視覚特別支援学校における3年間のタブレット端末の活用状況
—中学部理科の授業実践を通して—

福岡県立北九州視覚特別支援学校

北野 琢 磨

広島大学大学院教育学研究科

氏 間 和 仁

要約
近年、タブレット型多機能携帯端末（以下、タブレット端末）の技術進歩はすさまじく、教育界でもその普及に伴い様々な実践がなされ、その成果や課題が報告されている。筆者らは、平成24年度よりiPad（アップル社製）を用い、主に理科授業におけるその活用方法について研究を行っており、本年度までに中学校理科の全ての単元においてその活用を検討することができた。

3年間における、iPad活用の事例は79事例であり、それらをSAMRモデル（PuenteDura, 2010）に基づいて学年ごとに整理・分類を行った結果、S（Substitution：代替）までが16事例、A（Augmentation：増強）までが17事例、M（Modification：修正）までが40事例、R（Redefinition：変革）までが6事例だった。

このことから、iPadが既存の器具の代替にとどまらず、生徒の学習方法や教師の授業方法等に様々な影響を与えていることが明らかとなった。

また、教師がiPadの操作法を身に付け、その有効性を認識することで、その活用方法が広がっていくとともに、生徒もiPadを活用する機会が増えすることで、教師から指示されて使用するのではなく、自ら考え必要に応じて活用しようとする姿が増加することが分かった。

キーワード：理科授業、視覚、iPad、SAMRモデル

1. はじめに

福岡県立北九州視覚特別支援学校では、平成24年度より広島大学大学院教育学研究科

氏間研究室の「iPadの視覚障害教育への活用に関する研究パートナー校」として主に理科授業におけるiPadの活用について研究を行ってきた。平成24年度は中学部1年生と2年生、平成25年度は2年生と3年生、本年度は3年生で実践を行い、中学校理科の1通りの単元でiPadの活用を検討してきた。そこで、3年間の実践事例についてSAMRモデルに基づく整理・分類を試みた。その成果と課題を分析し、今後の実践に生かしていく
表1 授業実践者者のプロフィール

<table>
<thead>
<tr>
<th>生徒</th>
<th>視覚の状態</th>
<th>遠見力</th>
<th>使用年度</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>弱視</td>
<td>両0.03(0.5)</td>
<td>左0</td>
</tr>
<tr>
<td>B</td>
<td>盲</td>
<td>右0.03程度(TACによる)</td>
<td>両0.03(0.5)</td>
</tr>
<tr>
<td>C</td>
<td>弱視</td>
<td>左0.4 (0.5)</td>
<td>左0.1 (0.1)</td>
</tr>
<tr>
<td>D</td>
<td>弱視</td>
<td>右0.07</td>
<td>左0.06</td>
</tr>
</tbody>
</table>

ことが本研究の目的である。

2. 実践事例の整理・集約

(1) SAMR モデルとは

SAMR モデルでは、「代替」「拡大」「変形」「再定義」と進むにつれ、授業等に大きな影響を与えるとされる。

また、「代替」から「変革」へと進むに従い、ブルーム及びその後継者らによって提唱された「ブルーム・タキソノミー」つまり、児童・生徒の認知スキルも「記憶」「理解」「応用」「分析」「評価」「総合」という様により高度化すると指摘されている。

なお、本研究では氏名が提案している意訳、S（代替）、A（増強）、M（修正）、A（変革）を用いた。

(2) 授業実践と実践の整理・分類
授業実践で対象とした生徒の視覚の状況は、表1のとおりである。

授業では、東京書籍発行の「新しい科学1年~3年」を教科書として用いた。実践事例は、表2の様式で学年ごとに整理・分類を行った。

1年生22項目30事例、2年生16項目22事例、3年生23項目27事例の合計61項目79事例でiPadを活用した授業実践を行った。そのうちS（代替）のみの事例は16事例、A（増強）までは17事例、M（修正）までは40
表2 SAMRモデルによる整理・分類の例（中学1年）

<table>
<thead>
<tr>
<th>使用方法</th>
<th>教育目標</th>
<th>使用デバイス</th>
<th>評価方法</th>
<th>S（行動）</th>
<th>M（実施）</th>
<th>N（対話）</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 使用教科書</td>
<td>東京書籍「新しい科学」1年生用</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. 1年生</td>
<td>使用される教科書は、それに応じた教科書を用意し、その教科書に基づいて授業を進める</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

