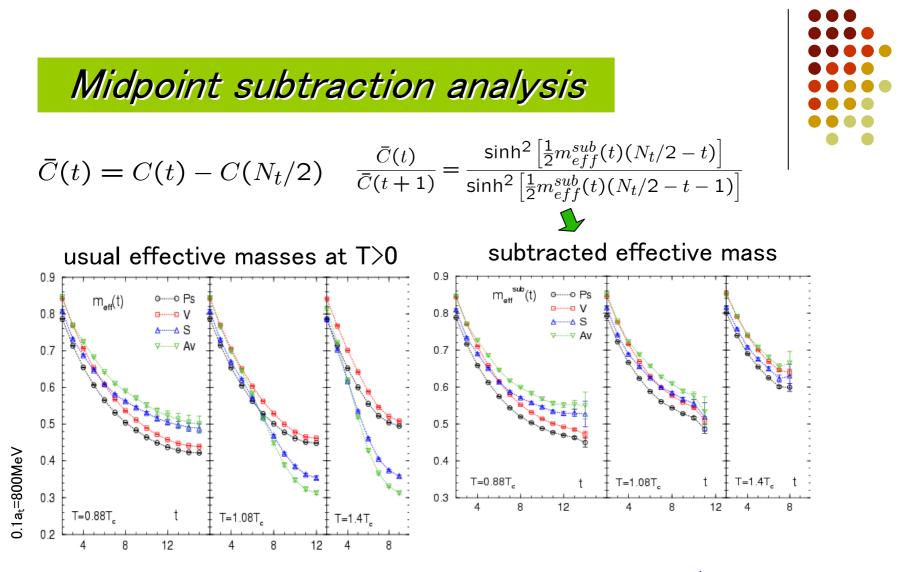




However, this is not an exact method to avoid the constant contribution.



The 3 times wrapping diagram is also Z_3 symmetric. \rightarrow the contribution is not canceled. but, $O(exp(-m_qN_t)) \gg O(exp(-3m_qN_t))$

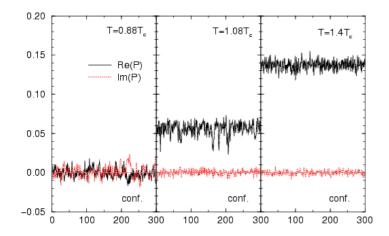


the drastic change in P-wave states disappears in $m_{eff}^{sub}(t)$

 \rightarrow the change is due to the constant mode

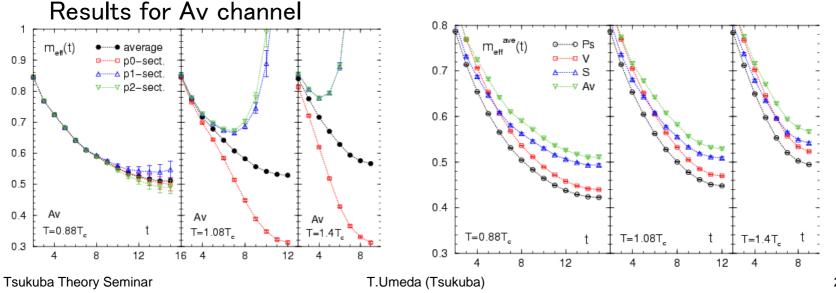
Tsukuba Theory Seminar

Polyakov loop sector dependence

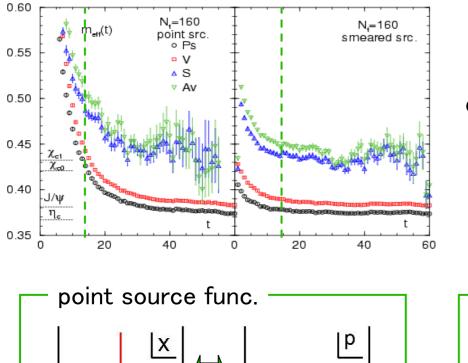


■ after Z₃ transformation const. → Re(exp($-i2 \pi n/3$))*const.

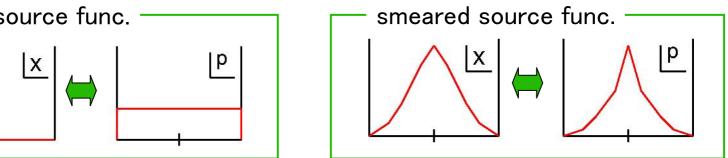
- even below T_c, small const. effect enhances the stat. fluctuation.
- drastic change in P-states disappears.



Results with extended op.

