有限温度格子QCDの 新しいアプローチの可能性

Takashi Umeda (YITP, Kyoto Univ.) for WHOT-QCD Collaboration

This talk is (partly) based on Phys. Rev. D 79, 051501(R) (2009)

S. Ejiri, S. Aoki, T. Hatsuda, N. Ishii, K. Kanaya, Y. Maezawa, H. Ohno, T.U. (WHOT-QCD Collaboration)

GCOE-PD seminar, Kyoto, Japan, 18 Mar. 2009

Takashi Umeda (YITP, Kyoto Univ.)

Study of Quark-Gluon Plasma

QCD phase diagram in (Temperature, density)

http://www.gsi.de/fair/experiments/

Heavy Ion Collision experiments

- SPS : CERN (2005) Super Proton Synchrotron
- RHIC: BNL (2000) Relativistic Heavy Ion Collider
- LHC : CERN (2009) Large Hadron Collider

Takashi Umeda (YITP, Kyoto Univ.) from the Phenix group web-site

Lattice QCD simulations

Lattice QCD

- First principle (nonperturbative) calculation of QCD
- QCD action is defined on the lattice (discretized space-time)
- Path integral is carried out by Monte Carlo Integration

Contents of this talk

- Introduction
- Problems in the conventional approach
- A new approach for QCD Thermodynamics on lattices
- The EOS calculation by "T-integration method"

Hot QCD on the lattice

Temperature $T = 1/(N_t a)$ is varied by a at fixed N_t

Fermions on the lattice

Lattice OCD OCD action is defined on the lattice

Fermion doubling problem

- naive discretization causes 2⁴ doublers
- Nielsen-Ninomiya's No-go theorem
 - \rightarrow Doublers appear unless chiral symmetry is broken
- Staggered (KS) fermion \rightarrow Low cost

16 doublers = 4 spinors x 4 flavors Fourth root trick : still debated

- Wilson fermion → Moderate cost adds the Wilson term to kill extra 2⁴-1 doublers
- Domain Wall fermion → High cost

■ Overlap fermion → High cost

....

Problems in QCD Thermo. with KS fermions

Many QCD thermo. calc. were done with KS fermions.

- Phase diagram N_f=2 massless QCD → O(4) critical exponets KS fermion does not exhibit expected O(4) scaling (Wilson fermion shows O(4), but at rather heavy masses)
- Transition temperature (crossover transition in KS studies) Equation of State (p/T⁴, e/T⁴, s/T⁴, ...) KS results are not consistent with each other

N_f=2, 2+1 is not 4 !!!

Integral method to calculate pressure p/T^4

 $p = \frac{T}{V} \ln Z$ for large volume system

Lattice QCD can not directly calculate the partition function $\ln Z$

however its derivative is possible

$$\frac{\partial}{\partial\beta} \ln Z = -\left\langle \frac{\partial S_{QCD}}{\partial\beta} \right\rangle$$

One can obtain ${\bf p}$ as the integral of derivative of ${\bf p}$

high temp.

$$\frac{p}{T^4}\Big|_{\beta_0}^{\beta} = \frac{1}{VT^3} \int_{\beta_0}^{\beta} d\beta' \frac{\partial}{\partial\beta'} \ln Z$$
low temp.
with p=0 $= -N_t^4 \int_{\beta_0}^{\beta} d\beta' \frac{1}{N_s^3 N_t} \left(\langle \frac{\partial S_{QCD}}{\partial\beta} \rangle_{T>0} - \langle \frac{\partial S_{QCD}}{\partial\beta} \rangle_{T=0} \right)$
T=0 subtraction

Line of constant physics (LCP)

In case of N_f=2+1 QCD there are three (bare) parameters: β , (am_{ud}) and (am_s) $m_q \qquad low T (small 1/a)$ $p_0=0$ parameter spaceintegral parameter spacep(T)p(T)

Line of Constant Physics (LCP) defined at T=0

QCD Thermodynamics requires huge computational cost !!

Most group adopts KS fermion to study the QCD Thermodynamics.

Fixed scale approach to study QCD thermodynamics

Temperature $T = 1/(N_t a)$ is varied by N_t at fixed $a(\beta, m_{ud}, m_s)$

- Advantages
 - LCP is trivially exact
 - T=0 subtraction is done with a common T=0 sim.
 (T=0 high. stat. spectrum)
 - easy to keep large 1/a at whole T region
 - easy to study T effect without V, 1/a effects

Disadvantages

- T resolution by integer $\ensuremath{\mathsf{N}}_t$
- program for odd $\ensuremath{\mathsf{N}}_t$
- (1/a)/T = const. is not suited for high T limit study

T-integration method to calculate the EOS

We propose a new method ("T-integration method") to calculate the EOS at fixed scales

T.Umeda et al. (WHOT-QCD) Phys. Rev. D 79, 051501(R) (2009)

Our method is based on the trace anomaly (interaction measure),

$$\frac{\epsilon - 3p}{T^4} = \left(\frac{N_t^3}{N_s^3}\right) a \frac{d\beta}{da} \left\langle \frac{dS}{d\beta} \right\rangle_{sub}$$

and the thermodynamic relation.

$$\frac{\epsilon - 3p}{T^4} = T \frac{\partial (p/T^4)}{\partial T}$$
$$\implies \frac{p}{T^4} = \int_0^T dT' \ \frac{\epsilon - 3p}{T'^5}$$

