QCD Thermodynamics at fixed lattice scale

Takashi Umeda (Univ. of Tsukuba) for WHOT-QCD Collaboration

This talk is based on arXiv:0809.2842 [hep-lat] T. Umeda, S. Ejiri, S. Aoki, T. Hatsuda, K. Kanaya,Y. Maezawa, H. Ohno (WHOT-QCD Collaboration)

ATHIC2008, Univ. of Tsukuba, Ibaraki, Japan, 13-15 Oct. 2008

T.Umeda (Tsukuba)

Introduction

Equation of State (EOS) is important for phenomenological study of QGP, etc.

Methods to calculate the EOS have been established,

e.g. Integral method J. Engels et al. ('90).

Temperature $T = 1/(N_t a)$ is varied by $a(\beta)$ at fixed N_t

The EOS calculation requires huge computational cost, in which T=0 calculations dominate despite T>0 study.

- Search for a Line of Constant Physics (LCP)
- beta functions at each temperature
- T=0 subtraction at each temperature

Recent lattice calculations for Tc

RBC-Bielefeld:	Nt=4,6,8 Staggered (p4) quark pion mass ≥ 140MeV, Nf=2+1				
MILC:	Nt=4,6,8 Staggered (Asqtad) quark pion mass ≥ 220MeV, Nf=2+1				
Wuppertal:	Nt=4,6,8,10 Staggered (stout) quark pion mass ~ 140MeV, Nf=2+1				
DIK:	Nt=8,10,12 Wilson (NPI Clover) quark pion mass ≥ 500MeV, Nf=2				
WHOT-QCD:	Nt=4,6 Wilson (MFI Clover) quark pion mass ≥ 500MeV, Nf=2				

Recent lattice calculations for EOS

RBC-Bielefeld:	Nt=4,6,8 Staggered (p4) quark pion mass ~ 220MeV, Nf=2+1	
MILC:	Nt=4,6,8 Staggered (Asqtad) quar pion mass ~ 220MeV, Nf=2+1	· · · ·
Wuppertal:	Nt=4,6 Staggered (stout) quark pion mass ~ 140MeV, Nf=2+1	
CP-PACS:	Nt=4,6 Wilson (MFI Clover) quark pion mass ~ 500MeV, Nf=2	× 1

There are problems in Staggered quark formulations

- Flavor symmetry violation
- Rooted Dirac operator
- etc.

Wilson types quark results are important !!!

T-integration method to calculate the EOS

We propose a new method ("T-integration method") to calculate the EOS at fixed scales (*)

Temperature $T = 1/(N_t a)$ is varied by N_t at fixed $a(\beta)$

Our method is based on the trace anomaly (interaction measure),

$$\frac{\epsilon - 3p}{T^4} = \left(\frac{N_t^3}{N_s^3}\right) a \frac{d\beta}{da} \left\langle \frac{dS}{d\beta} \right\rangle_{sub}$$

and the thermodynamic relation.

$$\frac{\epsilon - 3p}{T^4} = T \frac{\partial (p/T^4)}{\partial T} \quad \Longrightarrow \quad \frac{p}{T^4} = \int_0^T dT' \; \frac{\epsilon - 3p}{T'^5}$$

(*) fixed scale approach has been adopted in L.Levkova et al. ('06) whose method is based on the derivative method.

ATHIC2008

T.Umeda (Tsukuba)

Notable points in T-integration method

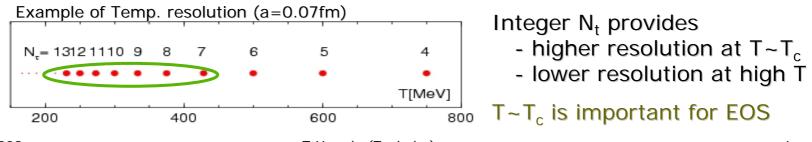
Our method can reduce computational cost at T=0 drastically.

