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Let’s start with a demo.

A linear problem: estimating x from y
Can be solved if M֕N (ex. using least-square method)

No unique solution if M<N

Experiment: set 100 elements of x, 50x100 matrix A, and generate 50 elements of y.  

Then, estimate x from A and y.
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Demo.
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More variables can be estimated with less data

Sparse vectors can be reconstructed by l1-
norm minimization

Compressed sensing
Condition for perfect reconstructions.
(Candes& Tao 2006, Donoho2006)

LASSO
sparse regression Tibshirani1996

Even if x is not sparse, sparse modeling can 
estimate x when x’ (=Bx) is sparse. 

Condition for perfect reconstruction of sparse vectors: 
Sparsity (K/N) v.s. Data size (M/N)
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Outline
Estimating a sparse vector from a small data set.

Estimation of power spectra of periodic variables
Kato & Uemura, 2012, PASJ, 64, 122

Radio interferometer
Honma, Akiyama, Uemura, & Ikeda, 2014, PASJ, 66, 95

Doppler tomography
Uemura, Kato, Nogami, & Mennickent, 2015, PASJ, 67, 22

Variable selection from data
The peak magnitude of Type-Ia supernovae

Uemura, Kawabata, Ikeda, Maeda, 2015, PASJ, 67, 55

Summary
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Estimation of power spectra of 
periodic variables

Estimation of periods from data. 

The data is not uniformly sampled. Ą complicate 
window function Ą aliases

Power spectra should be “sparse” if the object only 
has a few periods. 

Example of non-uniformly sampled 
light curves

Data from OGLE (collaboration with Dr. Ita)
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Experiment using artificial data

Assumed signals

Simulated light curve

Power spectrum by 
the standard Fourier transform

Power spectrum by 
the sparse modeling
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Using real data

(Data from OGLE, collaboration with Dr. Ita)

Light curve

Spectra

Black: Fourier
Red: sparse modeling
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Outline
Estimating a sparse vector from a small data set.

Estimation of power spectra of periodic variables
Kato & Uemura, 2012, PASJ, 64, 122

Radio interferometer
Honma, Akiyama, Uemura, & Ikeda, 2014, PASJ, 66, 95

Doppler tomography
Uemura, Kato, Nogami, & Mennickent, 2015, PASJ, 67, 22

Variable selection from data
The peak magnitude of Type-Ia supernovae

Uemura, Kawabata, Ikeda, Maeda, 2015, PASJ, 67, 55

Summary
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Image reconstruction of radio 
interferometer

Radio interferometer: high angular 
resolution using multiple radio 
telescopes (of different sites = VLBI).

Data = complex visibility ă 2D Fourier 
transform of the intensity

©LINZ

©ALMA
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Experiments for the black hole 
shadow with EHT

Assumption: Radio sources are sparse 
in the map.

Super-resolution

Honma+14
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Application to the real data of M87

Honma+15
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Outline
Estimating a sparse vector from a small data set.

Estimation of power spectra of periodic variables
Kato & Uemura, 2012, PASJ, 64, 122

Radio interferometer
Honma, Akiyama, Uemura, & Ikeda, 2014, PASJ, 66, 95

Doppler tomography
Uemura, Kato, Nogami, & Mennickent, 2015, PASJ, 67, 22

Variable selection from data
The peak magnitude of Type-Ia supernovae

Uemura, Kawabata, Ikeda, Maeda, 2015, PASJ, 67, 55

Summary
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Doppler tomography

Doppler Tomography Reconstruction of 
emission-line intensity map on the 
velocity space from time-series spectra

A similar method to medical X-ray CT

Marsh+00Intensity map on 
the velocity space

Observe

Observe

Emission line
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IP Peg (Harlaftis+99)
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Structure of the Doppler tomography

Linear problem if the disk is geometrically and optically thin.

