Lattice study of charmonia in Hot QCD

T. Umeda (YITP, Kyoto univ.) H. Ohno, K. Kanaya (Univ. of Tsukuba)

(WHOT-QCD Collaboration)

Mini-Workshop on "Photons and Leptons in Hot/Dense QCD" Nagoya University, Aichi, Japan , March 3rd 2009

Contents of this talk

Introduction

- -- Quark Gluon Plasma & J/ ψ suppression
- -- Lattice studies on J/ ψ suppression
- Our approach to study charmonium dissociation
- Charmonium spectra & wave functions at T>0
- Summary & future plan

J/ψ suppression as a signal of QGP

Confined phase: linear raising potential \rightarrow bound state of c - \overline{c}

De-confined phase: Debye screening → scattering state of c - c

T.Hashimoto et al. ('86), Matsui&Satz('86)

Lattice QCD calculations:

Spectral function by MEM: T.Umeda et al.('02), S.Datta et al.('04), Asakawa&Hatsuda('04), A.Jakovac et al.('07), G.Aatz et al.('06)
Wave func.: T.Umeda et al.('00)
B. C. dep.: H.Iida et al. ('06)

 \rightarrow all calculations conclude that J/ ψ survives till 1.5T_c or higher

Sequential J/ ψ suppression scenario

It is important to study dissociation temperatures for not only J/ ψ but also ψ (2S), χ_c 's

Charmonium correlators at T>0

$\chi_{\rm c}$ dissociation just above Tc ?

FIG. 19: The scalar spectral function for $\beta = 6.1$ at $T = 1.16T_c$ and at zero temperature reconstructed using $N_{data} = 12$. At finite temperature two default models $m(\omega) = 0.01$ and $m(\omega) = 0.038\omega^2$ have been used.

A.Jakovac et al., Phys. Rev. D 75 (2007) 014506. Nagoya mini-WS T.Umeda (Kyoto Univ.)

" χ_c dissociation just above T_c" is consistent with the sequential suppression scenario.

In the paper, they concluded that

- the drastic change of P-states corr. just above T_c is reliable.
- Spectral functions for P-states are not so reliable.
 - e.g. large default model dep.

Constant mode in meson correlators

T.Umeda, Phys. Rev. D 75 (2007) 094502. $exp(-m_qt) \times exp(-m_qt)$ $= exp(-2m_qt)$ m_q is quark mass or single quark energy $exp(-m_qt) \times exp(-m_q(L_t-t))$ $= exp(-m_qL_t)$ L_t = temporal extent

We can separate the constant mode from correlators

usual effective mass

$$\frac{C(t)}{C(t+1)} = \frac{\cosh\left[m_{eff}(t)(N_t/2-t)\right]}{\cosh\left[m_{eff}(t)(N_t/2-t-1)\right]}$$
subtracted effective mass

$$\overline{C}(t) = C(t) - C(N_t/2)$$

$$\frac{\overline{C}(t)}{\overline{C}(t+1)} = \frac{\sinh^2\left[\frac{1}{2}m_{eff}^{sub}(t)(N_t/2-t)\right]}{\sinh^2\left[\frac{1}{2}m_{eff}^{sub}(t)(N_t/2-t-1)\right]}$$

Constant mode effects in charmonia

Nagoya mini-WS

Spectral functions in a finite volume

Momenta are discretized in finite (V=L³) volume $p_i/a = 2n_i \pi/L$ ($n_i=0,\pm1,\pm2,...$) for Periodic boundary condition

In a finite volume (e.g. Lattice simulations), discrete spectra does not always indicate bound states !

$\chi_{\rm c}$ dissociation just above Tc ?

MEM analysis can fail if data quality is not sufficient. "P-wave states have larger noise than that of S-wave states"

Another approach to study charmonium at T>0

It is difficult to extract higher states from lattice correlators (at T>0) even if we use MEM !!

We want to get information about a few lowest states (at T>0)

Constant mode can be separated by the Midpoint subtraction

In order to study a few lowest states, the variational analysis is one of the most reliable approaches ! N x N correlation matrix : C(t) $C(t)\psi = \lambda(t, t_0)C(t_0)\psi$ $\lambda_i(t, t_0) = e^{-E_i(t-t_0)}$

Bound state or scattering state?

In a finite volume, discrete spectra does not always indicate bound states.