- Zero temperature subtraction is performed using a common T=0 calculation.
- Line of Constant Physics (LCP) is trivially exact (even in full QCD).
- Only the beta functions at the simulation point are required.

However ...

• Temperatures are restricted by integer N_{t} .

 \rightarrow Sufficiently fine lattice is necessary.



Simulation parameters (isotropic lattices)

We present results from SU(3) gauge theory as a test of our method

- I plaquette gauge action on $N_s^3 \times N_t$ lattices
- Jackknife analysis with appropriate bin-size

To study scale- & volume-dependence, we prepare 3-type of lattices.

β

6.0 24 16

6.0 24 10

6.0 24 9

6.0 24 8

6.0 24 7

6.0 24 6

6.0 24 5

6.0 24 4

3

6.0 24

(1) $\beta = 6.0$, $V = (16a)^3$ (2) $\beta = 6.0$, $V = (24a)^3$ (3) $\beta = 6.2$, $V = (22a)^3$ a=0.094fm

a=0.094fm

a=0.078fm

β	N_s	N_t	T[MeV]	conf.
6.0	16	16	~ 0	350k
6.0	16	10	210	350k
6.0	16	9	230	250k
6.0	16	8	260	200k
6.0	16	7	300	100k
6.0	16	6	350	50k
6.0	16	5	420	50k
6.0	16	4	530	50k
6.0	16	3	700	50k

 N_s N_t T[MeV] conf.

 ~ 0

210

230

260

300

350

420

530

700

150k

250k

200k

150k

100k

50k

50k

50k

50k

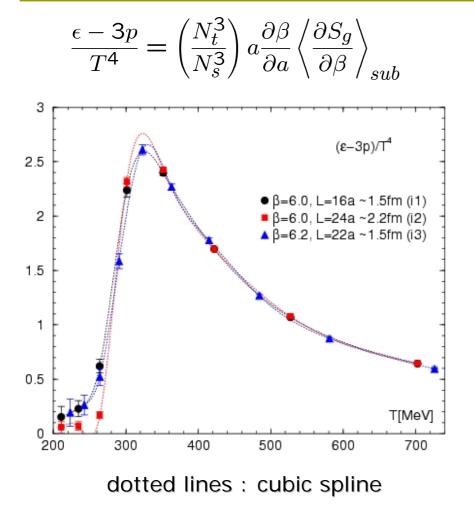
β	N_s	N_t	T[MeV]	conf.
6.2	22	22	~ 0	250k
6.2	22	13	220	350k
6.2	22	12	240	350k
6.2	22	11	270	350k
6.2	22	10	290	250k
6.2	22	9	320	200k
6.2	22	8	360	200k
6.2	22	7	420	100k
6.2	22	6	490	100k
6.2	22	5	580	50k
6.2	22	4	730	50k

Simulation parameters (anisotropic lattice)

Anisotropic lattice is useful to increase Temp. resolution, we also test our method on an anisotropic lattice $a_s \neq a_t$

■ plaquette gauge action on $N_s^3 \times N_t$ lattices with anisotropy $\xi = a_s/a_t = 4$

