Thermodynamics at fixed lattice spacing

Takashi Umeda (Univ. of Tsukuba) for WHOT-QCD Collaboration

This talk is based on arXiv:0809.2842 [hep-lat]

JPS meeting, Yamagata Univ., Yamagata , 20-23 Sept. 2008

T.Umeda (Tsukuba)

Introduction

Equation of State (EOS) is important for phenomenological study of QGP, etc.

Methods to calculate the EOS have been established,

e.g. Integral method J. Engels et al. ('90).

Temperature $T = 1/(N_{\tau}a)$ is varied by $a(\beta)$ at fixed N_{τ}

The EOS calculation requires huge computational cost, in which T=0 calculations dominate despite T>0 study.

- Search for a Line of Constant Physics (LCP)
- beta functions at each temperature
- T=0 subtraction at each temperature

T-integration method to calculate the EOS

We propose a new method ("T-integration method") to calculate the EOS at fixed scales (*)

Temperature $T = 1/(N_{\tau}a)$ is varied by N_{τ} at fixed $a(\beta)$

Our method is based on the trace anomaly (interaction measure),

$$\frac{\epsilon - 3p}{T^4} = \left(\frac{N_\tau^3}{N_\sigma^3}\right) a \frac{d\beta}{da} \left\langle \frac{dS}{d\beta} \right\rangle_{sub}$$

and the thermodynamic relation.

$$\frac{\epsilon - 3p}{T^4} = T \frac{\partial (p/T^4)}{\partial T} \quad \Longrightarrow \quad \frac{p}{T^4} = \int_0^T dT' \; \frac{\epsilon - 3p}{T'^5}$$

(*) fixed scale approach has been adopted in L.Levkova et al. ('06) whose method is based on the derivative method.

JPS08autumn

T.Umeda (Tsukuba)

Notable points in T-integration method

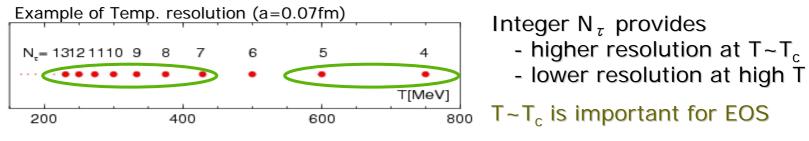
Our method can reduce computational cost at T=0 drastically.

- Zero temperature subtraction is performed using a common T=0 calculation.
- Line of Constant Physics (LCP) is trivially exact (even in full QCD).
- Only the beta functions at the simulation point are required.

However ...

• Temperatures are restricted by integer N_{τ} .

 \rightarrow Sufficiently fine lattice is necessary.



Simulation parameters (isotropic lattices)

We present results from SU(3) gauge theory as a test of our method

- I plaquette gauge action on $N_{\sigma}^3 \times N_{\tau}$ lattices
- Jackknife analysis with appropriate bin-size

To study scale- & volume-dependence, we prepare 3-type of lattices.

6.0

6.0

6.0

6.0

6.0

6.0

6.0

(1) $\beta = 6.0$, $V = (16a)^3$ (2) $\beta = 6.0$, $V = (24a)^3$ (3) $\beta = 6.2$, $V = (22a)^3$ a=0.094fm

a=0.078fm

β	N_{σ}	N_{τ}	T[MeV]	conf.
6.0	16	16	~ 0	350k
6.0	16	10	210	350k
6.0	16	9	230	250k
6.0	16	8	260	200k
6.0	16	7	300	100k
6.0	16	6	350	50k
6.0	16	5	420	50k
6.0	16	4	530	50k
6.0	16	3	700	50k

a	=0.	09	4fm
β	N_{σ}	N_{τ}	T[MeV]

10

9

7

4

3

24 16

24 8

24

24

24

6.0 24 6

6.0 24 5

24

24

conf.

150k

250k

200k

150k

100k

50k

50k

50k

50k

 ~ 0

210

230

260

300

350

420

530

700

β	N_{σ}	$N_{ au}$	T[MeV]	conf.
6.2	22	22	~ 0	250k
6.2	22	13	220	350k
6.2	22	12	240	350k
6.2	22	11	270	350k
6.2	22	10	290	250k
6.2	22	9	320	200k
6.2	22	8	360	200k

