
September 8, 2009 15:44 WSPC/214-IJSC - SPI-J091 00073

International Journal of Semantic Computing
Vol. 3, No. 2 (2009) 209–234
c© World Scientific Publishing Company

MULTI-VERSION MUSIC SEARCH USING ACOUSTIC
FEATURE UNION AND EXACT SOFT MAPPING

YI YU∗ and KAZUKI JOE†

Department of Advanced Information and Computer Sciences
Nara Women’s University, Kitauoya nishi-machi

Nara 630-8506, Japan
∗yuyi@ics.nara-wu.ac.jp
†joe@ics.nara-wu.ac.jp

VINCENT ORIA

Department of Computer Science
New Jersey Institute of Technology

University Heights Newark, NJ 07102, USA
oria@cis.njit.edu

FABIAN MOERCHEN

Siemens Corporate Research, Integrated Data Systems
755 College Road East Princeton, NJ 08540, USA

fabian.moerchen@siemens.com

J. STEPHEN DOWNIE

Graduate School of Library and Information Science
University of Illinois at Urbana Champaign, USA

jdownie@uiuc.edu

LEI CHEN

Department of Computer Science
Hong Kong University of Science and Technology

HKSAR, China
leichen@cs.ust.hk

Research on audio-based music retrieval has primarily concentrated on refining audio
features to improve search quality. However, much less work has been done on improv-
ing the time efficiency of music audio searches. Representing music audio documents
in an indexable format provides a mechanism for achieving efficiency. To address this
issue, in this work Exact Locality Sensitive Mapping (ELSM) is suggested to join the
concatenated feature sets and soft hash values. On this basis we propose audio-based
music indexing techniques, ELSM and Soft Locality Sensitive Hash (SoftLSH) using an

optimized Feature Union (FU) set of extracted audio features. Two contributions are
made here. First, the principle of similarity-invariance is applied in summarizing audio
feature sequences and utilized in training semantic audio representations based on regres-
sion. Second, soft hash values are pre-calculated to help locate the searching range more

209

September 8, 2009 15:44 WSPC/214-IJSC - SPI-J091 00073

210 Y. Yu et al.

accurately and improve collision probability among features similar to each other. Our
algorithms are implemented in a demonstration system to show how to retrieve and eval-
uate multi-version audio documents. Experimental evaluation over a real “multi-version”
audio dataset confirms the practicality of ELSM and SoftLSH with FU and proves that
our algorithms are effective for both multi-version detection (online query, one-query vs.
multi-object) and same content detection (batch queries, multi-queries vs. one-object).

Keywords: Query-by-audio; music information retrieval; musical audio sequence summa-
rization; feature union; exact locality sensitive mapping/hashing.

1. Introduction

Query-by-audio Music Information Retrieval (MIR) usually involves three main
applications:

1) Query-by-example/humming/singing [1, 6, 21]. Given a fragment of the query
song via a recording or a microphone as input, find melodies similar to this query
fragment.

2) Near duplicate audio detection [2] or cover song detection [16, 18]. Given a
query file and a music collection, find all audio files whose similarity to the query is
above a specified threshold. The found items and the query may be cover versions
of the same song.

3) Plagiarism analysis [3]. Given a suspicious song, find from the collection all
audio files that are partly identical to this song even though their entire melodies
may be different.

With a continuous surge of music documents on the Internet, we are confronted
by the task of supporting scalable audio-based music search. However, in addition
to the difficulties in describing semantic similarity of audios through features, the
feature descriptor of musical audio sequence itself is very high dimensional, which
makes it difficult to quickly detect audio documents that closely resemble an input
query as the database size increases. To solve this hard problem, some researchers
refine music representations to improve the accuracy of musical semantic similar-
ity, using pitch [5, 19], Mel-Frequency Cepstral Coefficient (MFCC) [7, 8], Chroma
[16, 18, 27]; some other researchers use index-based musical audio structures to speed
up music similarity searching, exploiting tree structure [1, 4, 12], hierarchical struc-
ture [10], Locality Sensitive Hashing(LSH) [6, 9, 24], Exact Euclidean LSH (E2LSH)
[22, 24] and active-search [28]). In fact, focusing on either aspect is not enough
for scalable query-by-audio music search. For example, in [18], beat-synchronous
Chroma features are successfully used in matching similar music sequences. An accu-
rate audio-based pairwise matching is obtained. Unfortunately, pairwise comparisons
among feature sequences costs much time. LSH-based indexing structure was used
to directly map the features to the integer values [6, 9, 22, 24]. However, little investi-
gation was performed to judge whether the used features were able to represent the
music audio information and sufficiently recognize two acoustic sequences.

This work jointly considers music representation and feature organization and
aims to provide a scalable music retrieval system. Specifically, a novel melody-based

September 8, 2009 15:44 WSPC/214-IJSC - SPI-J091 00073

Multi-Version Music Search 211

summarization principle, Feature Union (FU), by using multivariable regression, is
presented to determine a group of weights that define an optimal combination of
several audio features. In addition, we study the relationship between FU sum-
marization and hash values and propose two novel search schemes called Exact
Locality Sensitive Mapping (ELSM) and Soft Locality Sensitive Hash (SoftLSH). A
demonstration system is presented to display multi-version audio retrieval based on
our approaches and some existing techniques. We validate our algorithms with real
world multi-version queries over a large musical audio dataset. Two tasks are con-
sidered: multi-version detection which locates all relevant items with an audio query
as input (one-query vs. multi-object) and the same content detection which locates
one relevant item with different queries (multi-queries vs. one-object). Evaluations
by these two tasks show that (1) the proposed FU can represent human perceptual
similarity better than other competitive feature sets and (2) ELSM and SoftLSH
algorithms have a better tradeoff between accuracy and search time compared with
that of regular LSH and exhaustive KNN.

