The hyperfine splitting of charmonium on the lattice

Takashi Umeda (YITP, Kyoto-Univ.) for the QCD-TARO Collaboration

26 January 2004 Tokyo-Univ. (Hongo campus)

Preliminary

Verification of Quantum Chromodynamics (QCD) Lattice regularization

Hadron spectroscopy

Light hadron spectrum (with/without dynamical quarks)

some projects in progress by CP-PACS, JLQCD, MILC, UKQCD, …

Charmonium spectrum

Charmonia properties are well established by experiments

Contents

Charmonium hyperfine splitting (HFS) on the lattice

1) Introduction

problems of the charmonium HFS

- 2) Quenched charmonium spectrum systematic study for the charmonium HFS
- 3) Discussion

remaining uncertainties of HFS

- 4) Contribution of a disconnected diagram
- 5) Conclusion

Status of experiments

$$J^{PC} = 0^{-+}$$

mass = 2979.7 ± 1.5 MeV width = 16.0 +3.6 - 3.2 MeV

$$J^{PC} = 1^{--}$$

mass = 3096.87 ± 0.04 MeV
width = 87 ±5 KeV

 $m(J/\psi) - m(\eta_c) = 117.2 \pm 1.5 \text{ MeV}$

Part-I Quenched charmonium spectrum

Problems for heavy quarks on a lattice

Charmonium spectrum on lattice QCD

lattice cutoff $1/a \gg m_{charm}$ is necessary large computational cost ! Effective theories NRQCD, etc. e.g. Trottier, Phys. Rev. D55 (1997) 6844 Relativistic framework Fermilab action, anisotropic lattice e.g. CP-PACS, Phys. Rev. D65 (2002) 094508

Status of lattice results

M.Okamoto et al. (CP-PACS), Phys. Rev. D65 (2002)094508

Good agreement with the experimental values except for the hyperfine splitting

HFS in NRQCD

H. Trottier, Phys. Rev. D55 (1997) 6844

- quenched simulation
- next-to-leading order correction
- Iattice cutoff in the range

of $1/a = 0.5 \sim 1.2 \text{ GeV}$

X m_{charm} is not so heavy
X no continuum limit

HFS in relativistic frameworks

quenched calculations Fermilab action *A.El-Khadra et al., [Lattice'91]* Anisotropic lattice action *CP-PACS, PRD65('02)094508 P.Chen, PRD64('01)034509*

anisotropic lattice also needs 1/a_s >> m_{charm}
 for reliable continuum extrapolations
 large dependence on Dirac operators

A study by QCD-TARO Collaboration

QCD-TARO Collabration, JHEP08 (2003) 022

- Quenched QCD (without dynamical quarks)
- Isotropic lattices with large cutoff $1/a \gg m_{charm}$
- Nonperturbatively improved clover quark M.Lüscher et al., Nucl.Phys.B491 (1997) 323
- Continuum extrapolation

Charmonium correlation functions

$$C(t) = \sum_{\vec{x}} \langle Tr[\Gamma D^{-1}(0, \vec{0}; t, \vec{x}) \Gamma \gamma_5 D^{-1}(\vec{0}, \vec{0}; t, \vec{x}) \gamma_5] \rangle$$

• point source & point sink correlators

zero momentum projection

Name	${}^{(2s+1)}L_{J}$	\mathbf{J}^{PC}	Γ	mass (GeV)
${\pmb \eta}_{ m c}$	${}^{1}\mathbf{S}_{0}$	0^-+	${\mathcal Y}_5$	2.980(2)
J/ψ	${}^{3}S_{1}$	1	${\cal Y}_{ m i}$	3.097
h _c	${}^{1}P_{1}$	1+-	$\sigma_{ m ij}$	3.526
$X_{\rm c0}$	${}^{3}P_{0}$	0**	1	3.415
X_{c1}	${}^{3}P_{1}$	1**	$\gamma_{\rm i}\gamma_5$	3.511

Lattice setup

Gauge field : plaquette gauge

Quark field : nonperturbatively improved clover quark (tree level clover quark, standard Wilson)

