Edge-Based Locality Sensitive Hashing for Efficient
Geo-Fencing Application

Yi Yu
School of Computing, National
University of Singapore
Singapore 117417
yuy@comp.nus.edu.sg

%
Suhua Tang
ATR Adaptive
Communications Research
Laboratories
Kyoto 6190288 Japan

Roger Zimmermann
School of Computing, National
University of Singapore
Singapore 117417
rogerz@comp.nus.edu.sg

shtang@atr.jp

ABSTRACT

Geo-fencing is a promising technique for emerging location-
based services. Its two basic spatial predicates, INSIDE
and WITHIN pairings between points and polygons, can be
addressed by state-of-the-art methods such as the crossing
number algorithm. In the era of big-data, however, geo-
fencing has to process millions of points and hundreds of
polygons or even more in real-time. In this paper, we pro-
pose an efficient algorithm to improve the scalability of geo-
fencing, which consists of two main stages. At the first stage,
an R-tree is used to quickly detect whether a point is inside
the minimum bounding rectangle of a polygon. In the sec-
ond stage, instead of an exhaustive search, we design an
edge-based locality sensitive hashing scheme adapted to the
crossing number algorithm. As for the case of WITHIN de-
tection, a probing scheme is suggested to locate adjacent
buckets so as to check all edges near to a target point. By
further exploiting batch processing and multi-threading pro-
gramming, our algorithm can achieve a fast speed while re-
taining 100% accuracy over all training datasets provided by
the GIS Cup 2013 organizers.

Categories and Subject Descriptors

H.2.8 [Database Applications]: Spatial Databases and
GIS; H.3.3 [Information Storage and Retrieval]: Infor-
mation Search and Retrieval

General Terms

Algorithms, Performance, Theory

Keywords

Geographic information systems, Geo-fencing, Locality sen-
sitive hashing, Multi-probing

*The first two authors have the same contribution.

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the Owner/Author. Copyright is held by the author/owner(s).
SIGSPATIAL’13, Nov 05-08 2013, Orlando, FL, USA

ACM 978-1-4503-2521-9/13/11.
http://dx.doi.org/10.1145/2525314.2527264.

1. INTRODUCTION

Advancements in positioning techniques and mobile com-
munications have enabled emerging Location Based Services
(LBSs), which have been integrated into social network-
ing platforms (e.g., Facebook, Twitter, Foursquare). The
wide spread of smartphones also generates a growing need
for user-centric geo-fencing applications [I] in LBSs. Var-
ious geo-fencing services (e.g., Placecast, Sensewhere, Zen-
tracker) have been established to meet these needs.

The geo-fencing problem posed by the GIS Cup 2013 [2]
can be formulated as an estimation whether a point is IN-
SIDE or WITHIN a distance of a polygon. Both a point
and a polygon may have multiple instances, each identified
by an ID and a sequence number. A polygon contains one
outer ring, and zero or more inner rings. A point may ap-
pear in several overlapping polygons. Hereafter, a point P
consists of P.ID, P.seq, P.x, P.y, and a polygon Poly con-
sists of Poly.ID, Poly.seq and multiple rings composed of
edges. Although state-of-the-art methods such as the cross-
ing number algorithm [3] can address the two key spatial
predicates of geo-fencing, it is difficult to realize a real-time
geo-fencing service with millions of points and hundreds of
polygons.

This work improves the scalability of geo-fencing by ex-
ploiting approximate and indexing techniques. At the time
of extending the ideas of locality sensitive hashing (LSH)
[4] to quickly locate potential geo-edges over a geographic
dataset, we were not aware of any related work, which specif-
ically relates to utilizing LSH in geo-fencing research. How-
ever, the interested readers may refer to [5][6] for some LSH-
based data access methods. In particular, we first apply an
R-tree to quickly check whether a point is inside the mini-
mum bounding rectangle (MBR) of a polygon. Then, points
are matched against polygons using the crossing number al-
gorithm, which is accelerated by using edge-based locality
sensitive hashing. We divide the whole = coordinate range
of polygon vertices into non-overlapping sub-ranges, each as-
sociated with a bucket. An edge belongs to a bucket if its x
coordinate overlaps the z sub-range of the bucket. A prob-
ing scheme is also proposed to implement WITHIN detection
for finding all edges close to a target point. Our experimen-
tal results over the training datasets provided by the GIS
Cup 2013 organizers verify the efficiency of the proposed al-
gorithm with a 100% pairing accuracy. Related codes for
geo-fencing can be downloaded from the following URL

http://eiger.ddns.comp.nus.edu.sg/ yiyu/GISCupl3.html.