Paper organization: We provide an introduction to MIR research and related
work in Sec. 2. Then we define the query-by-audio music search problem and present
the main algorithms in Sec. 3. We first review typical spectral features that are
often used in music retrieval and study the similarity-invariant summarization. The
potential problem of LSH with discrete hash values is addressed and two LSH vari-
ants, ELSM and SoftLSH are proposed. Performance evaluation of the proposed
algorithms is conducted over large datasets. The experiment setup and result anal-
ysis are addressed in detail in Sec. 4. Finally we conclude in Sec. 5 with a summary
and suggestions for future work.

2. Background and Related Work

Audio-based MIR is the interdisciplinary science of retrieving music information
and it involves many aspects and techniques. In this section we explain the MIR
model, report related techniques and distinguish them from our work.

2.1. Our MIR model

Figure 1 shows our content-based MIR system model based on audio content search-
ing. From the viewpoint of development and system architecture, from top to bot-
tom it consists of three levels: GUI interacting with users (L1), the key search engine
which is the main focus of this work (L2), and the database consists of both original
audio tracks and their suitable representations (L3). GUI receives query input from
users and passes it to the search engine, where the “matching” module compares
the query audio against audio tracks in the database and returns the ranked results
to the GUI for the graphical display. From the viewpoint of retrieval procedure,
from left to right the MIR system consists of three stages:

1) Audio representation (S1). The original acoustic data is not suitable for rep-
resenting songs. Therefore suitable features are extracted. Audio data is usually

September 8, 2009 15:44 WSPC/214-IJSC - SPI-J091 00073

212 Y. Yu et al.

GUI
query setup

GUI
result display

L2:
search
engine

L3:
database

Audio
representation

Matching
Evaluation

metrics

Meta
database

Audio
representation

S1: representation
of audio sequence

S2: searching in
the database

S3: performance
evaluation metrics

Acoustic
query

Acoustic
music

database

L1:
GUI

Fig. 1. Content-based music information retrieval model.

relatively long and is not stationary. Then it must be divided into frames, from
each of which a feature vector is extracted and the whole song is represented as a
feature sequence. Songs differ from each other with their specific scores, which are
associated with spectrum. Therefore spectral features, such as Short Time Fourier
Transform (STFT)[6], MFCC[7], pitch[5] and Chroma[16], are popular features.
It is also possible to further compress the feature sequence, for example, by
summarization.

2) Matching (S2). To determine whether two songs are similar or not, first a
similarity criterion is chosen. There are several levels of similarity [6], from exactly
the same copy to the same main melody with potential tempo variations. The focus
of this work is the similarity in terms of the main melody. Since each song dis-
tinguishes itself with its score and spectrum, the main melody is embodied in the
spectrum and the spectral similarity is adopted in this work. Under this criterion
the spectral features of a query are compared against those of audio tracks in the
database. This comparison can be divided into two steps. (a) The query is compared
against one reference song. This possibly involves sequence comparison, which fur-
ther depends on Dynamic Programming (DP) [29] to account for tempo variations.
(b) The comparison is iterated over each reference song and a ranked list contain-
ing nearest neighbors of the query is generated. Both the sequence comparison in
step (a) and the exhaustive search in step (b) are time-consuming. The semantic
audio summarization and indexing-based searching methods can speed up the audio
sequence comparisons and enable scalable retrieval, as is exactly the main work of
this paper.

3) Evaluation metrics (S3). To evaluate the performance of a retrieval algorithm,
some metrics are necessary. Typical metrics involve, but are not limited to, recall,
precision, mean reciprocal rank and F-measure.

September 8, 2009 15:44 WSPC/214-IJSC - SPI-J091 00073

Multi-Version Music Search 213

2.2. Related techniques

To efficiently accelerate or support a scalable audio-based music search, some works
apply index-based techniques [1, 4, 6, 22, 24]. In [1] a composite feature tree (seman-
tic features, such as timbre, rhythm, pitch, e.g.) was proposed to facilitate KNN
search. Principle Component Analysis (PCA) is used to transform the extracted
feature sequence into a new space sorted by the importance of acoustic features. In
[4] the extracted features (Discrete Fourier Transform) are grouped by Minimum
Bounding Rectangles (MBR) and indexed by a spatial access method. The false
alarm resolution approach was also used to avoid costly operations.

The original concept of LSH [11] is a simple idea, which is an index-based
data organization structure proposed to find all documents similar to a query in
Euclidean space. Specifically, feature vectors are extracted from audio documents
and regarded as being similar to one another if they are mapped to the same hash
values. Yang used random sub-sets of spectral feature, STFT, to calculate hash val-
ues for the parallel LSH hash instances in [6]. With a query as input, the relevant
features are matched from hash tables. To resolve bucket conflicts, a Hough trans-
formation is performed on these matching pairs to detect the similarity between the
query and each reference song by the linearity filtering.