表2 SAMRモデルによる整理・分類の例（中学1年）

<table>
<thead>
<tr>
<th>使用方法</th>
<th>教育目標</th>
<th>使用デバイス</th>
<th>評価方法</th>
<th>S（行動）</th>
<th>M（実施）</th>
<th>N（対話）</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 使用教科書</td>
<td>東京書籍「新しい科学」1年生用</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. 1年生</td>
<td>使用される教科書は、それに応じた教科書を用意し、その教科書に基づいて授業を進める</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

表2 SAMRモデルによる整理・分類の例（中学1年）

<table>
<thead>
<tr>
<th>使用方法</th>
<th>教育目標</th>
<th>使用デバイス</th>
<th>評価方法</th>
<th>S（行動）</th>
<th>M（実施）</th>
<th>N（対話）</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 使用教科書</td>
<td>東京書籍「新しい科学」1年生用</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. 1年生</td>
<td>使用される教科書は、それに応じた教科書を用意し、その教科書に基づいて授業を進める</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

表2 SAMRモデルによる整理・分類の例（中学1年）

<table>
<thead>
<tr>
<th>使用方法</th>
<th>教育目標</th>
<th>使用デバイス</th>
<th>評価方法</th>
<th>S（行動）</th>
<th>M（実施）</th>
<th>N（対話）</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 使用教科書</td>
<td>東京書籍「新しい科学」1年生用</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. 1年生</td>
<td>使用される教科書は、それに応じた教科書を用意し、その教科書に基づいて授業を進める</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

表2 SAMRモデルによる整理・分類の例（中学1年）

<table>
<thead>
<tr>
<th>使用方法</th>
<th>教育目標</th>
<th>使用デバイス</th>
<th>評価方法</th>
<th>S（行動）</th>
<th>M（実施）</th>
<th>N（対話）</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 使用教科書</td>
<td>東京書籍「新しい科学」1年生用</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. 1年生</td>
<td>使用される教科書は、それに応じた教科書を用意し、その教科書に基づいて授業を進める</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

表2 SAMRモデルによる整理・分類の例（中学1年）

<table>
<thead>
<tr>
<th>使用方法</th>
<th>教育目標</th>
<th>使用デバイス</th>
<th>評価方法</th>
<th>S（行動）</th>
<th>M（実施）</th>
<th>N（対話）</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 使用教科書</td>
<td>東京書籍「新しい科学」1年生用</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. 1年生</td>
<td>使用される教科書は、それに応じた教科書を用意し、その教科書に基づいて授業を進める</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

表2 SAMRモデルによる整理・分類の例（中学1年）

<table>
<thead>
<tr>
<th>使用方法</th>
<th>教育目標</th>
<th>使用デバイス</th>
<th>評価方法</th>
<th>S（行動）</th>
<th>M（実施）</th>
<th>N（対話）</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 使用教科書</td>
<td>東京書籍「新しい科学」1年生用</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. 1年生</td>
<td>使用される教科書は、それに応じた教科書を用意し、その教科書に基づいて授業を進める</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

表2 SAMRモデルによる整理・分類の例（中学1年）

<table>
<thead>
<tr>
<th>使用方法</th>
<th>教育目標</th>
<th>使用デバイス</th>
<th>評価方法</th>
<th>S（行動）</th>
<th>M（実施）</th>
<th>N（対話）</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 使用教科書</td>
<td>東京書籍「新しい科学」1年生用</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. 1年生</td>
<td>使用される教科書は、それに応じた教科書を用意し、その教科書に基づいて授業を進める</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