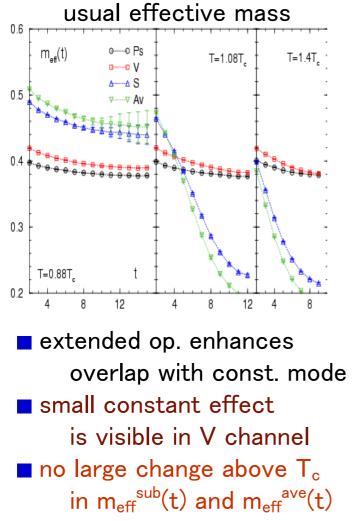


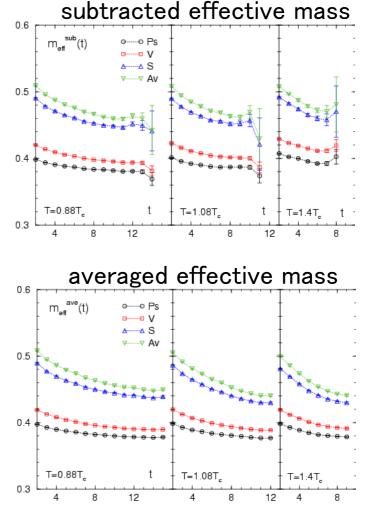
Spatially extended operators: $O_{\Gamma}(\vec{x},t) = \sum_{\vec{y}} \phi(\vec{y}) \bar{q}(\vec{x} - \vec{y},t) \Gamma q(\vec{x},t)$ with a smearing func. $\phi(\mathbf{x})$ in Coulomb gauge

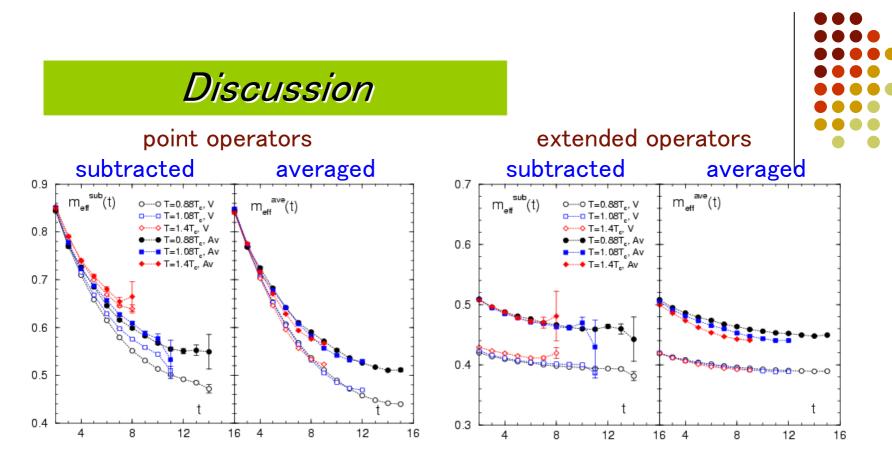


The extended op. yields large overlap with lowest states

Results with extended op.

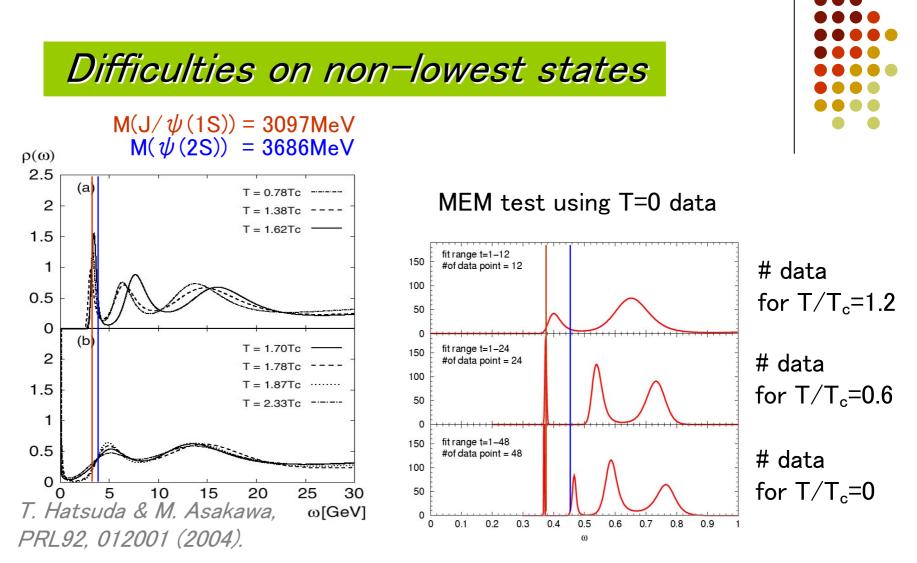






The drastic change of P-wave states is due to the const. contribution. \rightarrow There are small changes in SPFs (except for $\omega=0$).

Why several MEM studies show the dissociation of $\chi_{\rm c}$ states ?