http://eiger.ddns.comp.nus.edu.sg/~yiyu/GISCup13.html

Polygon Point
file file

)

= MBRs R-tree based

5]

£ in R-tree pre-filtering

£

E Polygon cache l Pairing engine

=

$ Edees in LSH-based LSH-based

= & I INSIDE |—— WITHIN

~ LSH table . .
detection detection

I I

INSIDE WITHIN

result result

Figure 1: The proposed framework for geo-fencing.

2. BASIS OF PROPOSED ALGORITHM

Detecting whether a point is inside a polygon is not a new
issue and can be realized by exploiting the crossing num-
ber algorithm [3]. The challenge, in the era of big-data, is
how to do this efficiently when there are millions of points
and hundreds of polygons. An investigation shows that each
polygon in the contest on average contains around 200 edges.
Performing the crossing number algorithm by checking each
edge of each polygon is time-consuming.

Basic idea. We solve this problem by leveraging different
approximate and indexing techniques, as shown in Fig. [Il
An R-tree [7] is used to quickly detect whether a point is
inside the MBR of any polygon. When a point is outside
the MBR of a polygon, it is true that this point is outside
the polygon as well. But a further examination is necessary
when a point is inside the MBR of a polygon. In this step,
only some of edges of a candidate polygon are examined by
applying LSH.

R-tree [7]. The key idea of applying an R-tree is to use
different levels of approximation of polygons. At the low-
est level (leaf node), a polygon is represented by its own
MBR. Then, nearby polygons are grouped together and rep-
resented by their MBR at the next higher level of the tree.
In times of searching, a query (a point for INSIDE, a rect-
angle for WITHIN) that does not intersect with the MBR
will not intersect with any of the polygons inside the MBR.
This method helps to quickly remove non-relevant polygons.

LSH for INSIDE detection. The crossing number al-
gorithm [3] states that a point is inside a ring if a ray from
this point towards infinity crosses an odd number of edges
of the ring. In our design, the ray is along the vertical
line, from a point towards infinity. In the ideal case, only
edges crossing the ray need to be examined. This is approx-
imated by LSH in our design, and its basic idea is shown
in Fig. The z-coordinate of a polygon spans a range,
e.g., [zo,zn), which is equally divided into N sub-ranges,
[xo,21), [x1,22), - ,[tN—1,2N). Each sub-range is associ-
ated with a bucket storing edges and [x;, x;+1) corresponds
to the " bucket B;. An edge whose z-range overlaps a sub-
range is added to the associated bucket. In this way, an edge
can appear in multiple buckets.

A well-known problem of LSH is the bias of samples in
the buckets. This problem degrades LSH efficiency and oc-
curs because overall samples are not uniformly distributed.
Instead of managing all edges of all polygons in one hash ta-
ble, we decide to use one hash table for each polygon. The
number of buckets inside each hash table is fixed to N, so
that the number edges examined inside a polygon will be
reduced by an order N. In this way, the LSH performance
does not rely on the distribution of polygons. In addition,

Xy X Xy X3 Xy Xy

AN

|4 e

< Tt

T oP
S

Y

™ i

N

|

Bﬂ Bl BZ B3 BN—I

Figure 2: Hash table for organizing edges.

per-polygon LSH works well with the R-tree method.

LSH for WITHIN detection. The above LSH scheme
for INSIDE detection need further improvement for WITHIN
detection with a distance threshold d;,. In the R-tree de-
tection, instead of a point P, the rectangle Rect = (P.x —
din, P.y—din, P.x+dipn, P.y+dis) should be used as a query.
Then, multi-probing [6] is adopted in order to ensure the
accuracy. More specifically, instead of only checking the
bucket containing P, all buckets covered by the sub-range
[P.x — din, P.x + dip,) are examined.