Trace anomaly $(e - 3p)/T^4$ on isotropic lattices

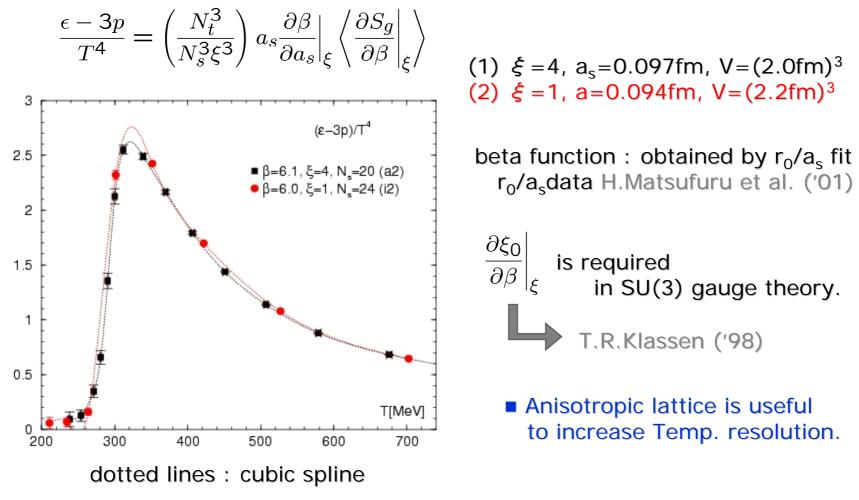


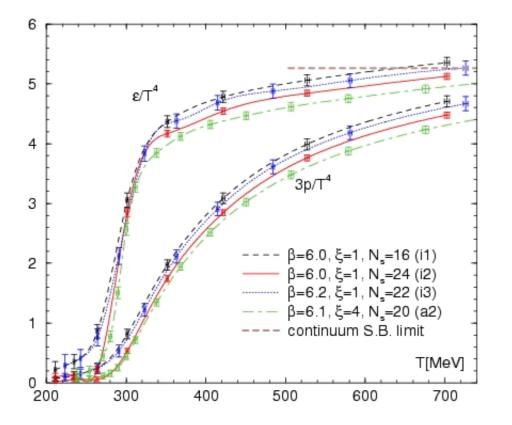
(1) $\beta = 6.0$, a = 0.094 fm, $V = (1.5 \text{ fm})^3$ (2) $\beta = 6.0$, a = 0.094 fm, $V = (2.2 \text{ fm})^3$ (3) $\beta = 6.2$, a = 0.068 fm, $V = (1.5 \text{ fm})^3$

beta function : G.Boyd et al. ('96) lattice scale r_0 : R.Edwards et al. ('98)

- Excellent agreement between (1) and (3)
 - → scale violation is small a=0.1fm is good
- Finite volume effect appears below & near T_c
 → volume size is important V=(2fm)³ is necessary.

Trace anomaly $(e - 3p)/T^4$ on aniso. lattice



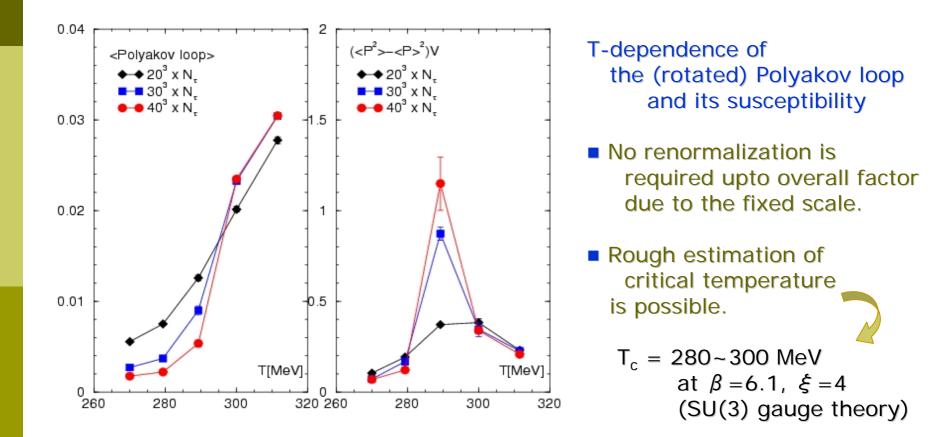


• Integration
$$\left(\frac{p}{T^4} = \int_0^T dT' \frac{\epsilon - 3p}{T'^5}\right)$$