表2 SAMRモデルによる整理・分類の例（中学1年）

<table>
<thead>
<tr>
<th>使用方法</th>
<th>教育目標</th>
<th>使用デバイス</th>
<th>評価方法</th>
<th>S（行動）</th>
<th>M（実施）</th>
<th>N（対話）</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 使用教科書</td>
<td>東京書籍「新しい科学」1年生用</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 2. 1年生 | 使用される教科書は、それに応じた教科書を用意し、その教科書に基づいて授業を進め
<table>
<thead>
<tr>
<th>事例名</th>
<th>情況</th>
<th>Informa 3</th>
<th>主なアプリ等</th>
<th>用途別</th>
<th>A (技術)</th>
<th>M (機能)</th>
<th>R (実用)</th>
</tr>
</thead>
<tbody>
<tr>
<td>大家の実践</td>
<td>事例</td>
<td>スマホ・タブレット</td>
<td>プラッシュやGoogle Play</td>
<td>長時間の講義や</td>
<td>事例</td>
<td>資料館の.</td>
<td>事例</td>
</tr>
<tr>
<td>大家の実践</td>
<td>事例</td>
<td>スマホ・タブレット</td>
<td>プラッシュやGoogle Play</td>
<td>長時間の講義や</td>
<td>事例</td>
<td>資料館の.</td>
<td>事例</td>
</tr>
<tr>
<td>大家の実践</td>
<td>事例</td>
<td>スマホ・タブレット</td>
<td>プラッシュやGoogle Play</td>
<td>長時間の講義や</td>
<td>事例</td>
<td>資料館の.</td>
<td>事例</td>
</tr>
<tr>
<td>大家の実践</td>
<td>事例</td>
<td>スマホ・タブレット</td>
<td>プラッシュやGoogle Play</td>
<td>長時間の講義や</td>
<td>事例</td>
<td>資料館の.</td>
<td>事例</td>
</tr>
<tr>
<td>大家の実践</td>
<td>事例</td>
<td>スマホ・タブレット</td>
<td>プラッシュやGoogle Play</td>
<td>長時間の講義や</td>
<td>事例</td>
<td>資料館の.</td>
<td>事例</td>
</tr>
</tbody>
</table>

事例，R（変革）までは6事例であった。また，教師がiPadを活用する有効性やノウハウを知ったことで，2年次3年次は1年次に加え，使用したアプリの増加といった量的な変化のみならず，学習のまとめに活用した事例の増加といった質的な変化が見られた。なお，生徒もiPadを活用する機会が増えることで，教師から指示されて使用するのではなく，自ら考え必要に応じてiPadを活用しようとする姿が増加した。

（3）それぞれの活用事例の傾向
①S（代替）としての活用
79事例すべてが既存の器具等を代替する役割を担った。中でも，視覚補助具の代替（25事例），デジタルカメラやビデオカメラの代替（10事例）が多かった。図3は，顕微鏡撮影装置の代替の例である。顕微鏡の接眼レンズにiPadの背面カメラを近づけることで視野画像をiPad画面に映し出して観察することが可能である。使用したアプリケーションソフトウェア（以下アプリ）は，
「カメラ」「明るく大きく」等である。他に、オシロスコープ（図4）、音源装置（図5）、色識別装置（図6）、騒音測定装置（図7）、プラネタリウム装置（図8）などの代替とし
て活用した。

また、タイマー（図9）、分度器（図10）、単語帳（図11）、電子黒板（図12）、ワークシート（図13）などの代替としても活用した。
②A（増強）としての活用

撮影した画像を手元で拡大（35事例）、追記やトリミング等の画像加工（22事例）、WiFi機能を用いた印刷（18事例）等の事例が多かった。

図19は、撮影した画像をピンチアウトして拡大し、アプリ「カメラ」を利用して画像のトリミングを行った例である。「カメラ」の画像編集機能を活用すれば、トリミングの他に、画像の傾きや色調の変更も可能である。アプリ「明るく大きく」では、拡大のほかに明るさや色を変える機能を一人一人の姿勢に応じて調整することができるため、「カメラ」三角に多くの事例で用いた。