A point inside a polygon is also within a distance d;, of the
polygon. In the following, we consider the scenario where
a point P is outside the polygon, with two cases. (i) P is
inside an internal ring of the polygon. Then, only edges of
the specific internal ring should be further examined. (ii)
P is outside the external ring of the polygon, but within
a distance dn, of the MBR. Let the left-, top-, right- and
bottom-most vertices of the external ring of a polygon be
P, Pr, Pr and Ppg respectively. Rays starting from these
points and pointing outside divide the gray areas (where P
potentially exists) into 4 areas (I,11,111,IV), as shown in
Fig. Bl which is similar to 4 quadrants in a 2D space. It is
easy to know that the vertex on the polygon nearest to a
point P must be located on the edge of the range P belongs
to. For example, in Fig.[3] P is in the range I, and only the
edges in the top-right range need to be checked. This process
can be combined together with the previous multi-probing
procedure.

3. DETAILED ALGORITHM DESIGN

The framework in Fig. [0l is realized by three algorithms.
The first algorithm describes how to organize polygons, as
shown Algorithm [II Basically, polygons are organized in
such a way that their MBRs are stored in an R-tree (Lines
2-3) and their edges are saved in a hash table. After de-
termining the basic parameters of a hash table (Lines 4-6),
each edge is put into buckets (Lines 7-12) according to the
hash key computed from the = coordinate (Lines 14-19).

In the INSIDE detection in Algorithm [for each point
P € S, its candidate polygons are found, and each poly-
gon has a separate buffer C; holding points matched via R-
tree (Lines 2-6). Then, for each candidate pair (P, Poly;),
LSH-based searching is performed, and a matched pair is
exported (Lines 7-12). In the LSH-based crossing number
algorithm (IsInside), for each edge in bucket B, associated
with P.xz, only those edges right on P are counted (Lines
18-21). P is regarded as inside the polygon if it is inside the
outermost ring (#cross[1] is odd) and outside all inner rings

Buckets probed for d,, WITHIN detection
l—%\

Xo X X X3 Xy XN
d, L
S
@, ey k“vi

\\ T P<
N

s

gy

B() Bl BZ B}

Figure 3: WITHIN detection.

Algorithm 1 Update Poly;, the j*" polygon.

1: procedure UPDATEPOLYGON(Poly;)

2: Find left-, top-, right-, bottom-most vertex of Poly;.
3 Get the MBR of Poly;, add it to R-tree.

4: Xmin,; = « coordinate of left-most vertex.

5: Ximaz,j = « coordinate of right-most vertex.
6.
7
8

Aj = (Xmaz.j — Xomin) /N. > Bucket width
for each edge (V1,V2) in Poly; do
: Get ring and range (I,I1,I111,1V) of the edge.
9: n1 = GetHashKey;(Vi.xz).
10: ny = GetHashKey;(V2.z).
11: Add (Vi, Va,ring, range) to Bp,n =ni, - ,na.

12: end for

13: end procedure

14: procedure GETHASHKEY;(x)
15: €T < Xmin,j if x < Xmin,j-

16: T < Xmazyj if x > Xmacv,j-
17: n =int((x — Xmin,j)/Dj).

18: Return n.

19: end procedure

(#cross[n](n # 1) is even).

WITHIN detection is shown in Algorithm [3 Its basic
flowchart is similar to that of the INSIDE detection except
three points: (i) A rectangle decided by the distance thresh-
old d; is used instead of a point in the R-tree-based pre-
filtering (Lines 4-6). (ii) Probing is performed on multiple
buckets (Lines 13-15). (iii) Pairing between a point and the
external ring is further optimized based on the range of a
point (Lines 16-23).

Besides these basic algorithms, we optimize the program
from different aspects, as follows: (i) Reducing the file I/O
cost by reading/writing multiple data items at a time and
using binary file I/O to read the text-format GML file. (ii)
Batch processing and cache usage. Polygon instances do not
change as often as points. When a set of points are to be
compared with the same set of polygons, they can be pro-
cessed in batch. An LSH table of a polygon is stored in a
continuous buffer. Points matched to the same polygon via
R-tree are separately stored in each buffer, and later pro-

Algorithm 2 INSIDE detection.

: procedure INSIDE(Point set S)
Clear candidate point set C;,j =1,--- , M.
for each point P in S do

Perform R-tree detection.

