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Let’s start with a demo.

A linear problem: estimating x from y
Can be solved if M≧N (ex. using least-square method)

No unique solution if M<N

Experiment: set 100 elements of x, 50x100 matrix A, and generate 50 elements of y.  

Then, estimate x from A and y.
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Demo.
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More variables can be estimated with less data

Sparse vectors can be reconstructed by l1-
norm minimization

Compressed sensing
Condition for perfect reconstructions.
(Candes & Tao 2006, Donoho 2006)

LASSO
sparse regression （Tibshirani 1996）

Even if x is not sparse, sparse modeling can 
estimate x when x’ (=Bx) is sparse. 

Condition for perfect reconstruction of sparse vectors: 
Sparsity (K/N) v.s. Data size (M/N)
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Outline
Estimating a sparse vector from a small data set.

Estimation of power spectra of periodic variables
Kato & Uemura, 2012, PASJ, 64, 122

Radio interferometer
Honma, Akiyama, Uemura, & Ikeda, 2014, PASJ, 66, 95

Doppler tomography
Uemura, Kato, Nogami, & Mennickent, 2015, PASJ, 67, 22

Variable selection from data
The peak magnitude of Type-Ia supernovae

Uemura, Kawabata, Ikeda, Maeda, 2015, PASJ, 67, 55

Summary
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Estimation of power spectra of 
periodic variables

Estimation of periods from data. 

The data is not uniformly sampled.  complicate 
window function  aliases

Power spectra should be “sparse” if the object only 
has a few periods. 

Example of non-uniformly sampled 
light curves

Data from OGLE (collaboration with Dr. Ita)
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Experiment using artificial data

Assumed signals

Simulated light curve

Power spectrum by 
the standard Fourier transform

Power spectrum by 
the sparse modeling
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Using real data

(Data from OGLE, collaboration with Dr. Ita)

Light curve

Spectra

Black: Fourier
Red: sparse modeling
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Outline
Estimating a sparse vector from a small data set.

Estimation of power spectra of periodic variables
Kato & Uemura, 2012, PASJ, 64, 122

Radio interferometer
Honma, Akiyama, Uemura, & Ikeda, 2014, PASJ, 66, 95

Doppler tomography
Uemura, Kato, Nogami, & Mennickent, 2015, PASJ, 67, 22

Variable selection from data
The peak magnitude of Type-Ia supernovae

Uemura, Kawabata, Ikeda, Maeda, 2015, PASJ, 67, 55

Summary
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Image reconstruction of radio 
interferometer

Radio interferometer: high angular 
resolution using multiple radio 
telescopes (of different sites = VLBI).

Data = complex visibility  2D Fourier 
transform of the intensity

©LINZ

©ALMA
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Experiments for the black hole 
shadow with EHT

Assumption: Radio sources are sparse 
in the map.

Super-resolution

Honma+14
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Application to the real data of M87

Honma+15
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Outline
Estimating a sparse vector from a small data set.

Estimation of power spectra of periodic variables
Kato & Uemura, 2012, PASJ, 64, 122

Radio interferometer
Honma, Akiyama, Uemura, & Ikeda, 2014, PASJ, 66, 95

Doppler tomography
Uemura, Kato, Nogami, & Mennickent, 2015, PASJ, 67, 22

Variable selection from data
The peak magnitude of Type-Ia supernovae

Uemura, Kawabata, Ikeda, Maeda, 2015, PASJ, 67, 55

Summary
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Doppler tomography

Doppler Tomography ＝ Reconstruction of 
emission-line intensity map on the 
velocity space from time-series spectra

A similar method to medical X-ray CT

Marsh+00Intensity map on 
the velocity space

Observe

Observe

Emission line
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IP Peg (Harlaftis+99)
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Structure of the Doppler tomography

Linear problem if the disk is geometrically and optically thin.