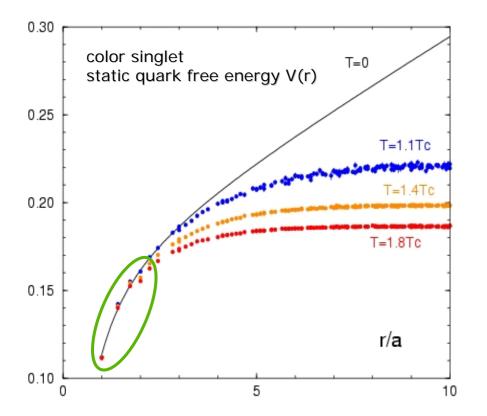
is performed with the cubic spline of $(e-3p)/T^4$

- Cubic spline vs trapezoidal inte. yields small difference ~ 1 σ
- Our results are roughly consistent with previous results.
- Unlike the fixed N_t approach, scale/temp. is not constant.
- → Lattice artifacts increase as temperature increases.

Transition temperature at fixed scale



Static quark free energy at fixed scale



- Static quark free energies at fixed scale
 - Due to the fixed scale, no renomalization constant is required.
 - → small thermal effects in V(r) at short distance (without any matching)
 - Easy to distinguish temperature effect of V(r) from scale & volume effects

Conclusion

We studied thermodynamics of SU(3) gauge theory at fixed lattice scale

Our method (T-integration method) works well to calculate the EOS

Fixed scale approach is also useful for

- critical temperature
- static quark free energy
- etc.

Our method is also available in full QCD !!

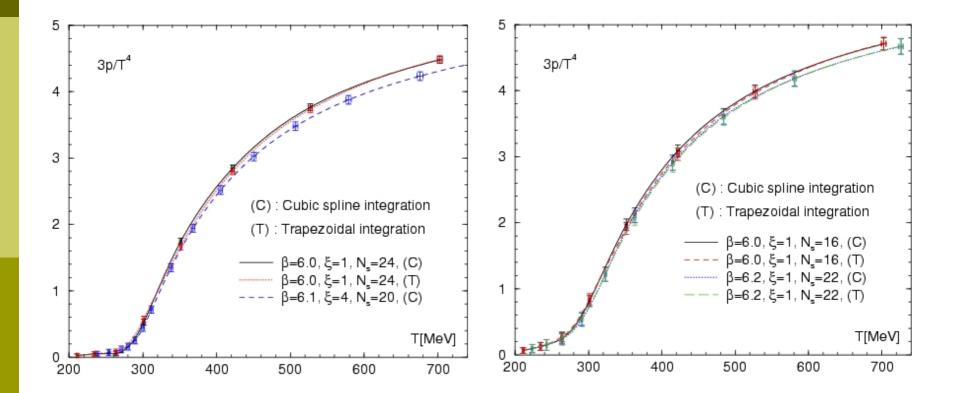
Therefore ...

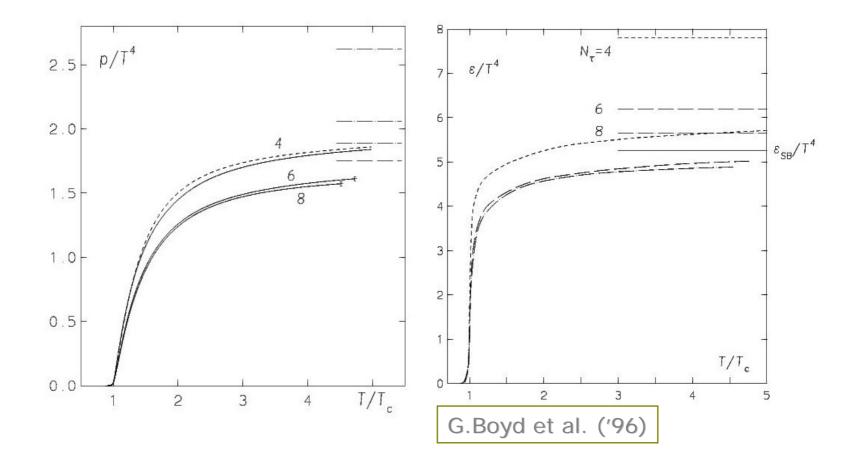
Toward full QCD calculations

- Our method is suited for already performed high statistics full QCD results.
- When beta functions are (able to be) known at a simulation point and T=0 configurations are open to the public, our method requires no additional T=0 simulation !!
- We are pushing forward in this direction using CP-PACS/JLQCD results in ILDG (N_f=2+1 Clover+RG, a=0.07fm, pion mass ~ 500MeV)