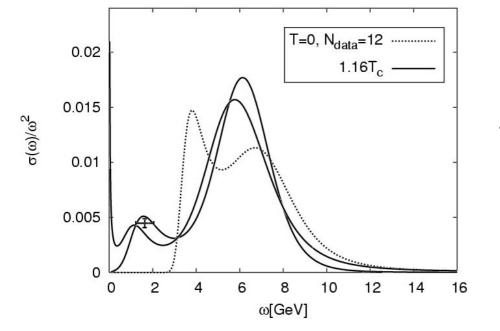


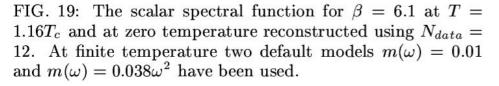
It is difficult to reproduce the non-lowest states peak at T>0 Furthermore P-wave states have larger noise than S-wave states

Tsukuba Theory Seminar

T.Umeda (Tsukuba)

English is strange ····





A.Jakovac et al., hep-lat/0611017.

Most systematic & reliable calc. using MEM for charmonium SPFs

They have concluded that

the results of SPFs for P-states are not so reliable.

e.g. large default model dep.

the drastic change just above Tc is reliable results.

Conclusion

There is the constant mode in charmonium correlators above T_c

- The drastic change in $\chi_{\rm c}$ states is due to the constant mode
 - \rightarrow the survival of χ_c states above T_c, at least T=1.4T_c.

The result may affect the scenario of J/ψ suppression.

In the MEM analysis,

one has to check consistency of the results at $\omega \gg T$ using, e.g., midpoint subtracted correlators.

$$\bar{C}(t) = C(t) - C(N_t/2)$$

$$(t) = \int_0^\infty d\omega \rho_{\Gamma}(\omega) K^{sub}(\omega, t),$$
$$K^{sub}(\omega, t) = \frac{\sinh^2(\frac{\omega}{2}(N_t/2 - t))}{\sinh(\omega N_t/2)}$$

 \bar{C}

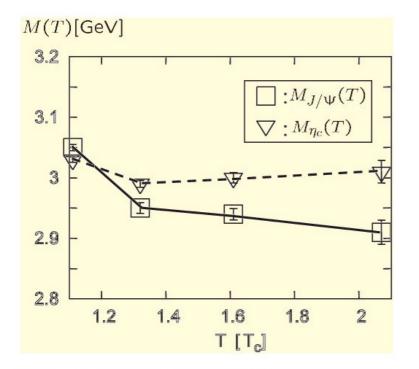


FIG. 8. Temperature dependence of the pole mass (on PBC) of J/Ψ and η_c for $(1.11-2.07)T_c$. The squares denote $M_{J/\Psi}(T)$ and the inverse triangles denote $M_{\eta_c}(T)$. There occurs the level inversion of J/Ψ and η_c above $1.3T_c$.

H. Iida et al., PRD74, 074502 (2006).

Several groups have presented

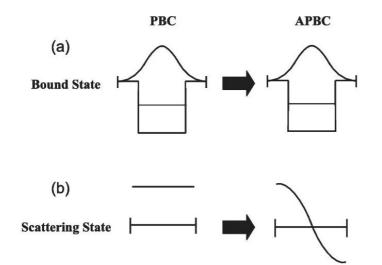
almost no change in Ps channel

small but visible change in V channel

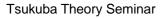
These results can be explained by the constant contribution.

- no constant in Ps channel
- small constant in V channel (proportional to p_i²)
 in free quark case

H. Iida et al., PRD74, 074502 (2006).



S-wave states : PBC p=(0, 0, 0) < xAPBC p=(π/L , 0, 0) P-wave states : PBC p=($2\pi/L$, 0, 0) > xAPBC p=(π/L , 0, 0) P-const. : PBC p=(0, 0, 0) < xAPBC p=(π/L , 0, 0)





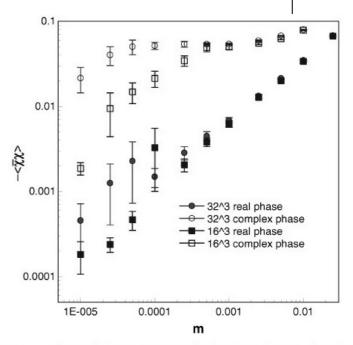


FIG. 1. The chiral condensate $\langle \bar{\chi} \chi \rangle$ plotted as a function of quark mass for a pure gauge calculation on $16^3 \times 4$ and $32^3 \times 4$ lattices. The real phase (closed points) is the most physical [det(D - m) is largest for this phase]. No evidence is seen for the expected anomalous behavior, $\langle \bar{\chi} \chi \rangle \sim m^{-1}$ as $m \to 0$.

S. Chandrasekharan et al., PRL82, 2463, (1999).

Volume dependence

Size of the constant contribution depends on the volume N_s^3 The dependence is negligible at $N_s/N_t \gtrsim 2$

■ Results on 96³ x 32 ($N_s/N_t=3 \leftarrow$ similar to T>0 quench QCD calculation)