7

6

5

4

420

490

580

730

100k

100k

50k

50k

6.2 22

6.2 22

22

22

6.2

6.2

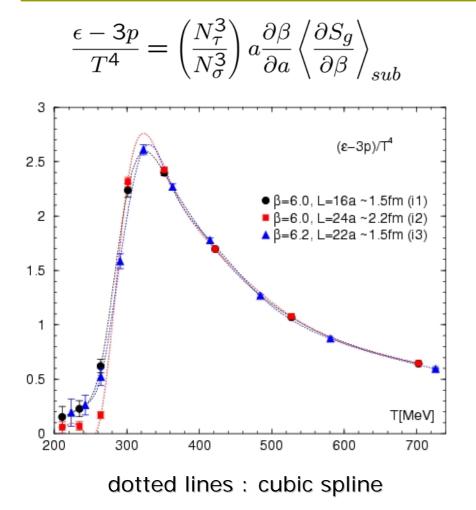
Simulation parameters (anisotropic lattice)

Anisotropic lattice is useful to increase Temp. resolution, we also test our method on an anisotropic lattice $a_{\sigma} \neq a_{\tau}$

■ plaquette gauge action on $N_{\sigma}^3 \times N_{\tau}$ lattices with anisotropy $\xi = a_{\sigma}/a_{\tau} = 4$

β 6.1	<i>N</i> σ 20	$rac{N_{ au}}{80}$	$T[MeV] \sim 0$	conf. 220k		β 6.1	<i>N</i> _σ 20	$N_{ au}$ 30	T[MeV] 270	conf. 220k	
6.1	20	32	250	520k		6.1	20	29	280	220k	
6.1	20	30	270	220k	NP 61 EA	6.1	20	28	290	220k	$V = (20a_{\sigma})^3$
6.1	20	29	280	220k	$\beta = 6.1, \xi = 4$	6.1	20	27	300	220k	$=(1.95 \text{ fm})^3$
6.1	20	28	290	220k	$V = (20a_{\sigma})^{3}$	6.1	20	26	310	220k	(, c)
6.1	20	27	300	220k	$=(1.95 \text{ fm})^3$	6.1	30	30	270	80k	
6.1	20	26	310	220k		6.1	30	29	280	100k	$V = (30a_{\sigma})^{3}$
6.1	20	24	340	220k	a=0.097fm	6.1	30	28	290	180k	$=(2.92 \text{fm})^3$
6.1	20	22	370	220k		6.1	30	27	300	100k	- (2.72111)
6.1	20	20	410	220k		6.1	30	26	310	80k	
6.1	20	18	450	220k	- EOS calculation	6.1	40	30	270	70k	$V = (40a_{\sigma})^{3}$
6.1	20	16	510	220k	statio quark	6.1	40	29	280	130k	$=(3.89 \text{fm})^3$
6.1	20	14	580	220k	- static quark	6.1	40	28	290	300k	$=(3.891m)^{\circ}$
6.1	20	12	680	220k	free energy	6.1	40	27	300	140k	
6.1	20	10	810	220k	\	6.1	40	26	310	70k	- critical temp.
6.1	20	8	1010	220k							•