Our final goal is to study

thermodynamics on the physical point (pion mass ~ 140MeV) with 2+1 flavors of Wilson quarks





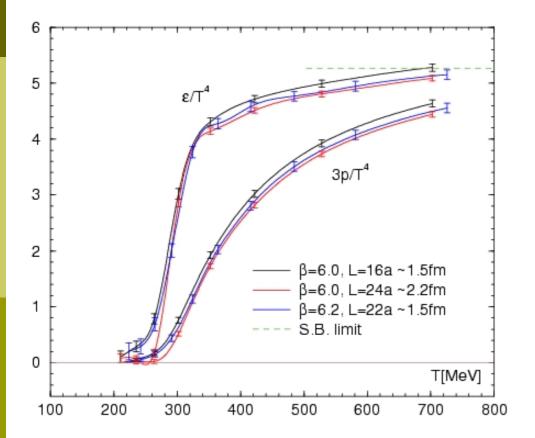
Simulation parameters (isotropic lattices)

We present results from SU(3) gauge theory as a test of our method

- plaquette gauge action on $N_{\sigma}^3 \times N_{\tau}$ lattices
- Jackknife analysis with appropriate bin-size

To study scale- & volume-dependence, we prepare 3-type of lattices.

		_						$a(dg^{-2}/da)$
i1	6.0	1	16	3-10	$5.35(^{+2}_{-3})$	0.093	1.5	-0.098172
i2	6.0	1	24	3-10	$5.35(^{+2}_{-3})$	0.093	2.2	-0.098172
i3	6.2	1	22	4-13	7.37(3)	0.068	1.5	-0.112127
a2	6.1	4	20	8-34	5.140(32)	0.097	2.0	-0.10704

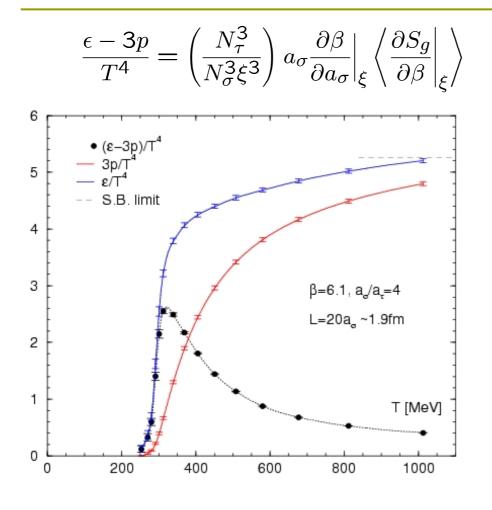


• Integration
$$\left(\frac{p}{T^4} = \int_0^T dT' \frac{\epsilon - 3p}{T'^5}\right)$$

is performed with the cubic spline of $(e-3p)/T^4$

- Our results are roughly consistent with previous results.
 - -- mild scale violation
 - -- Large volume is important
- Unlike the fixed N_τ approach, scale/temp. is not constant.
 - → Lattice artifacts increase as temperature increases.

EOS on an anisotropic lattice



beta function : obtained by r_0/a_σ fit r_0/a_σ data H.Matsufuru et al. ('01)

- Anisotropic lattice is useful to increase Temp. resolution.
- Results are roughly consistent with previous & isotropic results
- Additional coefficients are required to calculate (e-3p)/T⁴