Add P to Cj if P is in the MBR of Poly;.
end for
for each point P in Cj,j =1,--- ,M do

inPoly = IsInside(P, Poly;).

if inPoly is true then

Export (P.ID, P.seq, Poly;.ID, Poly;.seq).

11: end if
12: end for
13: end procedure
14: procedure ISINSIDE(P,Poly;)
15: n = GetHashKey;(P.z).
16: Clear #cross[n],n =1, #rings.
17: for each edge (V1, V2, ring, range) in bucket B, do

—
o©

18: if Vliix < Px < V2.x then

19: k=(Voy—Viy)/(Ve.x — Vi.z).

20: dy = (Py—Vi.y) — k- (Px — Vi.2).
21: if (dy < 0) then #cross[ring] + +.

22: end if

23: if (Jdy| < dmin) then

24: ringldx = ring; rangeldx = range.
25: dmin = |dy|

26: end if

27: end if

28: end for

29: inPoly=Ftcross[1] is odd && #cross[n](n#1) is even.
30: Return inPoly, ringldx,rangeldz.

31: end procedure

cessed together in the LSH-based matching. (iii) Parallel
computation on multiple cores via multi-threading program-
ming.

4. EXPERIMENTAL RESULTS

The ACM GIS Cup 2013 provides a training dataset which
includes two point files (Point500 with 39,289 instances,
Point1000 with 69,619 instances), two polygon files (Poly10
with 30 instances, Poly15 with 40 instances), and the ground
truth of INSIDE/WITHIN detection each with 4 files un-
der different combinations of inputs and predicates. We
locally conduct studies in a laptop PC with Intel Core i5
CPU and 64-bit Windows 7. In the evaluation, we com-
pare the average time of four methods: kNN, R-tree, LSH,
and R-tree+LSH. kNN is an exhaustive search method, R~
tree is for the pre-filtering stage, LSH is for pairing a point
with a polygon when the point is inside the MBR of the
polygon and N = 100 buckets are used for each polygon. R-
tree+LSH includes all functions of the proposed scheme. We
conducted two experiments, each predicate of which is gen-
erated by different combinations of point and polygon files.
In the first experiment, we focus on the time taken to match
points and polygons, neglecting the overhead such as file
I/0 and data conversion. In the second experiment, overall
execution time is evaluated. In all experiments, 100% accu-
racy is achieved. The execution time contains the running
time for all points and polygons in a test. It is measured
by the function QueryPerformanceCounter in the Windows

Algorithm 3 WITHIN detection.

1: procedure WITHIN(Point set S, threshold dy)
2: Clear candidate point set C;,j =1,--- , M.

3: for each point P in S do
4: Comp. Rect=[P.x—dip,P.y—din,P.x+din,P.y+din].
5: Perform R-tree detection with Rect.
6: Add P to Cj if Rect overlaps the MBR of Poly;.
T end for
8: for each point P in Cj,5=1,--- ,M do
9: (inPoly,ringldx,rangldx) =IsInside(P, Poly;).
10: if inPoly is true then
11: Export (P.ID, P.seq, Poly;.ID, Poly;.seq).
12: else
13: n1 = GetHashKey;(P.x — dp,).
14: ne = GetHashKey;(P.x + dp).
15: for (V1,Va,ring,range)€Bp,n=mn1, --,n2 do
16: search=ringldz>1|| range==rangeldx).
17: if ring == ringldr && search then
18: Comp. dist of P and the edge Vi, Va.
19: if dist < dy, then
20: Export(P.ID,P.seq,Poly;. ID,Poly;.seq).
21: Cont. to process next point in Cj.
22: end if
23: end if
24: end for
25: end if

26: end for
27: end procedure

environment and averaged over 100 runs.

Results of both experiments are shown in Figs. @5l Of the
four schemes, the execution time of kNN is the largest. Be-
cause the number of polygons in the training set is small (10
or 15), the effect of R-tree is limited. LSH can greatly reduce
the execution time compared with kNN, and R-tree+LSH
achieves the least execution time in all cases.

Without considering the overhead, in Fig. @ LSH im-
proves the execution speed by 970% (computed as (kNN
time)/(LSH time) -1) for INSIDE detection, and by 3.7 for
WITHIN 1000 detection, both averaged over 4 scenarios. A
large d;n requires to probe many buckets and affects the
execution speed. As dip decreases to 100 and 10, LSH im-
proves the execution speed by 770% and 850%, respectively,
compared with kNN. It is expected that the performance of
the WITHIN detection will approach that of the INSIDE
detection as di), approaches 0.