Many variants of LSH have been proposed to effectively reduce the space require-
ment and shorten the response time, which also solves the Approximate Nearest
Neighbors problem in a Euclidean space. E2LSH [13] enhances LSH to make it
more efficient for the retrieval with very high dimensional features. It performs
locality sensitive dimension reduction to get the projection of the feature in differ-
ent low-dimension sub-spaces. An application of E2LSH in large-scale music retrieval
is evaluated in [22]. Shingles are created by concatenating consecutive frames and
used as high-dimensional features. Then E2LSH is adopted to compare a query
with references. In our previous work [24] LSH and E2LSH are used to accelerate
sequence comparison in music retrieval. Panigraphy [14] considered the distance
d(p, q) between the query q and its nearest neighbor p in the query stage of the
LSH scheme. By selecting a random point p′ at a distance d(p, q) from q and check-
ing the bucket that p′ is hashed to, the entropy-based LSH scheme ensures that all
the buckets which contain p with a high probability are probed. An improvement
of this scheme by multi-probe was proposed in [9], where minor adjustment of the
integer hash values are conducted to find the buckets that may contain the point p.

2.3. Summary of LSH-based similarity retrieval

In LSH-based approximation techniques, intrinsically, two points deserve attention:

(1) A group of locality sensitive mapping functions are constructed for each hash
instance. The original features are converted into new features. However, the
similarity is always kept (two original features with a short distance still have
a short distance after locality sensitive mapping). A group of hash values is

September 8, 2009 15:44 WSPC/214-IJSC - SPI-J091 00073

214 Y. Yu et al.

assigned to each bucket to make the features in the same bucket as similar as
possible (to improve precision and avoid false results).

(2) All hash instances are parallel and independent. By a single hash instance only
part of the similar features can be found, resulting in a relatively low recall.
Parallel and independent hash instances can guarantee that similar features
collide in at least one of the hash instances with a high probability. The union
of the results from all hash instances would improve the recall.

2.4. Comparison with existing works

We aim to develop a scalable audio-based MIR system that can run over the large
real-world datasets, return retrieval results ranked by similarity within an accept-
able time, and compare multiple retrieval algorithms by evaluation metrics.

To this end, we consider both the semantic summarization of audio documents
and the hash-based approximate retrieval for the purpose of reducing retrieval time
and improving search quality. In contrast with existing works, through a new prin-
ciple of similarity-invariance, a concise audio feature, FU, is generated based on
multivariable regression. Associated with the FU, variants of LSH (ELSM and Soft-
LSH) are proposed. Different from the conventional LSH schemes, soft hash val-
ues are exploited to accurately locate the searching region and improve the search
quality without requiring many hash instances. We care about possible difference
between perceptually similar audio documents and map the features into a contin-
uous hash space (soft mapping). The neighborhood determined by the query will
intersect buckets that possibly contain similar documents (see Sec. 3.3). In this way
the number of hash instances required in normal hashing schemes can be greatly
reduced. In comparison with the exhaustive KNN and regular LSH schemes, our
algorithms achieve much better search quality than that of LSH with the same num-
ber of hash instances and almost the same as that of an exhaustive KNN search
but with much less search time. Our techniques are extended and summarized as a
computer-assisted evaluation tool to help researchers to explore different retrieval
schemes and evaluate them with different metrics (e.g. recall, precision).

3. The Proposed Approaches

In this section we reveal a principle of melody-based similarity-invariance, by which
we can summarize long audio feature sequences and generate a single compact and
semantic representation, FU. FU is a general concept of concatenating feature vec-
tors. It can be implemented in different ways. We will discuss how to implement
a special FU by concatenating frequently used spectral features. Instead of tradi-
tional hard (discrete) hash values we adopt soft (continuous) hash values and use
exact locality sensitive mapping, which helps to locate the searching range more
accurately. On this basis, two schemes associated with FU are proposed to solve
the scalability of an audio-based music search. ELSM is similar to the first half of
E2LSH. However, in the proposed ELSM the sub-feature vector is not calculated

September 8, 2009 15:44 WSPC/214-IJSC - SPI-J091 00073

Multi-Version Music Search 215

to obtain hash values. They are directly used as new features to perform exhaus-
tive KNN searching. The ELSM feature is logically related to the number of hash
instances, but is not mapped to the integer hash values. We also propose a SoftLSH
algorithm as a variant of LSH. When the FUs of two audio tracks are similar to
each other, their non-quantized hash values will also be similar to each other. Our
SoftLSH scheme utilizes the non-quantified ELSM feature to accurately locate all
the buckets that intersect the neighborhood determined by the query.