No self-occultation

Data         Observation Matrix     image

Å Maximum Entropy Method (MEM)
ï Standard method to date

ï Best for real Doppler maps?
Å Hot spot and/or shock region may 

have sharp edges, making entropy 
low

Å Total Variation Minimization (TVM) 

ï Simple prior

ï Regularization:

Ὕὠ● Ў● Ў●

ï Δx: differential operator  =  xi+1 - xi

ï Sparse in the gradient domain
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Doppler tomography with TVM

Reconstruction of both sharp-edged and blurred features 

Uemura+15
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Example for the real data (WZ Sge)

MEM (Spruit+88Ṗ

V Circular structure of the entire disk
V Two-armed spirals
V Rotating residuals

TVM
V Elliptical structure of the entire disk
V Small, localized sources around the secondary 

star and a part of disk
V Small residuals between the data and model.

TVM can reconstruct locally confined sources which are not done with MEM
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Outline
Estimating a sparse vector from a small data set.

Estimation of power spectra of periodic variables
Kato & Uemura, 2012, PASJ, 64, 122

Radio interferometer
Honma, Akiyama, Uemura, & Ikeda, 2014, PASJ, 66, 95

Doppler tomography
Uemura, Kato, Nogami, & Mennickent, 2015, PASJ, 67, 22

Variable selection from data
The peak magnitude of Type-Ia supernovae

Uemura, Kawabata, Ikeda, Maeda, 2015, PASJ, 67, 55

Summary
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The peak luminosity of 
type Ia supernovae

A function of the color (=interstellar 
extinction) and decay rate

Phillips 93, Hamuy+96, Prieto+06

, and any others?

Search for the 3rd parameter using 
spectroscopic data.

Typical spectrum 

Typical lightcurve
(Cadonau+87)Peak mag.

Width
(~Decay rate)
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Which parameter determines the peak mag.

According to Silverman+12 (BSNIP III) , 

ẇ Velocity of Si II 6355  (Blondin+11)

ẇ Velocity Ca II H&K  (Foley&Kasen 11)

ẇ Depth of the blue side of S II “W”  (Blondin+11)

ẇ EW of Si II 4000  (Arsenijevic+08, Walker+11, Chotard+11, Nordin+11, 
Walker+11)

ẇ EW of Fe II, Mg II  (Nordin+11)

ẇ EW of Si II 5972, 6355 Hachinger+06, Nordin+11

ẇ Si II EW ratio EW(5972)/EW(6355), Ca II H&K flux ratio (Fr/Fb)      
(Nugent+95, Hachinger+06)

ẇ SiS flux ratio Fr(S II “W”)/Fr (Si II 6355) (Bongard+06)

ẇ SSi EW ratio EW(S II “W”)/EW(Si II 5972),  SiFe EW ratio EW(Si II 
5972)/EW(Fe II) (Hachinger+06)

ẇ Search for a good variable using arbitrary flux ratio (Bailey+09
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Models with arbitrary flux ratios
Bailey+09, Silverman+12 (BSNIP III)

Spectra of λ3500-8500 are re-binned into 134 bin, then calculate 134x133 flux ratios. 

Search for the flux ratio having high correlation with the peak magnitude.

A set of R(3750/4550) , Lightcurve width (x1), & color (c) gives the best model.

Residuals Correlation coefficients



23/25

A problem of variable selection

They use a linear model. The number of variables is larger than the number of data if 
we use arbitrary flux ratios.  

But, we want to know a model with a few variables. The coefficient vector should be 
sparse. We want to select the variables from the data. Let’s use sparse modeling !

L1 minimization

Data from the UC Berkeley database of supernovae.
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Model & Result

Variables
Color
Light curve width

Continuum-normalized spectra in log scale
Line information

Total flux-normalized spectra in log scale
Local color information

Previously proposed flux ratios
Total 276 candidates of variables

Data
From Berkely supernova database
78 objects.

Model selection
L1 minimization with cross-validation

No additional variables. The classical model with color 
and decay rate is the best.

Continuum-normalized spectra 

Total-flux-normalized spectra 
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Summary
Estimating a sparse vector from a small data set.

Estimation of power spectra of periodic variables

Eliminating aliases using the sparsity of power spectra

Radio interferometer

Super-resolution using the sparsity of radio maps

Doppler tomography

Accurate reconstruction using the sparsity in the gradient domain (TVM)

Variable selection from data
The peak magnitude of Type-Ia supernovae

Estimating the variables and number of variables from the data.