Lattice setup

- Quenched approximation (no dynamical quark effect)
- Anisotropic lattices

lattice spacing : $a_s = 0.0970(5)$ fm

anisotropy : $a_s/a_t = 4$

r_s=1 to suppress doubler effects

Variational analysis with 4 x 4 correlation matrix

N_t	32	26	20	16	12
T/T_c	0.88	1.08	1.40	1.75	2.33
# of conf.					
$V = 16^{3}$	300	300	300	300	300
$V = 20^{3}$	300	300	300	300	300
$V = 32^{3}$					100

Boundary condition dependence

The idea has been originally applied for the charmonium study in H. Iida et al., Phys. Rev. D74 (2006) 074502.

Variational analysis in free quark case

Test with free quarks ($L_s/a=20$, ma=0.17)


```
q(x_i + L_i) = b_i q(x_i)

b_i = 1 : \text{periodic}

b_i = -1 : \text{anti-periodic}

PBC : b = (1, 1, 1)
```

APBC :
$$b = (-1, -1, -1)$$

MBC : $b = (-1, 1, 1)$

```
an expected diff.
in V=(2fm)<sup>3</sup>
(free quark case)
~ 200MeV
```

Temperature dependence of charmonium spectra

$$q(x_i + L_i) = b_i q(x_i)$$

$$b_i = 1 : \text{periodic}$$

$$b_i = -1 : \text{anti-periodic}$$

$$PBC : b = (1, 1, 1)$$

$$APBC : b = (-1, -1, -1)$$

$$MBC : b = (-1, 1, 1)$$

$$MBC : b = (-1, 1, 1)$$

(free quark case)

~ 200MeV

No significant differences in the different B.C.

■ Analysis is difficult at higher temperature (2T_c~) Nagoya mini-WS T.Umeda (Kyoto Univ.)

Wave functions at finite temperature

Temp. dependence of (Bethe-Salpeter) "Wave function"

$$BS(\vec{r},t) = \sum_{\vec{x}} \langle \bar{q}(\vec{x}+\vec{r},t) \Gamma q(\vec{x},t) \bar{q}(\vec{0},0) \Gamma q(\vec{0},0) \rangle$$

$$\Psi(|\vec{r}|,t) = BS(\vec{r},t) / BS(\vec{r}_0,t)$$

$$\Gamma = \begin{cases} \gamma_5 & (Ps) \\ \gamma_i & (Ve) & (i = 1, 2, 3) \\ \sum_j \left(\overrightarrow{\partial}_j \gamma_j - \overleftarrow{\partial}_j \gamma_j\right) & (Sc) \\ \sum_{j,k} \epsilon_{ijk} \left(\overrightarrow{\partial}_j \gamma_k - \overleftarrow{\partial}_j \gamma_k\right) & (Av) & (i = 1, 2, 3) \end{cases}$$

using the eigen functions of the variational method \rightarrow we can extract the wave functions of each states

Wave functions in free quark case

Test with free quarks ($L_s/a=20$, ma=0.17) in case of S-wave channels

Free quarks make trivial waves with an allowed momentum in a box

 $\Psi_k(|\vec{r}|,t) = \frac{\sum_{\vec{p}=\vec{k}} \cos(p_1 r_1) \cos(p_2 r_2) \cos(p_3 r_3)}{\sum_{\vec{p}=\vec{k}} 1}$

The wave function is constructed with eigen functions of 4 x 4 correlators

 Our method well reproduces the analytic solutions (!)

Charmonium wave functions at finite temperatures

- Small temperature dependence in each channels
- Clear signals of bound states even at T=2.3Tc (!)
- Large volume is necessary for P-wave states.

Volume dependence at T=2.3Tc

Clear signals of bound states even at T=2.3Tc (!)

Large volume is necessary for P-wave states.

Summary and future plan

We investigated T_{dis} of charmonia from Lattice QCD using another approach to study charmonium at T>0 without Bayesian analysis

- boundary condition dependence
- Wave function (Volume dependence)

No evidence for unbound c-c quarks up to T = 2.3 Tc

 \rightarrow The result may affect the scenario of J/ ψ suppression.

Future plan

- Interpretations of the experimental results on J/ψ suppression
- Higher Temp. calculations (T/Tc=3~5)
- Full QCD calculations (Nf=2+1 Wilson is now in progress)