Study of constant mode in charmonium correlators in hot QCD

Takashi Umeda

This talk is based on the Phys. Rev. D75 094502 (2007) [hep-lat/0701005]

Extreme QCD, INFN, Frascati, Italy, 6 August 2007

Introduction

- There is a constant mode in meson correlators at T>0 T.Umeda Phys.Rev. D75 094502 (2007)
- The constant mode is important
 - for the study of charmonium properties at T>0 $\,$
 - → low energy mode strongly affects its correlators which is fundamental data of lattice QCD studies

 In the Lattice 2007 symposium, the relation between the constant mode and (sequential) J/psi suppression is discussed
then in this talk

I focus on the properties of the constant mode

Contents

Introduction

- Constant mode in meson correlators at T>0
 - what is the constant mode ?
 - meson correlator with free quarks
 - physical interpretation
 - analysis w/o constant mode
- Quenched QCD calculations at T>0
- Discussion & Conclusion

Constant mode

Pentaquark (KN state): two pion state: → Dirichlet b.c. c.f. T.T.Takahashi et al., PRD71, 114509 (2005). $exp(-m_qt) x exp(-m_qt)$ $= exp(-2m_qt) m_q \text{ is quark mass}$ or single quark energy $exp(-m_qt) x exp(-m_q(L_t-t))$ $= exp(-m_qL_t)$

 L_t = temporal extent

in imaginary time formalism
 L_t = 1/Temp.
 gauge field : periodic b.c.
 quark field : anti-periodic b.c.
 in confined phase: m_q is infinite
 → the effect appears
 only in deconfined phase

Free quark calculations

 16³ x 32 isotropic lattice
Wilson quark action with m_qa = 0.2

Obvious constant contribution in P-wave states

Free quark calculations

Continuum form of the correlators with P=0 *calculated by S. Sasaki* $C(t) = \sum_{\vec{p}} \frac{4}{\cosh(E_p N_t/2)} \times$

$$\left(E_p^2 \cosh\left[2E_p(t-N_t/2)\right]\right)$$
 for $\Gamma = \gamma_5$

$$\left((E_p^2 - p_i^2) \cosh\left[2E_p(t - N_t/2)\right] + p_i^2\right)$$
 for $\Gamma = \gamma_i$

$$-\left(p^2 \cosh\left[2E_p(t-N_t/2)\right] + \left(E_p^2 - p^2\right)\right) \text{ for } \Gamma = 1$$
$$-\left(\left(p^2 - p_i^2\right) \cosh\left[2E_p(t-N_t/2)\right] + \left(E_p^2 - p^2 + p_i^2\right)\right)$$

$$-\left(\left(p^2 - p_i^2\right) \cosh\left[2E_p(t - N_t/2)\right] + \left(E_p^2 - p^2 + p_i^2\right)\right)$$
for $\Gamma = \gamma_i \gamma_5$

where

 E_p : single quark energy with relative mom. p

$$p^2 = \sum_i p_i^2$$

Volume dependence

Size of the constant contribution depends on the volume N_s^3 The dependence is negligible at $N_s/N_t \gtrsim 2$

■ Results on 96³ x 32 ($N_s/N_t=3 \leftarrow$ similar to T>0 quench QCD calculation)

Physical interpretation

Spectral function at high temp. limit

$$\rho_{\Gamma}(\omega) = \Theta(\omega^{2} - 4m_{q}^{2}) \frac{N_{c}}{8\pi\omega} \sqrt{\omega^{2} - 4m_{q}^{2}} [1 - 2n_{F}(\omega/2)] \\ \times [\omega^{2}(a_{H}^{(1)} - a_{H}^{(2)}) + 4m^{2}(a_{H}^{(2)} - a_{H}^{(3)})] \\ + 2\pi\omega\delta(\omega)N_{c}[(a_{H}^{(1)} + a_{H}^{(2)})I_{1} + (a_{H}^{(2)} - a_{H}^{(3)})I_{2}]$$