β	$L^3 \times T$	a(fm)	La(fm)	Csw	#conf
6.0	$18^{3} \times 48$	0.0931	1.68	1.769	190
6.2	$24^{3} \times 72$	0.0677	1.62	1.614	90
6.4	$32^{3} \times 96$	0.0513	1.64	1.526	60
6.6	$32^{3} \times 96$	0.0397	1.27	1.467	130

scale set by r $_{\rm 0}$

Charmonium spectrum

The results are consistent with the previous works hyperfine splitting is smaller than the Exp. value

Contained uncertainties

- statistical error
- quark mass determination (m_{charm})
- continuum extrapolation
- finite volume effects
- scale determination (1/a)
- choice of Dirac operators
- dynamical quark effects
- disconnected diagram contributions

Effective mass plot of HFS

$$R(t) \equiv \frac{\langle C(t) \rangle}{\langle C(t+1) \rangle} = \frac{\cosh\left[(T/2 - t) M(t) \right]}{\cosh\left[(T/2 - t - 1) M(t) \right]}$$

1: $\Delta M(t) \equiv M_B(t) - M_A(t)$

$$2 \colon \frac{R_{A}(t)}{R_{B}(t)} \sim \ e^{- \varDelta \, M \, (t)} \label{eq:alpha}$$

1: and 2: are consistent each other within error

2: is less noisy than 1:

we use the definition **2**:

Scale determination

Lattice cutoff

Sommer scale $r_0 \simeq 0.5 \, \text{fm}$ [R.Sommer,NPB411('94)839]

 $r_0 \frac{dV(r)}{dr}\Big|_{r=r_0} = 1.65$ V(r): Static quark potential

using the nucleon mass amounts to $r_0 \simeq 0.55 \, \text{fm}$ r $_0 \sim 10$ % uncertainty (due to dynamical quark effects)

Hadron mass (e.g. m(1P)-m(1S)) for example CP-PACS results ~ 16 % uncertainty

This discrepancy caused by scaling violation & dynamical quark effects

Charm quark mass determination

matching with a physical charmonium mass

m(J/ ψ) = 3.097 GeV m(η_c) = 2.980 GeV $\left\{ \sim 6\% \text{ uncertainty} \right\}$

only mass splittings of chamonia can be predicted

alternative possibilities D,D_s meson mass or decay constant free of OZI ambiguities

Finite volume effect

L	La (fm)	1 S ₀ (MeV)	3 S ₁ (MeV)	${}^{3}S_{1} - {}^{1}S_{0}$ (MeV)
8	0.75	2958(10)	3019(12)	61.4(4.4)
10	0.93	2953(5)	3023(6)	70.6(2.5)
12	1.12	2957(4)	3032(5)	75.4(2.7)
14	1.30	2947(3)	3020(4)	72.6(1.9)
16	1.49	2952(3)	3025(4)	74.9(2.1)
18	1.68	2949(2)	3021(3)	72.5(1.5)

- Lattice spacing is fixed to 0.093fm (β =6.0)
- nonperturbatively improved clover Dirac op. with *K* =0.11925
- averaged over 100conf. (190 for L=18)

finite volume effect is negligible at La > 1.1 fm

this effect is discussed again using wave functions

Continuum extrapolation

Nonperturbative Clover lattice artifact ~ $O(a^2)$

Continuum extrapolation linearly in a^2

 $\varDelta\,M\!=\!77(2)\,MeV$

at the continuum limit

different extrapolations including or not $\beta = 6.0$ **systematic uncertainty of extrapolation** ~ 3 MeV

Choice of Dirac operators : I

(1) using the all four β

- nonperturbative clover $O(a^2)$ linearly in a^2
- for tree-level clover
 including a and a² terms
- for Wilson
 - including a and $a^2\ \text{terms}$

scale violations to be:

O(a) for the Wilson Dirac operator $O(g^2a)$, $O(a^2)$ for the tree-level clover Dirac operator