Trace anomaly $(e - 3p)/T^4$ on isotropic lattices

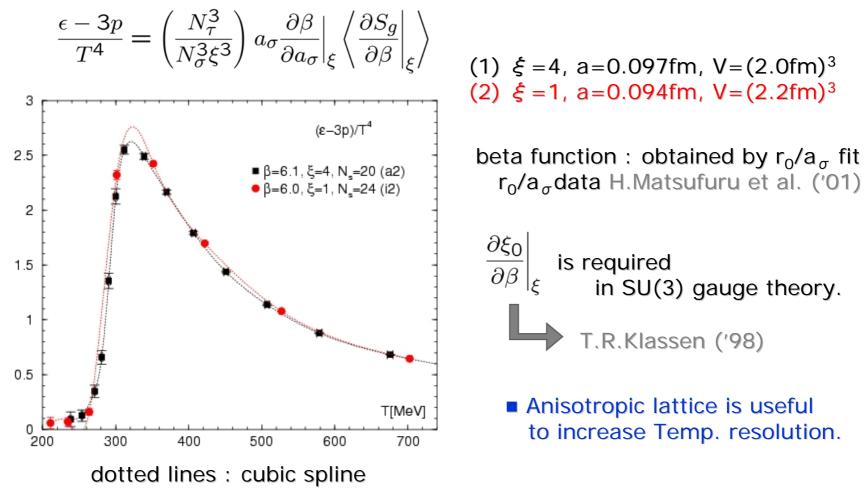


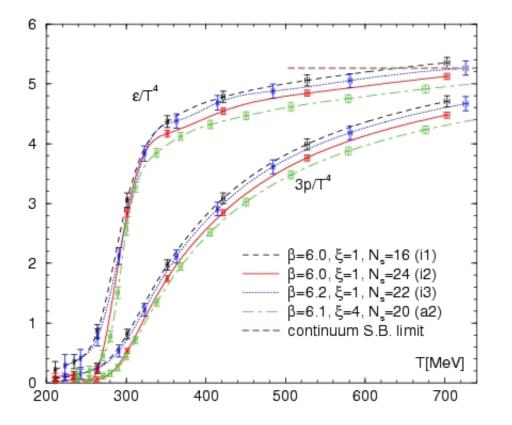
(1) $\beta = 6.0$, a = 0.094 fm, $V = (1.5 \text{ fm})^3$ (2) $\beta = 6.0$, a = 0.094 fm, $V = (2.2 \text{ fm})^3$ (3) $\beta = 6.2$, a = 0.068 fm, $V = (1.5 \text{ fm})^3$

beta function : G.Boyd et al. ('96) lattice scale r_0 : R.Edwards et al. ('98)

- Excellent agreement between (1) and (3)
 - → scale violation is small a=0.1fm is good
- Finite volume effect appears below & near T_c
 → volume size is important V=(2fm)³ is necessary.

Trace anomaly $(e - 3p)/T^4$ on aniso. lattice



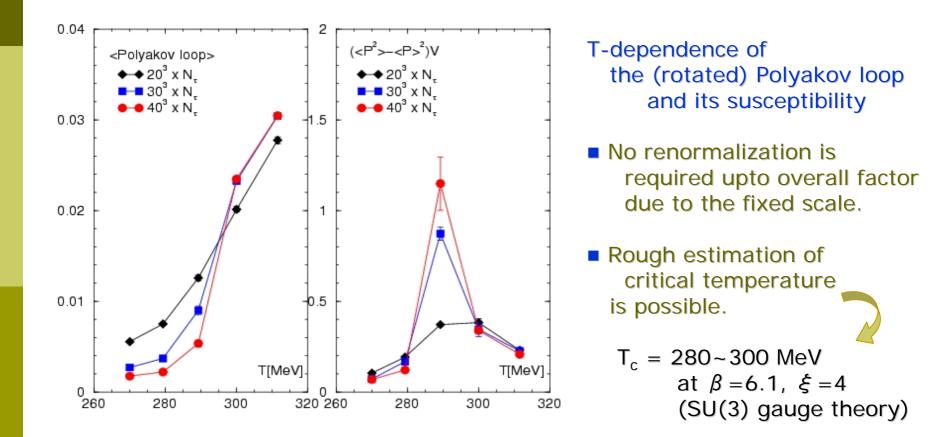


• Integration
$$\left(\frac{p}{T^4} = \int_0^T dT' \frac{\epsilon - 3p}{T'^5}\right)$$

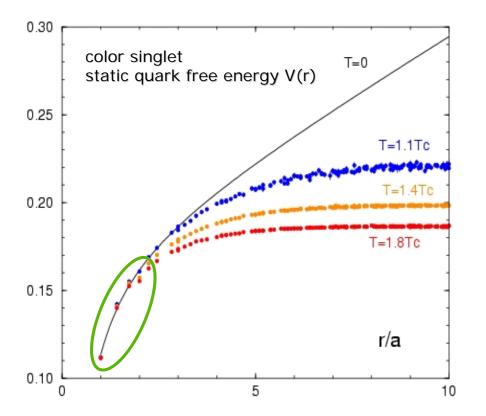
is performed with the cubic spline of $(e-3p)/T^4$

- Cubic spline vs trapezoidal inte.
 yields small difference ~ 1 σ
- Our results are roughly consistent with previous results.
- Unlike the fixed N_τ approach, scale/temp. is not constant.
- → Lattice artifacts increase as temperature increases.

Transition temperature at fixed scale



Static quark free energy at fixed scale



- Static quark free energies at fixed scale
 - Due to the fixed scale, no renomalization constant is required.
 - → small thermal effects in V(r) at short distance (without any matching)
 - Easy to distinguish temperature effect of V(r) from scale & volume effects

Conclusion

We studied thermodynamics of SU(3) gauge theory at fixed lattice scale

Our method (T-integration method) works well to calculate the EOS

Fixed scale approach is also useful for

- critical temperature
- static quark free energy
- etc.