F. Karsch et al., PRD68, 014504 (2003). G. Aarts et al., NPB726, 93 (2005).

	Г	$a_{H}^{(1)} + a_{H}^{(2)}$	$a_{H}^{(2)} - a_{H}^{(3)}$	
Ps	γ_5	0	0	
\vee	γ_i	2	2	
S	1	0	-2	
Av	$\gamma_i\gamma_5$	2	-4	

constant mode remains in the continuum & infinite volume

The constant term is related to some transport coefficients. From Kubo-formula, for example, a derivative of the SPF in the V channel is related to the electrical conductivity σ .

$$\sigma = \frac{1}{6} \frac{\partial}{\partial \omega} \rho_V(\omega) \Big|_{\omega=0}$$

101

Without constant mode

In the study of charmonium dissociation temperatures, we consider a Temp. dependence of **bound state peaks**

Low energy mode dominates correlators at large t range

If there is no constant mode we can easily see the change of bound states from correlators

Methods to avoid the const. mode are discussed

from "An Introduction to Quantum Field Theory" Michael E. Peskin, Perseus books (1995)

n=0

Here we consider the Z_3 transformation

 Z_3 symmetrization

(a) t=0 t=t (b) t=0 t=t t=t t=t t=t

The asymmetry of diag–(b) is coming from a factor of Re[exp(-i2 π n/3)]

$$C^{ave}(t) = \frac{1}{3} \left(C^{p0}(t) + C^{p1}(t) + C^{p2}(t) \right)$$

Z₃ asym. terms are removed because $\sum_{i=1}^{2} Re(e^{-i2\pi n/3}) = 0$

Z₃ asymmetric

Z₃ symmetric

However, this is not an exact method to avoid the constant contribution.

The 3 times wrapping diagram is also Z_3 symmetric. \rightarrow the contribution is not canceled. but, $O(exp(-m_qN_t)) \gg O(exp(-3m_qN_t))$

Lattice QCD results

Lattice setup

- Quenched approximation (no dynamical guark effect)
- Anisotropic lattices (tadpole imp. Clover quark + plaq. gauge)

lattice size : $20^3 \times N_{+}$ lattice spacing : $1/a_s = 2.03(1)$ GeV,

anisotropy : $a_{s}/a_{t} = 4$

60

Quark mass

 N_{τ}

 T/T_c

of conf.

charm quark (tuned with J/ ψ mass)

300

 r_s =1 to reduce cutoff effects in higher energy states

F. Karsch et al., PRD68, 014504 (2003).

xQCD 2007		

300

equilib. is 20K sweeps each config. is separated by 500 sweeps

t X,Y,Z

300

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

the drastic change in P-wave states disappears in $m_{eff}^{sub}(t)$

 \rightarrow the change is due to the constant mode

T.Umeda (Tsukuba)

Polyakov loop sector dependence

■ after Z₃ transformation const. → Re(exp(-i2 π n/3))*const.

- even below T_c, small const. effect enhances the stat. fluctuation.
 - drastic change in P-states disappears.

The drastic change of P-wave states is due to the const. contribution. \rightarrow There are small changes in SPFs (except for $\omega=0$).

Why several MEM studies show the dissociation of $\chi_{\rm c}$ states ?

Difficulties in MEM analysis

MEM test using T=0 data

MEM analysis sometimes fails if data quality is not sufficient Furthermore P-wave states have larger noise than that of S-wave states MEM w/o the constant mode

In the MEM analysis,

one has to check consistency of the results at $\omega \gg T$ using, e.g., midpoint subtracted correlators.

 $\bar{C}(t) = C(t) - C(N_t/2)$

$$\bar{C}(t) = \int_0^\infty d\omega \rho_{\Gamma}(\omega) K^{sub}(\omega, t),$$
$$K^{sub}(\omega, t) = \frac{\sinh^2(\frac{\omega}{2}(N_t/2 - t))}{\sinh(\omega N_t/2)}$$

Conclusion

There is the constant mode in charmonium correlators above T_c

- The drastic change in $\chi_{\rm c}$ states is due to the constant mode
 - \rightarrow the survival of χ_c states above T_c, at least T=1.4T_c.

The result may affect the scenario of J/ψ suppression.