3.1. An overview of the proposed schemes

Our algorithms proceed in two main stages that can be briefly described as follows.
1) Given a collection of songs R = {ri,j : ri,j ∈ Ri, 1 ≤ i ≤ |R|, 1 ≤ j ≤ |Ri|},

(ri,j is the jth spectral feature of the ith song Ri), the feature sequence {ri,j} of the
ith song Ri is summarized to Vi, an n-dimension feature vector in the Euclidean
space (Vi ∈ �n). The summarized feature Vi instead of the feature sequence {ri,j}
is utilized in the retrieval stage (see Sec. 3.2). To further accelerate the retrieval
speed, hash-based indexing is also adopted. Each hash function hk(·) maps Vi to a
single value. Then a group of N independent hash functions h1(·), h2(·), . . . , hN(·)
generate a vector of hash values H(Vi) = [h1(Vi), h2(Vi), . . . , hN (Vi)]T . Inside a
hash instance each hash vector is assigned to a bucket and two summarized features
with the same hash vector fall into the same bucket. L parallel hash instances are
constructed to support a high recall. By utilizing soft hash values, the number of
hash instances can be greatly reduced meanwhile the search quality is retained (see
Sec. 3.3).

2) Given a query song Q (with the summarized feature Vq) and a similarity
function ρ(·, ·), we would like to compute the similarity degree ρ(Vq, Vi) between the
query Q and each of the songs Ri in the database. They are similar if ρ(Vq, Vi) is
above a predefined similarity threshold. The similarity between two feature vectors
can be computed by several similarity measures, such as Mahalanobis distance [30],
Euclidean distance, etc. Using Mahalanobis distance requires that the covariance
matrix be known in advance. However, as the dimension of features become very
large (218 in this paper), the estimation of this covariance matrix may be inaccurate
and degrades the performance instead. In this paper correlation among variables of
the feature is not very strong (the remaining correlation can be removed with an
extra preprocessing stage by using PCA, etc.). Therefore the distance between Vq

and Vi is defined as d(Vq, Vi) = ‖Vq − Vi‖2. It also coincides with the fact that LSH
is often discussed in the Euclidean space [11].

3.2. Spectrum-based feature union

Audio documents can be described by time-varying feature sequences. Computing
the distance between audio documents (matching audio documents) is an impor-
tant task in implementing query-by-audio music search. DP [16, 18] can be used
in matching two audio feature sequences and is essentially an exhaustive search

September 8, 2009 15:44 WSPC/214-IJSC - SPI-J091 00073

216 Y. Yu et al.

Table 1. A list of popular audio
features.

Feature sequence representation

STFT [4][6]
MFCC [7][8]
Timbre, Rhythm and Pitch [1]
Chroma [9][18]
Pitch [5] [19]

approach (which offers high accuracy). However it lacks scalability and results in
a lower retrieval speed as the database gets larger. To speed up the matching of
audio documents and enable a scalable search, compressed features are extracted
from the audio data [1, 23]. Unfortunately, the semantic feature (high-level) used
in [1, 23] was mainly proposed to summarize audio feature sequences for musical
genre classification [17]. These semantic feature summarizations cannot effectively
represent melody-based lower-level music information.

We list the most popular audio-based music search techniques in Table 1 in
terms of audio sequences representation. Researchers have adopted different features
according to their application biases. For example, Pitch [5] is extracted from the
sung melody to generate a note sequence while semitone-based Chroma [18] is used
to tolerate differences in instruments and general musical styles.

Different features represent different aspects of audio signals and were proposed
for different purposes. Table 1 encourages us to generate a single description from
these features to represent the characteristics of an audio sequence as comprehen-
sively and effectively as possible. It is expected that with the single newly generated
feature representing an audio sequence, the heavy computation of feature sequence
comparison can be avoided and a query-by-audio music search can be applied in a
large database. In the following we focus on concatenating frequently used spectral
features and this special FU is called spectrum union (SU).

3.2.1. Similarity-invariance of summarization

Two questions occur in the summarizing stage: (1) how to summarize the high
dimensional features? (2) how to guarantee that a summarized feature reflects the
melody information? As for the first question, there are several summarizing meth-
ods such as calculating the mean and standard deviation of all the features, PCA,
and so on. As for the second question the summarizing procedure should exhibit the
key characteristics of similarity-invariance, that is, similar melodies lead to similar
summaries, non-similar melodies lead to non-similar summaries.

To satisfy the above summarization requirements, a basic melody-based sum-
marization principle is considered as follows. Ri = {ri,l : l = 1, 2, . . . , |Ri|} is the
feature sequence of the ith reference song. It is summarized to Vi. The sequence
similarity between ith song Ri and jth song Rj is ϕ(Ri, Rj). The similarity between

September 8, 2009 15:44 WSPC/214-IJSC - SPI-J091 00073

Multi-Version Music Search 217

the ith and jth feature summary is ψ(Vi, Vj). Here ϕ(.) and ψ(.) are similarity func-
tions. Similarity thresholds θ or θ′ would state how close any two feature sequences
or summarized features are. With a good summarization we could expect that

ϕ(Ri, Rj) > θ ⇔ ψ(Vi, Vj) > θ′. (1)

In this sense the summarization is similarity-invariant.

3.2.2. Regression model

A single feature cannot summarize well a song and multiple features can be com-
bined to represent a song. We focus on spectrum similarity between two audio
sequences and consider the combination of frequently used spectral features such as
MFCC, Mel-Magnitude spectrum, Chroma and Pitch. They are very typical audio
features in melody-based MIR systems. As for feature extraction (the interested
reader is referred to [5, 7, 18, 20] for a detailed description), each audio document is
divided into frames and from each frame MFCC (13-dimension), Mel-Magnitude
spectrum (40-dimension), Chroma (12-dimension) and Pitch (1-dimension) are
extracted. Mean and standard deviation (std) of the sequence of MFCC, Mel-
Magnitude spectrum and Chroma are calculated, respectively. A histogram of Pitch
is also calculated. As shown in Table 2, the per-feature summarization leads to 7
feature vectors. These feature vectors play different roles in different aspects of
music content representations. By assigning suitable weights to each feature vector
and concatenating them together, the concatenated spectral feature, SU, can better
represent an audio signal than an individual feature vector.