No self-occultation

Data         Observation Matrix     image

• Maximum Entropy Method (MEM)
– Standard method to date

– Best for real Doppler maps?
• Hot spot and/or shock region may 

have sharp edges, making entropy 
low

• Total Variation Minimization (TVM) 

– Simple prior

– Regularization:

𝑇𝑉 𝒙 = (∆ℎ𝒙)2 + (∆𝑣𝒙)2

– Δx: differential operator  =  xi+1 - xi

– Sparse in the gradient domain
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Doppler tomography with TVM

Reconstruction of both sharp-edged and blurred features 

Uemura+15
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Example for the real data (WZ Sge)

MEM (Spruit+88）

 Circular structure of the entire disk
 Two-armed spirals
 Rotating residuals

TVM
 Elliptical structure of the entire disk
 Small, localized sources around the secondary 

star and a part of disk
 Small residuals between the data and model.

TVM can reconstruct locally confined sources which are not done with MEM
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Outline
Estimating a sparse vector from a small data set.

Estimation of power spectra of periodic variables
Kato & Uemura, 2012, PASJ, 64, 122

Radio interferometer
Honma, Akiyama, Uemura, & Ikeda, 2014, PASJ, 66, 95

Doppler tomography
Uemura, Kato, Nogami, & Mennickent, 2015, PASJ, 67, 22

Variable selection from data
The peak magnitude of Type-Ia supernovae

Uemura, Kawabata, Ikeda, Maeda, 2015, PASJ, 67, 55

Summary
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The peak luminosity of 
type Ia supernovae

A function of the color (=interstellar 
extinction) and decay rate

Phillips 93, Hamuy+96, Prieto+06

, and any others?

Search for the 3rd parameter using 
spectroscopic data.

Typical spectrum 

Typical lightcurve
(Cadonau+87)Peak mag.

Width
(~Decay rate)
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Which parameter determines the peak mag.

According to Silverman+12 (BSNIP III) , 

● Velocity of Si II 6355  (Blondin+11)

● Velocity Ca II H&K  (Foley&Kasen 11)

● Depth of the blue side of S II “W”  (Blondin+11)

● EW of Si II 4000  (Arsenijevic+08, Walker+11, Chotard+11, Nordin+11, 
Walker+11)

● EW of Fe II, Mg II  (Nordin+11)

● EW of Si II 5972, 6355（Hachinger+06, Nordin+11）

● Si II EW ratio EW(5972)/EW(6355), Ca II H&K flux ratio (Fr/Fb)      
(Nugent+95, Hachinger+06)

● SiS flux ratio Fr(S II “W”)/Fr (Si II 6355) (Bongard+06)

● SSi EW ratio EW(S II “W”)/EW(Si II 5972),  SiFe EW ratio EW(Si II 
5972)/EW(Fe II) (Hachinger+06)

● Search for a good variable using arbitrary flux ratio (Bailey+09）
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Models with arbitrary flux ratios
● Bailey+09, Silverman+12 (BSNIP III)

● Spectra of λ3500-8500 are re-binned into 134 bin, then calculate 134x133 flux ratios. 

● Search for the flux ratio having high correlation with the peak magnitude.

● A set of R(3750/4550) , Lightcurve width (x1), & color (c) gives the best model.

Residuals Correlation coefficients
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A problem of variable selection

● They use a linear model. The number of variables is larger than the number of data if 
we use arbitrary flux ratios.  

● But, we want to know a model with a few variables. The coefficient vector should be 
sparse. We want to select the variables from the data. Let’s use sparse modeling !

– L1 minimization

– Data from the UC Berkeley database of supernovae.
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Model & Result

Variables
Color
Light curve width

Continuum-normalized spectra in log scale
Line information

Total flux-normalized spectra in log scale
Local color information

Previously proposed flux ratios
Total 276 candidates of variables

Data
From Berkely supernova database
78 objects.

Model selection
L1 minimization with cross-validation

No additional variables. The classical model with color 
and decay rate is the best.

Continuum-normalized spectra 

Total-flux-normalized spectra 
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Summary
Estimating a sparse vector from a small data set.

Estimation of power spectra of periodic variables

Eliminating aliases using the sparsity of power spectra

Radio interferometer

Super-resolution using the sparsity of radio maps

Doppler tomography

Accurate reconstruction using the sparsity in the gradient domain (TVM)

Variable selection from data
The peak magnitude of Type-Ia supernovae

Estimating the variables and number of variables from the data.


