Sparse modeling in Astronomy

Makoto Uemura (Hiroshima University) @Universidad de Concepcion, Aug. 2016

2004 Universidad de Concepcion

2005~ Hiroshima University, Japan 1.5-m "Kanata" Telescope

Sparse modeling project Collaborations with information scientists

Let's start with a demo.

A linear problem: estimating **x** from **y**

- Can be solved if $M \ge N$ (ex. using least-square method)
- No unique solution if *M*<*N*
- Experiment: set 100 elements of **x**, 50x100 matrix A, and generate 50 elements of **y**. Then, estimate **x** from A and **y**.

More variables can be estimated with less data

$$\hat{\boldsymbol{x}} = \arg\min_{\boldsymbol{x}} \|\boldsymbol{y} - A\boldsymbol{x}\|_{2}^{2} + \lambda \|\boldsymbol{x}\|_{1}$$
$$\|\boldsymbol{x}\|_{1} = \sum_{i} |x_{i}|$$

Sparse vectors can be reconstructed by I1norm minimization

Compressed sensing Condition for perfect reconstructions. (Candes & Tao 2006, Donoho 2006)

LASSO sparse regression (Tibshirani 1996)

Even if x is not sparse, sparse modeling can estimate x when x' (=Bx) is sparse.

<u>Condition for perfect reconstruction of sparse vectors:</u> <u>Sparsity (K/N) v.s. Data size (M/N)</u>

Outline

Estimating a sparse vector from a small data set.

Estimation of power spectra of periodic variables

Kato & Uemura, 2012, PASJ, 64, 122

Radio interferometer

Honma, Akiyama, Uemura, & Ikeda, 2014, PASJ, 66, 95

Doppler tomography

Uemura, Kato, Nogami, & Mennickent, 2015, PASJ, 67, 22

Variable selection from data

The peak magnitude of Type-Ia supernovae

Uemura, Kawabata, Ikeda, Maeda, 2015, PASJ, 67, 55

Summary

Estimation of power spectra of periodic variables

 a_1 a_2

 a_N b_1 b_2

 b_N

Estimation of periods from data.

The data is not uniformly sampled. \rightarrow complicate window function \rightarrow aliases

Power spectra should be "sparse" if the object only has a few periods.

Example of non-uniformly sampled light curves

Data from OGLE (collaboration with Dr. Ita)

Experiment using artificial data

Assumed signals

Simulated light curve

Power spectrum by the standard Fourier transform

Power spectrum by the sparse modeling

Using real data

Light curve

(Data from OGLE, collaboration with Dr. Ita)

Outline

Estimating a sparse vector from a small data set. Estimation of power spectra of periodic variables *Kato & Uemura, 2012, PASJ, 64, 122* Radio interferometer *Honma, Akiyama, Uemura, & Ikeda, 2014, PASJ, 66, 95* Doppler tomography *Uemura, Kato, Nogami, & Mennickent, 2015, PASJ, 67, 22* Variable selection from data The peak magnitude of Type-Ia supernovae *Uemura, Kawabata, Ikeda, Maeda, 2015, PASJ, 67, 55*

Summary

Image reconstruction of radio interferometer

Radio interferometer: high angular resolution using multiple radio telescopes (of different sites = VLBI).

Data = complex visibility \leftarrow 2D Fourier transform of the intensity

※:実際のアルマ望遠鏡の位置とは異なります。また、これは直観的想像をイメージしたものであり、実際の原理とは少し異なります。

©ALMA

Experiments for the black hole shadow with EHT

Honma+14

Assumption: Radio sources are sparse in the map.

Super-resolution

Application to the real data of M87

Honma+15

Outline

Estimating a sparse vector from a small data set. Estimation of power spectra of periodic variables *Kato & Uemura, 2012, PASJ, 64, 122* Radio interferometer *Honma, Akiyama, Uemura, & Ikeda, 2014, PASJ, 66, 95* Doppler tomography *Uemura, Kato, Nogami, & Mennickent, 2015, PASJ, 67, 22* Variable selection from data

The peak magnitude of Type-Ia supernovae *Uemura, Kawabata, Ikeda, Maeda, 2015, PASJ, 67, 55*

Summary

Doppler tomography

Doppler Tomography = Reconstruction of emission-line intensity map on the velocity space from time-series spectra

A similar method to medical X-ray CT

IP Peg (Harlaftis+99)

Structure of the Doppler tomography

Linear problem if the disk is geometrically and optically thin.