Trace anomaly $(e - 3p)/T^4$ in SU(3) gauge theory

We present results from SU(3) gauge theory as a test of our method

(1) $\beta = 6.0$, 1/a = 2.1 GeV, $V = (1.5 \text{fm})^3$ (2) $\beta = 6.0$, 1/a = 2.1 GeV, $V = (2.2 \text{fm})^3$ (3) $\beta = 6.2$, 1/a = 2.5 GeV, $V = (1.5 \text{fm})^3$

beta function : G.Boyd et al. ('96) lattice scale r_0 : R.Edwards et al. ('98)

$$\frac{\epsilon - 3p}{T^4} = \left(\frac{N_t^3}{N_s^3}\right) a \frac{\partial\beta}{\partial a} \left\langle \frac{\partial S_g}{\partial\beta} \right\rangle_{sub}$$

Trace anomaly $(e - 3p)/T^4$ in SU(3) gauge theory

We present results from SU(3) gauge theory as a test of our method

(1) $\beta = 6.0$, 1/a = 2.1 GeV, $V = (1.5 \text{fm})^3$ (2) $\beta = 6.0$, 1/a = 2.1 GeV, $V = (2.2 \text{fm})^3$ (3) $\beta = 6.2$, 1/a = 2.5 GeV, $V = (1.5 \text{fm})^3$

beta function : G.Boyd et al. ('96) lattice scale r_0 : R.Edwards et al. ('98)

Integration
$$\left(\frac{p}{T^4} = \int_0^T dT' \frac{\epsilon - 3p}{T'^5}\right)$$

is performed with the cubic spline of (e-3p)/T4

Our fixed scale approach with "T-integration method" works well !!

Takashi Umeda (YITP, Kyoto Univ.)

Summary and future plans

A new approach to study the QCD Thermodynamics is proposed.

- "T-integral method" to calculate the EOS works well.
- There are many advantages in the approach.

We have already generated T>0 configurations using CP-PACS/JLQCD parameter (N_f=2+1 Clover+RG, 1/a=3GeV, pion mass ~ 500MeV)

 Our final goal is to study thermodynamics on the physical point (pion mass ~ 140MeV) with N_f=2+1 Wilson quarks (PACS-CS) or exact chiral symmetry with N_f=2+1 Overlap quarks (JLQCD)
 We are looking for new ideas to study QGP physics in our approach.

(density correlations, J/psi suppression, finite density...)

Backup slides

Recent lattice calculations of EOS

Introduction

Physics in Lattice QCD at finite temperature

- Phase diagram in (T, μ , m_{ud}, m_s)
- Transition temperature
- Equation of state (e, p, s,...)
- Excitation spectrum
- Transport coefficients (shear/bulk viscosity)
- Finite chemical potential
- etc...

These are important to study

- Quark Gluon Plasma in Heavy Ion Collision exp.
- Early universe
- Neutron star
- etc...

quantitative studies

qualitative studies

Trace anomaly $(e - 3p)/T^4$ on isotropic lattices

(1) $\beta = 6.0$, 1/a = 2.1 GeV, $V = (1.5 \text{fm})^3$ (2) $\beta = 6.0$, 1/a = 2.1 GeV, $V = (2.2 \text{fm})^3$ (3) $\beta = 6.2$, 1/a = 2.5 GeV, $V = (1.5 \text{fm})^3$

beta function : G.Boyd et al. ('96) lattice scale r_0 : R.Edwards et al. ('98)

- Excellent agreement between (1) and (3) → scale violation is small
 - Scale violation is small 1/a=2GeV is good
- Finite volume effect appears below & near T_c
 → volume size is important V=(2fm)³ is necessary.

Simulation parameters (isotropic lattices)

We present results from SU(3) gauge theory as a test of our method

- I plaquette gauge action on $N_s^3 \times N_t$ lattices
- Jackknife analysis with appropriate bin-size

To study scale- & volume-dependence, we prepare 3-type of lattices.

(1) $\beta = 6.0$, $V = (16a)^3$ (2) $\beta = 6.0$, $V = (24a)^3$ (3) $\beta = 6.2$, $V = (22a)^3$ 1/a=2.1GeV

1/a=2.1GeV 1/a=2.5GeV

β	N_s	N_t	T[MeV]	conf.
6.0	16	16	~ 0	350k
6.0	16	10	210	350k
6.0	16	9	230	250k
6.0	16	8	260	200k
6.0	16	7	300	100k
6.0	16	6	350	50k
6.0	16	5	420	50k
6.0	16	4	530	50k
6.0	16	3	700	50k

β	N_s	N_t	T[MeV]	conf.
6.0	24	16	~ 0	150k
6.0	24	10	210	250k
6.0	24	9	230	200k
6.0	24	8	260	150k
6.0	24	7	300	100k
6.0	24	6	350	50k
6.0	24	5	420	50k
6.0	24	4	530	50k
6.0	24	3	700	50k

β	N_s	N_t	T[MeV]	conf.
6.2	22	22	~ 0	250k
6.2	22	13	220	350k
6.2	22	12	240	350k
6.2	22	11	270	350k
6.2	22	10	290	250k
6.2	22	9	320	200k
6.2	22	8	360	200k
6.2	22	7	420	100k
6.2	22	6	490	100k
6.2	22	5	580	50k
6.2	22	4	730	50k

Takashi Umeda (YITP, Kyoto Univ.)