Choice of Dirac operators : II

(1) using the three largest $\,eta$

- nonperturbative clover $O(a^2)$ linearly in a^2
- for tree-level clover
 linearly in a²
- for Wilson
 linearly in a

Wilson & tree-level Clover need very large cutoff for a reliable continuum extrapolation Dirac operator dependence is well controlled

Contained uncertainties

 $m(J/\psi) - m(\eta_c) = 77(2)(6) \text{ MeV}$ (117MeV in Experiment)

- statistical error
- \blacksquare quark mass determination (m_{charm}) ~ 5 MeV
- continuum extrapolation
- finite volume effects
- scale determination (1/a) ~ dynamical quark effects
- choice of Dirac operators ~ well controlled
- dynamical quark effects
- disconnected diagram contributions

~ 2 MeV

~ 3 MeV

- ~ negligible

Wave function

HFS in non-relativistic approximation

 \longrightarrow solving the Schredinger eq. with non-rela. Coulomb pot. 0-th order : HFS = 0

degeneracy is removed by spin-spin interaction

1-st order : HFS = $\frac{32 \pi \alpha_s(m_q)}{9 m_q^2} |\Psi_{NR}(0)^2|$ where non-rela. wave function $\Psi_{NR}(r) = \frac{1}{\sqrt{8 \pi \rho^3}} e^{\frac{-r}{2\rho}}$, $\rho = \frac{3}{4 \alpha_s m_q}$

$$\Psi_{\eta_{c}}(0) = \left(1 + \delta_{NP} + \left(\frac{1}{2} - \nu\right) 8 \alpha_{s}^{2}(\mu) 9\right) \Psi_{NR}(0) \qquad \delta_{NP} \text{ : non-perturb. correction}$$

$$\Psi_{J/\psi}(0) = \left(1 + \delta_{NP} - \left(\frac{1}{6} + \nu\right) 8 \alpha_{s}^{2}(\mu) 9\right) \Psi_{NR}(0) \qquad \alpha_{s}(\mu) \text{ : strong coupling at scale } \mu$$

$$\psi \approx 7.241 \times 10^{-2}$$

S.Titard et al, Phys. Rev. D51 (1995) 6348.

Gauge invariant wave function

C.Alexandrou et al., Phys. Rev. D66 (2002) 094503

Charmonium wavefunctions

scaling violations are very small
 \vert (\vec{0})'s agree with phenomenological expectations qualitatively
 In a heavy quark model : \vec \vec \eta_{\vec{1}/\psi}(\vec{0}) > \vec \vec{1}_{\vec{1}/\psi}(\vec{0})

Finite volume effect : 2

Discussion

Possible uncertainties of HFS

Charmonium hyperfine splitting is 30~–40% smaller than Exp.

dynamical quark effects

disconnected diagram contributions

------ 2-nd part of this talk

Dynamical quark effects

There is no systematic study including continuum extrapolation

Improved NRQCD on Nf=2 staggered full QCD config. *C.Stewart and R.Koniuk, Phys. Rev. D63 (2001) 054503.*NRQCD on Nf=2 Wilson full QCD config. *CP-PACS, Phys. Rev. D62 (2000) 114508.*Fermilab action on Nf=2+1 staggered full QCD config. *M.di Pierro et al., Nucl. Phys. B(PS)119 (2003) 586.*

Dynamical quark effects ~ at most 10%

Dynamical quark effects

M.di Pierro et al., hep-lat/0310042

- valence quark : Fermilab action tadpole improved tree-level
- sea quark :

Improved staggered quarks Nf = 2+1 ($am_s = 0.05$)

fixed lattice cutoffs 1/a=1.55GeV

theory/exp.=0.82(2) (=0.6 quenched result at 1/a=1.5GeV)

clover coefficient : (tadpole improved) tree-level

Part-II Contribution of disconnected diagram

OZI forbidden "disconnected" diagram

Disconnected diagrams are neglected because high cost & very small contribution however, it may contribute to HFS ~ O(10) MeV ?