The overall time (including file I/O and GML format con-
version) in Fig. Bl increases in all schemes. An investigation
also shows that the overhead time is almost the same in all
schemes. In our implementation, the overhead time is al-
ready reduced by using block read to improve the efficiency
of file I/O and using a separate thread to handle file I/O.

S. CONCLUSION

The idea behind geo-fencing is very intuitive: users en-
ter or exit geo-fences based on geo-fencing-enabled location
preferences in mobile apps when notifications (e.g., adver-
tisement territory, shopping mall, university campus) are
sent to users or their network of friends. We proposed an
efficient edge-based locality sensitive hashing algorithm for
solving the geo-fencing problem, which is implemented in Vi-

kNN R-tree 150 kNN R-tree
B LSH BR-treetLSH SLSH B R-tree+LSH

150

=)
3

50

%3
S

Average time (ms)
Average time (ms)

Y
)

Y
)

N
(]
|
A
i
)

7
/
|
|
|
|
|
|
|
|
/

VA

Z
%
|
|
U
U

4

)

= A

Em Nom LNE , \
Point500, Point1000, Point500, Point1000, Point500, Point1000, Point500, Point1000,
Polyl0 Polyl0 Polyl5 Polyls Polyl0 Polylo Polyl5 Polyls

(a) INSIDE predicate (b) WITHIN 1000 predicate

Figure 4: Average time taken to pair points and
polygons (Without file I/O and data conversion).

ﬂ BKNN SR-tree — mkNN SR-tree =
150 CLSH W R-tree+LSH 150 | LBLSH ®R-tree+LSH Z§
E g N N
bt e N N
5100 o 100 N A N
E £, N R N
: Nl I N
: 7 N
z 50 z 0 TN N N N
N N N N
N N N N
/\I N NR
Point500, Point1000, Point500, Point1000, Point500, Point1000, Point500, Point1000,
Polylo Polylo Polyl5 Polyls Polylo Polylo Polyl5 Polyls

(a) INSIDE predicate (b) WITHIN 1000 predicate
Figure 5: Average time taken to pair points and
polygons (With file I/O and data conversion).

sual C++. Our work is very novel: i) The idea of LSH is first
applied to large-scale pairing between points and polygons
over geographic datasets. ii) A probing method is suggested
to look up all geo-edges close to a target point. Evalua-
tion results confirm that the proposed algorithm has good
efficiency and retains 100% accuracy.

Acknowledgment

We are grateful to the organizers for their considerable ef-
forts in the ACM SIG Cup 2013. This research is supported
by the Singapore National Research Foundation under its
International Research Centre @ Singapore Funding Initia-
tive and administered by the IDM Programme Office.

6. REFERENCES

[1] Axel Kupper, Ulrich Bareth, and Behrend Freese.
Geofencing and background tracking - the next features in
LBS. In INFORMATIK’11, 2011.

[2] ACM GIS Cup 2013.
http://dmlab.cs.umn.edu/GISCUP2013/index.php.

[3] Kai Hormann and Alexander Agathos. The point in polygon
problem for arbitrary polygons. Computational Geometry,
20(3):131-144, 2001.

[4] P. Indyk and R. Motwani. Approximate nearest neighbors:
Towards removing the curse of dimensionality. In Proc. 30th
ACM STOC, 1998.

[5] Yi Yu, Michel Crucianu, Vincent Oria, and Lei Chen. Local
summarization and multi-level LSH for retrieving
multi-variant audio tracks. In ACM Multimedia, pages
341-350, 2009.

[6] Yi Yu, Michel Crucianu, Vincent Oria, and Ernesto
Damiani. Combing multi-probe histogram and
order-statistics based LSH for scalable audio content
retrieval. In ACM Multimedia, pages 381-390, 2010.

[7] A. Guttman. R-trees: A dynamic index structure for spatial
searching. In ACM SIGMOD, pages 47-57, 1984.

http://dmlab.cs.umn.edu/GISCUP2013/index.php

	Introduction
	Basis of Proposed Algorithm
	Detailed Algorithm Design
	Experimental Results
	Conclusion
	References