Training of these weights can be done by different methods. For the simplicity
of associating the sequence distance with the SU distance, we decide to use multi-
variable regression to determine the weights. The goal of our approach is to apply
linear regression models to investigate the correlation.

In the model we use K = 7 feature vectors listed in Table 2 to generate an
SU. Consider a training database composed of M pairs of songs < Rm1, Rm2 >,
m = 1, 2, . . . ,M , which contain both similar pairs and non-similar pairs. Let the
feature vector of mith song be vmi,1, vmi,2, . . . , vmi,K (i = 1, 2). With different
weights αk assigned to each feature vector, the total SU is

Vmi = [α1vmi,1, α2vmi,2, . . . , αKvmi,K]T , (2)

Table 2. Dimensions of features.

Feature sets Functions Dimensions

MFCC Mean and Std 13 + 13
Mel-Magnitude Mean and Std 40 + 40
Chroma Mean and Std 12 + 12
Pitch Histogram 88

Total 218

September 8, 2009 15:44 WSPC/214-IJSC - SPI-J091 00073

218 Y. Yu et al.

where (·)T stands for transposition. The distance between two SUs Vm1 and Vm2 is

d(Vm1, Vm2) = d(
K∑

k=1

αkvm1,k,

K∑

k=1

αkvm2,k) =
K∑

k=1

α2
kd(vm1,k, vm2,k). (3)

To determine the weights in Eq. (2), we apply a multi-variable regression process.
FromM pairs of songs we obtain the sequences of features and calculateM sequence
distances dDP (Rm1, Rm2) via DP. The feature sequence may consist of MFCC, pitch
and so on. Since Chroma is capable of representing distinct semitones of music
octaves [18], it is adopted as the feature in the calculation of sequence distance.

We will choose the weights in Eq. (2) so that d(Vm1, Vm2), the SU distance,
is as near to dDP (Rm1, Rm2) (the sequence distance) as possible, that is, we hope
the melody information is contained in the SU. After we determine the distance
between the pairs of training data, we get an M ∗K matrixDV and an M -dimension
column vector DDP . The mth row of DV has K distance values, d(vm1,k, vm2,k), k =
1, 2, . . . ,K, calculated from individual feature vector and the mth element of DDP

is the distance dDP (Rm1, Rm2) between the two feature (Chroma) sequences. Let

A = [α2
1, α

2
2, . . . , α

2
K]T , (4)

according to Eq. (3) DV , A and DDP satisfy the following equation

DV · A = DDP . (5)

Solving this equation we get

A = (DT
V DV)−1DT

VDDP , (6)

and obtain the weight αk. We are only interested in the absolute value of αk. The
SU defined in Eq. (2) is a special implementation of FU.

3.3. ELSM and SoftLSH

Almost all hash schemes, including LSH, use hard (discrete) integer hash values. In
LSH an SU Vi is locality-sensitively mapped to H(Vi), which is further quantized
to integer hash value H(Vi) = round(H(Vi))(round(x) is the nearest integer of x).
Two SUs (Vi and Vj) with a short distance (d(Vi, Vj)) have the same integer hash
value (H(Vi) = H(Vj)) with a high probability. By assigning integer hash values to
buckets, the songs located in the same bucket as the query can be found quickly.

However even if two similar SUs Vi and Vj have a short distance d(Vi, Vj), it is
not always guaranteed that they have the same hash values due to the mapping and
quantization errors. When a vector composed of N hash values instead of a single
hash value is used to locate a bucket the precision can be improved and the effect of
quantization error gets more obvious. To find a similar song from the database with
a specific query, multiple parallel and independent hash instances are necessary,
which in turn takes more time and requires more space. Our solution to the above
problem is to exploit the continuous non-quantized hash values with two schemes,
Exact Locality Sensitive Mapping (ELSM) and SoftLSH.

September 8, 2009 15:44 WSPC/214-IJSC - SPI-J091 00073

Multi-Version Music Search 219

3.3.1. Concept of soft mapping

We assume the search-by-hash system has L parallel hash instances and each hash
instance has a group of N locality sensitive mapping functions. In the mth hash
instance the function group is Hm = {hm1, hm2, . . . , hmN}. Its kth function hmk(·)
maps an SU feature V to a continuous non-quantized hash value hmk(V). After
mapping, the hash vector in the mth hash instance corresponding to V is Hm(V) =
{hm1(V), hm2(V), . . . , hmN (V)}.

Consider the kth dimension of the hash vectorsHm(Vi) and Hm(Vj) correspond-
ing to Vi and Vj respectively. By the first order approximation of Taylor series, the
difference between hmk(Vi) and hmk(Vj) is

hmk(Vi) − hmk(Vj) ≈ h′mk(Vj)(Vi − Vj). (7)

When Vi and Vj are similar to each other, they have a short distance d(Vi, Vj).
Then according to Eq. (7) hmk(Vi) and hmk(Vj) are close to each other and so is
the vector Hm(Vi) and Hm(Vj).