図15は、アプリ「PlayPaint」や「Skitch」を用いて撮影した画像に追記した例である。追記は、主に実験・観察の方法や結果のまとめに用いた。

iPadでは「カメラ」等で撮影した画像を、様々なアプリで二次利用できる。表3は画像を本研究で二次利用したアプリの例である。

③M（修正）としての活用

より安全に実験を行うための実験方法の修正（7事例）、撮影した静止画や動画を活用した授業方法の修正等の事例（28事例）が多かった。

図16は、顕微鏡観察における授業形態の修正の例である。iPadを活用することで、顕微鏡の視野画像を他者と共有することが可能

表3 画像を2次利用したアプリの例

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Keynote</td>
<td>Pair Player</td>
<td>GoodNotes</td>
<td>Dropbox</td>
</tr>
<tr>
<td>プレゼンテーション</td>
<td>画像比較</td>
<td>ノート</td>
<td>クラウド</td>
</tr>
<tr>
<td>Skitch</td>
<td>PlayPaint</td>
<td>ロイロノート</td>
<td>らくらく絵本</td>
</tr>
<tr>
<td>追記</td>
<td>追記</td>
<td>記録・マッピング</td>
<td>絵本作成</td>
</tr>
</tbody>
</table>

11
となるため、自分の視野画像について他者に意見を求めたり、教師が生徒に助言したりすることが容易となった。

図17は、理科室で印刷した記録写真をワークシートにし、観察記録をまとめる授業方法の修正の例である。これまでカメラで撮影した実験や観察の写真は、一度パソコンに取り込む必要があったり印刷室等他の教室で印刷したりする必要があった。そのため生徒に渡すまで時間がかかり、その時間内にワークシートに写真を貼って記録をまとめることができるような授業方法の修正の例である。理科室でWiFi機能対応の印刷機を設置し、iPadの無線機能（WiFi機能）を活用することで理科室内での印刷が可能となり、撮影した写真を使ってワークシート等をまとめることが容易となった。

図18は、本校にある実験器具の写真や動画を用いて、実験や観察の資料を電子教材化（以下、ePub化した資料）した例である。筆者が内容の編集を行った後、広島大学氏間研究室にてePub化する方法で、平成24年度からの3年間で、表4の通り12タイトル作成した。

iPadにePub化した資料を取り入れて用いるという授業方法の修正を行ったことにより、教師の説明時間が短縮し生徒の活動量が増える傾向がみられた。これにはePub化することにより、実験器具の写真の閲覧がスムーズに行えたり、自動で行替えが行われたり、読み易い文字サイズの設定が行えたりするためだと思われた（松下ら、2014）。

図19は、現象が起きた瞬間をiPadを用いて確認する授業方法の修正の例である。

視覚障害を有する生徒にとって、水素の燃焼や放電などの現象は、音は確認できるが現象そのものを視認することが困難な場合が多い。そこで、その現象を動画映し、再生速度を遅くすることで、現象そのものを確認することが可能となった。

図20は、危険が伴うため目を近づけて確認することができなかった現象をiPadを使うことによって安全に確認することができるようにした授業方法の修正の例である。中学校の化学実験では、実験の過程でガスパーカーを用いたり、化学変化が起こる際に激しい光や熱を伴ったりするので目を近づけて現象を確認することが困難なものも多い。そのような際、スタンドやアームにiPadを固定することで、現象を安全な位置からリアルタイムに確認することが可能となった。また、同時に動画で録画しておくことで実験後に繰り返し確認することも可能となった。

図21は、星の日周運動を生徒自身がiPadのアプリを用いて確認する授業方法の修正例である。

夜間に実際の天体を観測することは、視覚障害を有する生徒にとって最も困難な活動の一つである。また、星座盤は盤の周りに書かれた数字が小さく日時の設定を行うのが難しい。iPadの星空表示アプリは、見たい方角・高度にiPadを向けるとその方角・高度の星
空が表示される。また、時間設定も容易にでき、自動で設定した日時の星空が表示される。このような機能を使って、生徒自身が天体の日周運動や年周運動のシミュレーションを行うことで、その理解につながった。

図18 実験や観察の資料をePub化した例（アプリ iBooks）

表4 ePub化した資料

<table>
<thead>
<tr>
<th>中1</th>
<th>中1</th>
<th>中1</th>
<th>中2</th>
</tr>
</thead>
<tbody>
<tr>
<td>やってみよう イカのからだの解剖</td>
<td>実験1 だ液によるデンプン溶液の変化</td>
<td>実験1 台車のいろいろな運動の記録</td>
<td>実験2 斜面を下る台車の運動</td>
</tr>
<tr>
<td>中2</td>
<td>中2</td>
<td>中3</td>
<td>中3</td>
</tr>
<tr>
<td>実験3 向きが異なる2つの力の合力</td>
<td>実験4 物体のもつエネルギーの変化</td>
<td>実験5 小球のもつエネルギーと木片に衝突したときの仕事</td>
<td>実験6 滑車を和てこを使ったときの仕事の大きさ</td>
</tr>
</tbody>
</table>

