
1

Edge-Based Locality Sensitive Hashing
for Efficient Geo-Fencing Applications

† Media Management Research Lab, School of Computing,
National University of Singapore

‡ ATR Adaptive Communications and Research Laboratories, Kyoto

Yi Yu†, Suhua Tang‡, Roger Zimmermann†

ACM SIGSPTATIAL GIS 2013, Nov. 7, 2013
Orlando, Florida, USA

2

Outline

Application and motivation of geo-fencing
Pairing a point with polygon: INSIDE/WITHIN
Crossing number algorithm and its scalability problem

Proposed edge-based LSH algorithm
R-tree for pre-filtering
LSH for INSIDE, plus probing for WITHIN
Simple but effective and efficient

Experimental results

Conclusions

3

Basis: Well-known crossing number algorithm
 Inside iff number of intersections == odd
 Requires checking each edge inefficient

Enhancements:
1) Exploiting MBR for pre-filtering
2) Locality-sensitive hashing (LSH) for further acceleration

MBR: minimum
bounding
rectangle

V1,9

V1,8

V1,11

V1,10

V1,7 V1,6

V1,4

V1,3

V1,2

V1,1

P V2,1
V2,2

V2,3
V2,4

V2,5

V1,5

Motivation & Concepts: INSIDE

4

V1,9
V1,8

V1,11

V1,10

V1,7 V1,6

V1,5

V1,4

V1,3

V1,2

V1,1

P

V2,1
V2,2

V2,3
V2,4

V2,5

dthdth

Case: Point P outside of MBR but within a distance of dth
 A rectangle centered at P, edge length being two times dth

• If no overlap point surely not WITHIN distance

Motivation & Concepts: WITHIN

5

-1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3

x 10
4

-1

-0.5

0

0.5

1

1.5

2

2.5

3

x 10
4

1

2

3
4

5

6

789

10

11

12

13

14

15

X axis (m)

Y
 a

xi
s (

m
)

Scalability: Polygons, Points, Edges

edges of 15 polygons

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

285 255 235 196 264 250 240 239 226 226 242 153,
15

152,
20

250 217

 Problem: scalability with the number of edges

6

Point
file

Polygon
file

Polygon cache

MBRs
in R-tree

Edges in
LSH table

R-tree based
pre-filtering

LSH-based
INSIDE

detection

LSH-based
WITHIN
detectionP

ol
yg

on
 m

an
ag

em
en

t

INSIDE
result

WITHIN
result

Pairing engine

 Two stages
1) R-tree-based pre-filtering
2) LSH adapted to crossing number algorithm

Efficient Geo-Fencing: Framework

7

Efficient Geo-Fencing: R-tree
Based Pre-filtering

-1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3

x 10
4

-1

-0.5

0

0.5

1

1.5

2

2.5

3

x 10
4

1

2

3
4

5

6

789

10

11

12

13

14

15

X axis (m)

Y
 a

xi
s (

m
)

8

 A separate hash table for each
polygon

 A fixed number of buckets, N,
for each hash table

 Hash function
 T = (Xmax – Xmin) / N
 HashKey(x) = int ((x – Xmin)/T)

 An edge (x1, y1)—(x2, y2)
stored in buckets from key1 to
key2,

 key1=HashKey(x1),
key2=HashKey(x2)

Efficient Geo-Fencing:
INSIDE Detection

B0 B1 B2 B3 BN-1

P

x0 x1 x2 x3 x4 xN

Hash table of edges

Xmin

Xmax

9

Efficient Geo-Fencing:
WITHIN Detection

x0 x1 x2 x3 x4 xN

Buckets probed for WITHIN dth of polygon

B0 B1 B2 B3 BN-1

dth

dth

dth

dth

III

III IV

P3
dth dth

PT

PL

PB

PR

P2

LSH with multi-probing
 Inside polygon

 Inside inner ring

 Outside outer ring

Optimization
 Range of a point
 Divide outer area into 4

ranges
 Only check edge in the same

range with the point

P1

P1

P2

P3

P3

10

Geo-Fencing: Evaluation Setup
Training dataset
 Two point files: Point500 (39,289 instances), Point1000 (69,619

instances)

 Two polygon files: Poly10 (30 instances), Poly15 (40 instances)

Ground truth available (different combinations of inputs and
predicates)

Two predicates
 INSIDE & WITHIN 1000

 Execution times without overhead (file I/O, data conversion)

 Accuracy & efficiency (4 methods)

Environment
 A laptop PC (Intel Core i5 CPU, 64-bit Windows 7)

11

Geo-Fencing: Example Experiments
100% accuracy with test set

Running time without system overhead
 Measured via Windows QueryPerformanceCounter(): 100 runs

 LSH+R-tree: Execution speed-up by 970% for INSIDE and by 370% for WITHIN

0

50

100

150

Point500,
Poly10

Point1000,
Poly10

Point500,
Poly15

Point1000,
Poly15

A
ve

ra
ge

 ti
m

e
(m

s)

kNN R-tree
LSH R-tree+LSH

0

50

100

150

Point500,
Poly10

Point1000,
Poly10

Point500,
Poly15

Point1000,
Poly15

A
ve

ra
ge

 ti
m

e
(m

s)

kNN R-tree
LSH R-tree+LSH

(a) INSIDE predicate (b) WITHIN 1000 predicate

12

Other Optimizations
Execution profiling showed that I/O processing required

considerable time
 Large amounts of text data needed to be read

Therefore we applied several I/O optimizations
 Reading data in larger blocks, not line-by-line

Writing pairing results in large blocks

Optimized number conversion: text-float to binary-float

Multi-threading

Batch processing
Multiple points at a time, find candidate pairs for each polygon

 Precise pairing for each polygon (CPU cache optimization)

13

Conclusions
Different levels of approximation
 Polygon as MBR: pre-filtering via R-tree

 Edges in bucket: LSH

LSH table per polygon
 Compatible with R-tree
 Fixed number of buckets, less affected by the distribution and

shapes of polygons

Simple, effective and efficient
 100% accuracy, high speed

Acknowledgments
The work presented was in part supported by the Singapore National Research
Foundation under its International Research Centre @ Singapore Funding Initiative
and administered by the IDM Programme Office.

14

Thank You – Q&A

http://eiger.ddns.comp.nus.edu.sg
Further information at:

rogerz@comp.nus.edu.sg
yuy@comp.nus.edu.sg