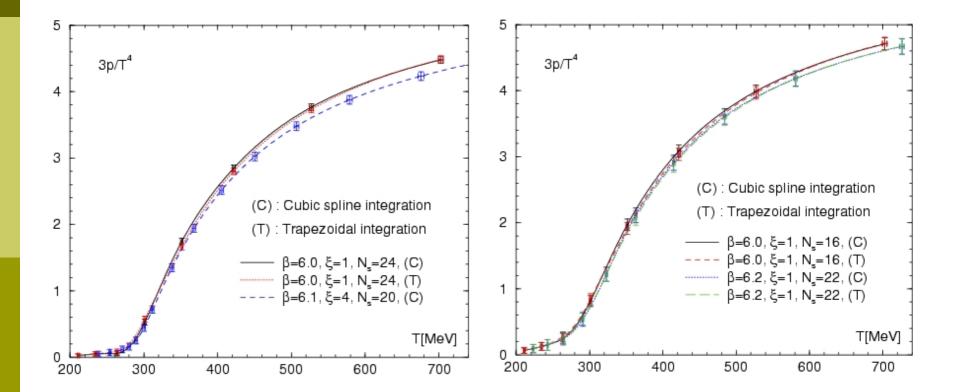
Our method is also available in full QCD !!

Therefore ...

Toward full QCD calculations

- Our method is suited for already performed high statistics full QCD results.
- When beta functions are (able to be) known at a simulation point and T=0 configurations are open to the public, our method requires no additional T=0 simulation !!
- We are pushing forward in this direction using CP-PACS/JLQCD results in ILDG (N_f=2+1 Clover+RG, a=0.07fm, m_{ps}/m_v=0.6)

■ Our final goal is to study thermodynamics on the physical point with 2+1 flavors of Wilson quarks → see PACS-CS talks





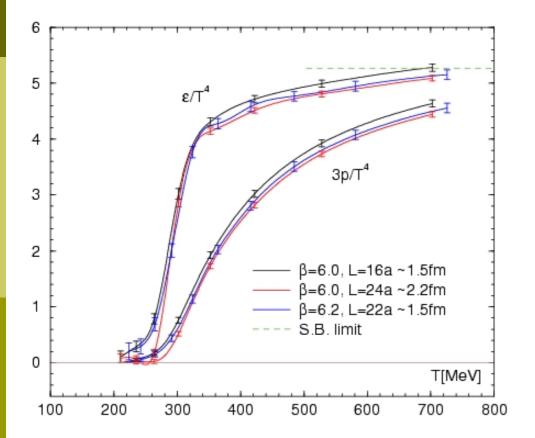
Simulation parameters (isotropic lattices)

We present results from SU(3) gauge theory as a test of our method

- **•** plaquette gauge action on $N_{\sigma}^3 \times N_{\tau}$ lattices
- Jackknife analysis with appropriate bin-size

To study scale- & volume-dependence, we prepare 3-type of lattices.

		_						$a(dg^{-2}/da)$
i1	6.0	1	16	3-10	$5.35(^{+2}_{-3})$	0.093	1.5	-0.098172
i2	6.0	1	24	3-10	$5.35(^{+2}_{-3})$	0.093	2.2	-0.098172
i3	6.2	1	22	4-13	7.37(3)	0.068	1.5	-0.112127
a2	6.1	4	20	8-34	5.140(32)	0.097	2.0	-0.10704

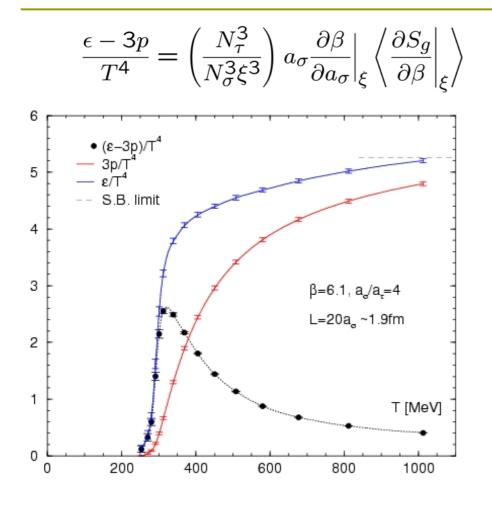


• Integration
$$\left(\frac{p}{T^4} = \int_0^T dT' \frac{\epsilon - 3p}{T'^5}\right)$$

is performed with the cubic spline of $(e-3p)/T^4$

- Our results are roughly consistent with previous results.
 - -- mild scale violation
 - -- Large volume is important
- Unlike the fixed N_τ approach, scale/temp. is not constant.
 - → Lattice artifacts increase as temperature increases.

EOS on an anisotropic lattice



beta function : obtained by r_0/a_σ fit r_0/a_σ data H.Matsufuru et al. ('01)

- Anisotropic lattice is useful to increase Temp. resolution.
- Results are roughly consistent with previous & isotropic results
- Additional coefficients are required to calculate (e-3p)/T⁴