④ R（変革）としての活用
追記アプリ活用でみられた活動に対する生徒の意識変革（間違いを恐れずに予想してみる）や音声補助が必要な生徒への実験方法の変革（色識別アプリや読み上げるpHメータ
—アプリの活用）の事例があった。
図22は、追記アプリ活用でみられた、実験結果を思い切って予想しようとする生徒の意識変革の例である。
使用した追記アプリでは、iPadの画面をタップすることで、描いたものを削除し修正することが可能なため、間違えることを恐れずに以前より思い切って予想する姿が見られるようになった。
図23は、音声補助を必要とする生徒が、自分自身で、pHを測定したり色の変化を確認したりすることを可能とした実験方法の変

水素が燃焼する瞬間の確認（中1）
放電の瞬間の確認（中2）
図19 現象が起きた瞬間をiPadを用いて確認する授業方法の修正（アプリカメラ・SpeedUpTV）

目を近づけることができない実験で現象を安全に確認する授業方法の修正（アプリカメラ）
エタノールの沸騰の確認（中1）
図20

カシオペア座
17:30
2時間後のシミュレーション
シミュレーションする生徒
図21 天体の動きを生徒自身がiPadでシミュレーションする授業方法の修正（アプリ星座表・StarWalk）
天体の日周運動の確認（中1）
革の例である。iPad のボイスオーバー機能を活用することでこれまで他者の支援が必要であった活動を一人で行うことができるようになり、その結果、実験に対する興味・関心・意欲が増すとともに、自分でできたという自己肯定感が高まった。

3. 成果と課題
(1) 成果
・SAMR モデルを用いて、これまでの実践事例を整理・分析することで、iPad が既存の器具の代替にとどまらず、生徒の学習方法・意識や教師の授業方法等に様々な影響を与えていたことが明らかとなった。

(2) 課題
・iPad を活用するからこそ可能となる、S（修正）や R（変革）の活用について研究を進め実践していくこと。
・通常の学級で行われている授業の中で、視覚障害を有する生徒が主体的に学習を行うための補助具として S（代替）や A（補強）の事例を通常学級担当の先生方にも広めていくこと。

4. 結わりに
筆者が本研究でタブレット端末で目的に応じた活用を行えるまでには、表 5 に示す 4 段階があった。

表 5 タブレット端末活用の 4 段階

<table>
<thead>
<tr>
<th>段階</th>
<th>事例</th>
</tr>
</thead>
<tbody>
<tr>
<td>1段階</td>
<td>使い方が分からず活用できない段階</td>
</tr>
<tr>
<td>2段階</td>
<td>基本的な使い方が分からずにとらえる段階</td>
</tr>
<tr>
<td>3段階</td>
<td>使いやすいアプリを探す段階</td>
</tr>
<tr>
<td>4段階</td>
<td>授業の一つのツールとして目的に応じて活用できる段階</td>
</tr>
</tbody>
</table>

図 22 葉でできるデンプンの場所の予想（中 1）

図 23 水素イオン濃度の測定（中 3）

指示薬による色の変化の確認（中 3）
最終的な目標は4段階に達することだが、それを達成するためには、2段階のときにかく使ってみるということが大切である。視覚障害教育についての専門性をもつ教員が、タブレット端末をときにかく使い、タブレット端末本体及び様々なアプリの機能を知るとともに、可能なことや不可能なことを自身で感じることが、授業での有効活用につながる。ただし、第2段階はより短期間が望ましい。そのためにも、本編のような実践事例が多く世に出ることが重要である。これまで先達が築いてきた視覚障害教育の「不易」の部分を維持継承していきながらも、タブレット端末の活用という「流行」の部分を組み合わせることが、今後、視覚障害を有する児童生徒のより充実した学習を可能にする。つまり不易の部分をより洗練させていくであろう。

参考文献