No self-occultation

$$\hat{\boldsymbol{x}} = argmin \left\| \begin{pmatrix} y_1 \\ \vdots \\ y_m \end{pmatrix} - \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix} \begin{pmatrix} x_1 \\ \vdots \\ \vdots \\ x_n \end{pmatrix} \right\|_2^2 + \lambda f(\boldsymbol{x})$$
Data Observation Matrix image

- Maximum Entropy Method (MEM)
 - Standard method to date

$$S = -\sum_{i=1}^{M} p_i \ln \frac{p_i}{q_i}.$$
$$q_i = \frac{D_i}{\sum_{j=1}^{M} D_j},$$

- Best for real Doppler maps?
 - Hot spot and/or shock region may have sharp edges, making entropy low

- Total Variation Minimization (TVM)
 - Simple prior
 - Regularization:

$$TV(\mathbf{x}) = \sum \sqrt{(\Delta^h \mathbf{x})^2 + (\Delta^v \mathbf{x})^2}$$

- Δx : differential operator = $x_{i+1} x_i$
- Sparse in the gradient domain

Doppler tomography with TVM

Example for the real data (WZ Sge)

TVM

- Elliptical structure of the entire disk
- Small, localized sources around the secondary star and a part of disk
- \checkmark Small residuals between the data and model.

MEM (Spruit+88)

- Circular structure of the entire disk
- Two-armed spirals
- Rotating residuals

TVM can reconstruct locally confined sources which are not done with MEM

Outline

Estimating a sparse vector from a small data set. Estimation of power spectra of periodic variables *Kato & Uemura, 2012, PASJ, 64, 122* Radio interferometer *Honma, Akiyama, Uemura, & Ikeda, 2014, PASJ, 66, 95* Doppler tomography *Uemura, Kato, Nogami, & Mennickent, 2015, PASJ, 67, 22* Variable selection from data

The peak magnitude of Type-Ia supernovae Uemura, Kawabata, Ikeda, Maeda, 2015, PASJ, 67, 55

Summary

The peak luminosity of type la supernovae

A function of the color (=interstellar extinction) and decay rate

Phillips 93, Hamuy+96, Prieto+06

, and any others?

Search for the 3rd parameter using spectroscopic data.

Which parameter determines the peak mag.

According to Silverman+12 (BSNIP III),

- Velocity of Si II 6355 (Blondin+11)
- Velocity Ca II H&K (Foley&Kasen 11)
- Depth of the blue side of S II "W" (Blondin+11)
- EW of Si II 4000 (Arsenijevic+08, Walker+11, Chotard+11, Nordin+11, Walker+11)
- EW of Fe II, Mg II (Nordin+11)
- EW of Si II 5972, 6355 (Hachinger+06, Nordin+11)
- Si II EW ratio EW(5972)/EW(6355), Ca II H&K flux ratio (Fr/Fb) (Nugent+95, Hachinger+06)
- SiS flux ratio Fr(S II "W")/Fr (Si II 6355) (Bongard+06)
- SSi EW ratio EW(S II "W")/EW(Si II 5972), SiFe EW ratio EW(Si II 5972)/EW(Fe II) (Hachinger+06)
- Search for a good variable using arbitrary flux ratio (Bailey+09)

Models with arbitrary flux ratios

- Bailey+09, Silverman+12 (BSNIP III)
- Spectra of λ 3500-8500 are re-binned into 134 bin, then calculate 134x133 flux ratios.
- Search for the flux ratio having high correlation with the peak magnitude.
- A set of R(3750/4550) , Lightcurve width (x1), & color (c) gives the best model.

A problem of variable selection

- They use a linear model. The number of variables is larger than the number of data if we use arbitrary flux ratios.
- But, we want to know a model with a few variables. The coefficient vector should be sparse. We want to select the variables from the data. Let's use sparse modeling !
 - L1 minimization $\hat{m{x}} = rgmin \|m{y} Am{x}\|_2^2 + \lambda \|m{x}\|_1$
 - Data from the UC Berkeley database of supernovae.

Model & Result

Variables

Color Light curve width Continuum-normalized spectra in log scale *Line information* Total flux-normalized spectra in log scale *Local color information* Previously proposed flux ratios Total 276 candidates of variables

Data

From Berkely supernova database 78 objects.

Model selection

L1 minimization with cross-validation

No additional variables. The classical model with color and decay rate is the best.

Summary

Estimating a sparse vector from a small data set.

Estimation of power spectra of periodic variables

Eliminating aliases using the sparsity of power spectra

Radio interferometer

Super-resolution using the sparsity of radio maps

Doppler tomography

Accurate reconstruction using the sparsity in the gradient domain (TVM)

Variable selection from data

The peak magnitude of Type-Ia supernovae

Estimating the variables and number of variables from the data.