At the quantization stage the hash space is divided into non-overlapping squares,
whereHm(V) is quantized to a set ofN integer hash valuesHm(V), the center of the
squares. Two SUs falling in the same square have the same integer hash values. But
this quantization cannot well retain the distance between two SUs. Figure 2 shows
an example where N equals 2. d(Hm(Vi), Hm(Vj)) is less than the allowed error, but
neither of the integer hash values of the two SUs is the same. Hm(Vi) is quantized to
Hm(Vi) =(2,3) while Hm(Vj) is quantized to Hm(Vj) =(1,2). By careful observation
we can learn that the quantization error usually happens when both Hm(Vi) and
Hm(Vj) are near the edge of the squares. Even a little error near the edge will result
in an error up to N between two integer hash sets Hm(Vi) and Hm(Vj).

In Fig. 2 the SU feature Vi is a neighbor of Vj and the hash value Hm(Vi) is
located in the neighborhood C(Hm(Vj), r), a ball centered at Hm(Vj) with a radius
r. But Hm(Vi) and Hm(Vj) are located in different squares and result in a big

Fig. 2. Concept of soft mapping.

September 8, 2009 15:44 WSPC/214-IJSC - SPI-J091 00073

220 Y. Yu et al.

distance after quantization. Here each square corresponds to a bucket. It is obvious
that C(Hm(Vj), r) intersects several quantization squares simultaneously, including
the square whereHm(Vi) lies. Then with Vj as query and C(Hm(Vj), r) calculated in
advance, the buckets that possibly hold Vi can be easily found. From all the features
in these buckets, the ones located in C(Hm(Vj), r) are taken as the candidates. Then
the KNN algorithm is applied to the candidates to find the features that are actually
similar to Vj . Of course Vi will be one of the nearest neighbors.

3.3.2. Query with ELSM

Our first solution to the quantization problem is to utilize the ELSM feature
together with KNN instead of assigning SUs to buckets. Each song in the database
is processed as in Fig. 3. Its SU feature V is obtained by the regression discussed
in Sec. 3.2.2.

The mth hash instance has its own sets of N hash functions hmk(V) = (amk ·
V + bmk)/wmk (1 ≤ k ≤ N), which is determined by amk and bmk, the random
variables, and wmk, the quantization interval. By wmk, standard deviations of soft
hash values in different hash instances are made almost equal and the distribution
of hash vectors roughly spans a square in the Euclidean space. The hash set for the
SU feature V is Hm(V) = [hm1(V), hm2(V), . . . , hmN (V)] in the mth hash instance.
When there are L parallel hash instances, the hash vectors generated from the SU
feature V for all hash instances are H(V) = [H1(V), H2(V), . . . , HL(V)], which has
N · L dimensions. Since the mapping function hmk(·) is locality sensitive, the new
hash vector H(V) contains most of the information embedded in V .

H(V) can serve as a feature (ELSM) and be used together with KNN. With
the soft mapping value, it will not suffer quantization information loss. This scheme
can also be regarded as an ideal hash, where each bucket only contains the ELSM
features that are very similar to each other. When a query comes, its ELSM feature
locates the bucket that contains all the similar songs (which are the same as exhaus-
tive KNN). In such ideal cases the search accuracy is the same as where ELSM is
utilized together with the exhaustive KNN. Usually N ·L is much smaller than the

…

1 2 3
Feature

Summary Vi

D
im

en
si

on

Feature sequence

Time
Hash Value

Hm(Vi)

Hash table 1

…
..

Hash table L

…

L

…

…

1 2 3
Feature

Summary Vi

D
im

en
si

on

Feature sequence

Time
Hash Value

Hm(Vi)

Hash table 1

…
..

Hash table L

…

L

…

Fig. 3. Feature organization in the database.

September 8, 2009 15:44 WSPC/214-IJSC - SPI-J091 00073

Multi-Version Music Search 221

dimension of SU. Though it cannot provide a response as fast as SoftLSH, it is still
much faster than utilization of the SU feature directly. Meanwhile its search accu-
racy up bounds that of SoftLSH. With ELSM as the feature in the KNN search, we
can verify the effectiveness of locality sensitive mapping.

3.3.3. Query with SoftLSH

Our second solution to the quantization problem is to exploit the non-quantized
hash values (SoftLSH) to locate in a hash instance all the buckets that possibly
hold features similar to the query.

For the ith song with its SU feature Vi, in the mth hash instance its song
number i is stored in the bucket Hm(Vi). Its soft hash values corresponding to all
hash instances, H(Vi), are stored together in a separate buffer and utilized as the
ELSM feature. The residual part Hm(Vi)-Hm(Vi) reflects the uncertainty. This part
is usually neglected in all LSH indexing schemes. Fully exploiting this part facilitates
the accurate locating of the buckets that possibly contain the similar features.

In times of retrieval the SU of the query, Vq, is calculated. Its ELSM feature,
H(Vq) = [H1(Vq), H2(Vq), . . . , HL(Vq)], is also calculated. In the mth hash instance
the features similar to Vq will be located in the buckets that intersect the neigh-
borhood C(Hm(Vq), r). Due to the quantization effect the buckets are squares. Any
vertex of a bucket lying in the neighborhood will result in its intersection with the
neighborhood. An example is shown in Fig. 2 where N=2 and Vq = Vj .

