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Outline

Application and motivation of geo-fencing
Pairing a point with polygon:  INSIDE/WITHIN
Crossing number algorithm and its scalability problem

Proposed edge-based LSH algorithm
R-tree for pre-filtering
LSH for INSIDE,  plus probing for WITHIN
Simple but effective and efficient

Experimental results

Conclusions
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Basis: Well-known crossing number algorithm
 Inside iff number of intersections == odd
 Requires checking each edge  inefficient

Enhancements:
1) Exploiting MBR for pre-filtering
2) Locality-sensitive hashing (LSH) for further acceleration
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Motivation & Concepts: INSIDE
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Case: Point P outside of MBR but within a distance of dth
 A rectangle centered at P, edge length being two times dth

• If no overlap  point surely not WITHIN distance  

Motivation & Concepts: WITHIN
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Scalability: Polygons, Points, Edges

# edges of 15 polygons

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

285 255 235 196 264 250 240 239 226 226 242 153, 
15

152, 
20

250 217

 Problem: scalability with the number of edges
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Pairing engine

 Two stages
1) R-tree-based pre-filtering
2) LSH adapted to crossing number algorithm

Efficient Geo-Fencing: Framework
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Efficient Geo-Fencing: R-tree 
Based Pre-filtering 
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 A separate hash table for each 
polygon

 A fixed number of buckets, N, 
for each hash table

 Hash function
 T = (Xmax – Xmin) / N
 HashKey(x) = int ((x – Xmin)/T)

 An edge (x1, y1)—(x2, y2) 
stored in buckets from key1 to 
key2,

 key1=HashKey(x1), 
key2=HashKey(x2)

Efficient Geo-Fencing: 
INSIDE Detection

B0 B1 B2 B3 BN-1

P

x0 x1 x2 x3 x4 xN

Hash table of edges

Xmin

Xmax
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Efficient Geo-Fencing: 
WITHIN Detection

x0 x1 x2 x3 x4 xN

Buckets probed for WITHIN dth of polygon
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LSH with multi-probing
 Inside polygon 

 Inside inner ring

 Outside outer ring

Optimization
 Range of a point
 Divide outer area into 4 

ranges
 Only check edge in the same 

range with the point
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Geo-Fencing: Evaluation Setup
Training dataset
 Two point files: Point500 (39,289 instances), Point1000 (69,619 

instances)

 Two polygon files: Poly10 (30 instances), Poly15 (40 instances)

Ground truth available (different combinations of inputs and 
predicates)

Two predicates
 INSIDE & WITHIN 1000

 Execution times without overhead (file I/O, data conversion)

 Accuracy & efficiency (4 methods)

Environment
 A laptop PC (Intel Core i5 CPU, 64-bit Windows 7)
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Geo-Fencing: Example Experiments 
100% accuracy with test set

Running time without system overhead
 Measured via Windows QueryPerformanceCounter(): 100 runs

 LSH+R-tree: Execution speed-up by 970% for INSIDE and by 370% for WITHIN
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(a) INSIDE predicate (b) WITHIN 1000 predicate
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Other Optimizations
Execution profiling showed that I/O processing required 

considerable time
 Large amounts of text data needed to be read

Therefore we applied several I/O optimizations
 Reading data in larger blocks, not line-by-line

Writing pairing results in large blocks

Optimized number conversion: text-float to binary-float

Multi-threading

Batch processing
Multiple points at a time, find candidate pairs for each polygon

 Precise pairing for each polygon (CPU cache optimization)
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Conclusions
Different levels of approximation
 Polygon as MBR: pre-filtering via R-tree

 Edges in bucket: LSH

LSH table per polygon
 Compatible with R-tree
 Fixed number of buckets, less affected by the distribution and 

shapes of polygons

Simple, effective and efficient
 100% accuracy, high speed
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Thank You – Q&A

http://eiger.ddns.comp.nus.edu.sg
Further information at:

rogerz@comp.nus.edu.sg
yuy@comp.nus.edu.sg


