QCD thermodynamics on QCDOC Machine

Takashi Umeda (BNL)

for the RBC – Bielefeld Collaboration

QCD in Extreme Conditions, BNL, July 31-August 2, 2006

Motivation & Approach

Quantitative study of QCD thermodynamics from first principle calculation (Lattice QCD) T_c , EoS, phase diagram, small μ , etc...

from recent studies, we know these quantities strongly depend on $m_{\rm q} \ \& \ N_{\rm f}$

- Our aim is QCD thermodynamics with 2+1 flavor at almost realistic quark masses e.g. pion mass ~ 150MeV, kaon mass ~ 500MeV
 - Choice of quark action
 - \rightarrow Improved Staggered quark action
 - Continuum limit
 - N_t = 4, 6, (8) \rightarrow a \simeq 0.24, 0.17, (0.12) fm

US/RBRC QCDOC 20.000.000.000 ops/sec

BI – apeNEXT 5.000.000.000 ops/sec

today: 4.0 TFlops

http://quark.phy.bnl.gov/~hotqcd

1

Choice of Lattice Action

Improved Staggered action : p4fat3 action

Karsch, Heller, Sturm (1999)

- gluonic part : Symanzik improvement scheme
 - remove cut-off effects of $O(a^2)$
 - tree level improvement $O(g^0)$
- fermion part : improved staggered fermion
 - remove cut-off effects & improve rotational sym.
 - improve flavor symmetry by smeared 1-link term

The free quark propagator is rotational invariant up to $O(p^4)$

Bulk thermodynamic quantities show drastically reduced cut-off effects

flavor sym. is also improved by fat link

Contents of this talk

- Motivation and Approach
- Choice of lattice action
- Critical temperature
 - Simulation parameters
 - Critical β search
 - Scale setting by Static quark potential
 - Critical temperature
- Spatial string tension
- Conclusion

Simulation parameters

Critical β search at T > 0

	N_{τ}	\hat{m}_s	\widehat{m}_l	V	$\#\beta$ values	max.# conf.
ſ	4	0.1	$0.5 \ \hat{m}_s$	8 ³	10	40,000
U			0.2 \hat{m}_s	8 ³	6	12,000
	4	0.065	0.4 \hat{m}_s	8 ³ , 16 ³	10, 11	30,000, 60,000
			0.2 \hat{m}_s	8 ³ , 16 ³	8, 7	30,000, 60,000
			0.1 \widehat{m}_s	8 ³ , 16 ³	9,6	34,000, 50,000
			0.05 \widehat{m}_s	8 ³ , 16 ³	8, 5	30,000, 42,000
	6	0.0040	0.4 \hat{m}_s	16 ³	11	20,000
			0.2 \hat{m}_s	16 ³	9	60,000
			0.1 \hat{m}_s	16 ³	7	60,000

T=0 scale setting at $\beta_{\rm c}(N_{\rm t})$ on $16^3 \times 32$

	N_{τ}	\widehat{m}_s	\widehat{m}_l	β	# conf.	m_{ps}/m_v	a [fm]	
Π	4	0.1	0.5 \hat{m}_s	3.409	600	0.520(2)	0.2273(4)	\Box
			0.2 \widehat{m}_s	3.371	238	0.372(5)	0.2336(7)	*) (*
	4	0.065	0.4 \hat{m}_s	3.362	500	0.410(2)	0.2312(7)	
			0.2 \widehat{m}_s	3.335	400	0.303(7)	0.2365(6)	
			0.1 \widehat{m}_s	3.310	750	0.212(7)	0.2458(5)	
			0.05 \widehat{m}_s	3.300	400	0.154(5)	0.2475(8)	
	6	0.0040	0.4 \hat{m}_s	3.500	294	0.461(4)	0.1558(7)	
			0.2 \widehat{m}_s	3.470	500	0.343(6)	0.1617(5)	
			0.1 \hat{m}_s	3.455	410	0.248(4)	0.1670(5)	

(*) conf. = 0.5 MD traj.

to check m_s dependence for Tc

(*) conf. = 5 MD traj. after

multi-histogram method (Ferrenberg-Swendson) is used
β_c are determined by peak positions of the susceptibilities

Transition becomes stronger for smaller light quark masses

Volume dependence of β_c

rather than true transition

Uncertainties in β_c

Statistical error

ightarrow jackknife analysis for peak-position of susceptibility

■ We can find a difference between β_{\perp} and β_{\perp} → small difference but statistically significant β_{\perp} : peak position of chiral susceptibility.

 $\beta_{\rm L}$: peak position of Polyakov loop susceptibility

- the difference is negligible at $16^3 x4 (N_s/N_t=4)$
- no quark mass dependence
- the difference at $16^3 \times 6$ are taken into account as a systematic error in β_c

Scale setting at T=0

Lattice scale is determined by a static quark potential V(r)

QCD in Extreme Conditions

QCD in Extreme Conditions

QCD in Extreme Conditions

Spatial string tension

Important to check theoretical concepts (dim. reduction) at high T Static quark "potential" from Spatial Wilson loops

$$V_z(r) = \ln W(r, z) / W(r, z+1) \sim C - \frac{\alpha}{r_I} + \sigma_s r_I$$

 $\sqrt{\sigma_s(T) = cg^2(T)T}$ (free parameters: c, Λ_σ) g²(T) is given by the 2-loop RG equation

$$g^{-2}(T) = 2b_0 \ln \frac{T}{\Lambda_\sigma} + \frac{b_1}{b_0} \ln \left(2 \ln \frac{T}{\Lambda_\sigma}\right)$$

"c" should equal with 3-dim. string tension and should be flavor independent, if dim. reduction works

Numerical simulation

$$16^3 \times 4$$
, $m_q = 0.1 m_s$ fixed

β	3.31	3.41	3.46	3.61	3.68	3.76	3.94
m_q	0.0065	0.0052	0.0040	0.00325	0.0026	0.002	0.001625

Conclusion

 $N_f\!\!=\!\!2\!+\!1$ simulation with almost realistic quark masses at $N_t\!\!=\!\!4,\,6$

- critical temperature $T_cr_0=0.456(7)$, $(T_c=192(5)(4)$ MeV from $r_0=0.469$)
- $T_c r_0$ is consistent with previous p4 result difference in T_c mainly comes from physical value of r_0
- however, our value is about 10% larger than MILC result *MILC collab., Phys. Rev. D71('05) 034504.*
- most systematic uncertainties are taken into account remaining uncertainty is in continuum extrapolation

spatial string tension

dimensional reduction works well even for $T{=}2T_{\rm c}$

A new determination of the transition temperature in QCD

- calculation of transition temperature with almost physical quark masses and different lattice cut-off values
 - \Rightarrow extrapolation to physical limit ($m_{\pi} = 135$ MeV) and continuum limit ($a \rightarrow 0$)

A new determination of the transition temperature in QCD

- calculation of transition temperature with almost physical quark masses and different lattice cut-off values
 - \Rightarrow extrapolation to physical limit ($m_{\pi} = 135$ MeV) and continuum limit ($a \rightarrow 0$)