Buckets in a hash instance are centered at a vector of integer hash values. Their
vertexes are the center plus or minus 0.5. Hm(Vq), the integer part of Hm(Vq),
indicates the bucket that most possibly contains similar features. Buckets near
Hm(Vq) also possibly contain features similar to the query. Vertexes of these buckets,
Hm(Vq) + (j1 ± 0.5, . . . , jN ± 0.5), are examined. For the vector (j1, . . . , jN) where
the vertexes falling in C(Hm(Vq), r), Hm(Vq) + (j1, . . . , jL) are the centers of the
buckets that possibly contain the similar features. Features falling in these buckets
are examined by KNN with the ELSM feature.

4. Experimental Evaluation

In Sec. 4.1 we introduce our experimental setup, including datasets, benchmark,
tasks and evaluation metrics. In Sec. 4.2 we evaluate the regression scheme and
find a group of optimal weights. In Sec. 4.3 and Sec. 4.4 we present the evaluation
results of the searching schemes by two tasks and give the corresponding analysis,
respectively.

4.1. Experiment setup

Datasets. Our music collection includes 5435 tracks that fall into five non-
overlapping datasets, as summarized in Table 3. In this table Trains80 is collected

September 8, 2009 15:44 WSPC/214-IJSC - SPI-J091 00073

222 Y. Yu et al.

Table 3. Datasets description.

Train set Evaluation set

Dataset Trains80 Covers79 ISMIR RADIO JPOP

#Tracks 160 1072 1458 1431 1314
Size 0.211GB 1.42GB 1.92GB 1.89GB 1.73GB

from our personal collections, and http://www.yyfc.com (a non-commercial amuse-
ment website where users can sing her/his favorite songs, make records online and
share them with friends). It consists of 80 pairs of tracks. 40 pairs each contain two
versions of the same song while each of the other 40 pairs contains different songs.
These 160 tracks are used to train the weights of the regression model proposed
in Sec. 3.2.2. Covers79 is also collected from http://www.yyfc.com and consists of
79 popular Chinese songs each represented in different versions (the same song sung
by different people). Each song has 13.5 versions on average resulting in a total of
1072 audio tracks. Figure 4 shows the distribution of these tracks in detail, the
histogram of the songs in terms of the number of their covers. For example, there
are 12 songs each having 11 covers.

0

4

8

12

5 7 9 11 13 15 17 19 21 23

Number of covers

N
um

be
r

of
 g

ro
up

s

Fig. 4. Distribution of audio cover tracks in Covers79.

RADIO is collected from http://www.shoutcast.com and ISMIR is taken
from http://ismir2004.ismir.net/genre contest/index.htm. JPOP (Japanese popu-
lar songs) is from our personal collections. Covers79, ISMIR, RADIO and JPOP
are used in the evaluation and altogether there are 5275 tracks and the last three
datasets are used as background audio files of simulation. Each track is 30s long in
mono-channel wave format, 16 bit per sample and the sampling rate is 22.05KHz.
The audio data is normalized and then divided into overlapped frames. Each frame
contains 1024 samples and the adjacent frames have 50% overlap. Each frame is
weighted by a hamming window and further appended with 1024 zeros. A 2048-
point FFT is used to calculate the STFT from which the instantaneous frequencies
are extracted and chroma is calculated. From the power spectrum pitch, MFCC
and Mel-magnitude are calculated. Then the features in Table 2 and SU in Eq. (2)
are calculated.

September 8, 2009 15:44 WSPC/214-IJSC - SPI-J091 00073

Multi-Version Music Search 223

Benchmark. The ground truth is set up according to human perception. We
have listened to all the tracks and manually labeled them so that retrieval results
of our algorithms correspond to human perception to support practical application.
Trains80 and Covers79 datasets are divided into groups according to their verses
(the main theme represented by the song lyrics) to judge whether tracks belong
to the same group or not (one group represents one song and different versions of
one song are members of this group). The 30 s segments in these two datasets are
extracted from verse sections of songs.

Tasks. By two tasks we demonstrate the performance of KNN, ELSM, LSH
and SoftLSH and their potential applications in query-by-audio music searching. All
schemes are based on the SU feature unless otherwise specified. KNN is an exhaus-
tive search while LSH represents quantization into hash buckets. KNN achieves
highest recall and precision (upper bound). LSH has the least retrieval time (low
bound). We hope our algorithms would approach KNN in recall and precision while
retaining almost the same retrieval time as LSH. Task 1 (Sec. 4.3) is mainly to
solve the problem of cover songs detection or near duplicate detection of audio
files similar to [2, 16, 18]. Task 2 (Sec. 4.4) is to solve the problem of query-by-
example/humming/singing similar to [1, 6, 21, 22].