Charmonium correlators

$$\begin{split} C_{con}(t) = &\sum_{\vec{x}} \langle Tr \left[\Gamma D^{-1}(0,\vec{0}\,;\,t\,\,,\vec{x}\,\,) \Gamma D^{-1}(t\,\,,\vec{x}\,\,;\,0,\vec{0}) \right] \rangle \\ C_{dis}(t) = &\sum_{\vec{x}} \langle Tr \left[\Gamma D^{-1}(0,\vec{0}\,;\,0,\vec{0}) \right] Tr \left[\Gamma D^{-1}(t\,\,,\vec{x}\,\,;\,t\,\,,\vec{x}\,\,) \right] \rangle \\ D^{-1}(t\,\,,\vec{x}\,\,;\,t^{\,\prime}\,\,,\vec{x}^{\,\prime}\,\,) \text{ quark propagator} \end{split}$$

- $\Gamma = \gamma_{5}, \gamma_{\mu}$ (Pseudoscalar, Vector)
- source & sink operators are extended with $\phi(\vec{x}) \propto \exp(a |\vec{x}|^p)$
- disconnected diagrams are evaluated with

the Z2-noise method

Z2 noise method

Stochastic estimation of $Tr[D^{-1}(t, \vec{x}; t, \vec{x})\Gamma]$

using noise vectors $R_i(x)$ $\frac{1}{N_{NV}}\sum_{i=1}^{N_{NV}}R_i(x) \rightarrow 0, \quad \frac{1}{N_{NV}}\sum_{i=1}^{N_{NV}}(R_i^{\dagger}(x)R_i(y)) \rightarrow \delta_{x,y}$ we use complex Z2 noise $\frac{1}{N_{NV}}\sum_{i=1}^{N_{NV}}R_i^{\dagger}(x)D^{-1}(t,\vec{x};t,\vec{y})\Gamma R_i(y) \rightarrow Tr[D^{-1}(t,\vec{x};t,\vec{x})\Gamma]$

This method can treat smeared operators
 Error of the method can be controlled by N_{NV}

Lattice setup

 Sea quark : Nf=2 KS quark : a m_q = 0.1 plaquette gauge : β = 5.50 lattice size : 12³×24 lattice spacing : a=0.16fm (1/a=1.2GeV) set byr₀ 16,000 traj. (measurement at every 5 traj.)
 ★ cutoff is not so sufficient for^m_{charm}, this is an exploratory study

- Valence quark : Fermilab action Csw : tadpole improved tree-level (μ_0 in Landau gauge) quark mass set by m(J/ψ)
- Z2-noise method

Parameter tuning

On shell matching with $M_{rest} = M_{kinetic}$

 $\gamma_{\rm F} \equiv \kappa_{\rm s} / \kappa_{\rm t}$ is tuned by the dispersion relation of mesons

Z2-noise estimation

number of noise vector \mathbf{N}_{NV} dependence

К	m_{V}	\mathbf{N}_{NV}
0.11294	0.867	100
0.11013	1.094	200
0.10732	1.323	200
0.10476	1.542	300
0.09342	2.578	600

Smeared operators

Effective mass plot of connected diagram C(t)

Smearing functions $\phi(\vec{x})$ are determined from wavefunction

Ground states dominate at t~2

a(m(J / ψ) – m(η_{c})) = 0.0676 (~ 81 MeV)

Effective masses of full correlator (1/5)

Effective masses of full correlator (2/5)

Effective masses of full correlator (3/5)

Effective masses of full correlator (4/5)

Effective masses of full correlator (5/5)

Contribution of disconnected diagram

The contribution of disconnected diagram is quickly suppressed as quark mass increase

Summary & Outlook

We study the problem of charmonium HFS and consider a possibility of disconnected diagram contributions

■ Isotropic lattice + Nonperturbative improved clover quark is good choice for the charmonium spectrum In quenched QCD, $m(J/\psi) - m(\eta_c)$ is

30 – 40% smaller than the experimental value

Disconnected diagram contributions are very small or hidden by large error

calculations with small sea quark mass & large lattice cutoff

Full QCD simulations including the continuum limit