Evaluation metrics. We select recall, precision, average precision, F-measure
and Mean Reciprocal Rank (MRR) as the evaluation metrics to compare four music
searching schemes over our datasets. When evaluating SU and Task 1, corresponding
to a single query there are multiple relevant items in the database. In such cases
recall, precision and F-measure are effective metrics [25]. On the other hand, in
Task 2, there is merely a single relevant item in the database corresponding to the
query. As a result MRR(1) is the best choice [26]. To maintain notional consistency
throughout experimental evaluation, an overview of evaluation metrics is given here.
Given a query q as musical audio input, Sq is the set of its relevant items in the
database. As a response to the query, the system outputs the retrieved set Kq in
a ranked list. Unless otherwise specified |Kq| equals |Sq| in the following. Recall,
precision, average precision, F-measure and MRR(1) are defined by the following
formulas respectively:

recall =
|Sq ∩Kq|

|Sq| , (8)

precision =
|Sq ∩Kq|

|Kq| , (9)

average precision =
1

|Sq ∩Kq|
|Sq∩Kq|∑

r=1

Pq(r), (10)

F-measure =
2 · recall · precision
precision + recall

, (11)

September 8, 2009 15:44 WSPC/214-IJSC - SPI-J091 00073

224 Y. Yu et al.

MRR(1) =
1
Nq

Nq∑

i=1

1
ranki(1)

, (12)

where |Sq ∩ Kq| is the number of relevant items found in the ranked output list,
Pq(r) is the precision achieved when the rth relevant document is retrieved, Nq is
the number of the total queries and ranki(1) corresponds to the order of the first
relevant item in the ranked list.

The experiments were run on a PC with an Intel Core2 CPU (2GHz) and 1GB
DRAM under Microsoft Windows XP Professional OS.

4.2. Optimal weights and SU superiority

First we train the weights in the SU feature by using the Trains80 dataset as
the ground truth. We selected 40 pairs of similar songs (each pair includes two
versions of the same song) and 40 pairs of non-similar songs (each pair includes
two different songs). Based on the idea of multivariable regression proposed in
Sec. 3.2.2, we get a group of weights (normalized so that their squared sum is 1) for
the seven feature sets, MFCC-mean (0.1900), MFCC-std (0.1489), Mel-magnitude-
mean (0.3416), Mel-magnitudes-std (0.2729), Chroma-mean (0.5396), Chroma-std
(0.3817), Pitch-histogram (0.5601). This SU is used in all following experiments.

Figure 5 compares the recall and average precision achieved by the individual
features based on an exhaustive search of the Covers79 dataset. (The simulation
setup is the same as that for Fig. 7 in Sec. 4.3, 1072 query tracks against the total
evaluation set with 5275 tracks.) For a comparison, the result of concatenating
feature vectors with equal weights is also given. It is only a little better than other
competitive feature sets but much inferior to SU. On the other hand, with an
optimal weight, SU has the best performance and can represent human perception
more effectively. However, SU’s recall is only 0.682. Note that a recall of 1 is hard to

0

0.2

0.4

0.6

0.8

1

R
ec

al
l/a

ve
ra

ge
 p

re
ci

si
on

recall aver precision

mean std
(MFCC)

mean std
(Mel magnitude)

mean std
(Chroma)

hist
(Pitch)

 SU
(Regress)

equal
weight

Fig. 5. Recall and average precision achieved by different features.

September 8, 2009 15:44 WSPC/214-IJSC - SPI-J091 00073

Multi-Version Music Search 225

0

0.2

0.4

0.6

0.8

1

1072 2503 3961 5275

R
ec

al
l

KNN ELSM

LSH SoftLSH

Fig. 6. Recall achieved at different database sizes.

achieve in a music audio search with compact audio feature representations even by
the exhaustive search due to the following factor: some perceptually similar tracks
have quite different features and result in quite large distances, which greatly affects
the retrieval of these tracks.

It is not easy to find a good acoustic feature summarization since perceptually
similar tracks (relevant tracks) sometimes have relative large distances in Euclidean
space. To check whether our musical audio summarization can effectively represent
music audio information in a complicated music background, we run SU summa-
rization via four search schemes (KNN, ELSM, LSH, and SoftLSH) over datasets
with different sizes. Figure 6 shows the effect of increasing datasets size. The
four databases contain Cover79 (1072), Cover79 & RADIO (1072 + 1431 = 2503),
Cover79 & RADIO & ISMIR (1072 + 1431 + 1458 = 3961), Cover79 & RADIO &
ISMIR &JPOP (1072+ 1431+ 1458+ 1314 = 5275), respectively. It is obvious that
the increase of datasets size has very little effect on the recall, which in turn con-
firms that the SU feature can effectively distinguish the (newly added) non-similar
songs.

4.3. Task 1 evaluation

Online query, one-query against multi-object. Dataset Covers79 is embedded
in the evaluation set with 5275 tracks (Covers79+ISMIR+RADIO+JPOP). The
whole evaluation set has a broad range of music genres (classical, electronic, metal,
rock, world, etc). With each track in the Covers79 used as a query we calculate
the ranked tracks similar to the query. Each query q chosen from Covers79 has its
relevant set size |Sq| (perceptually similar tracks), which is determined according
to Fig. 4. The average size of a query’s relevant set is 12.5 (on average each song in
Covers79 has 13.5 covers. When one cover is used as a query, the remaining covers
are in the database). The total number of relevant tracks can be calculated from
Fig. 4 (a theoretical maximum is 14452). Recall, average precision and F-measure
are used as evaluation measures in this task.

September 8, 2009 15:44 WSPC/214-IJSC - SPI-J091 00073

226 Y. Yu et al.

0

0.2

0.4

0.6

0.8

2 4 6 8 10 12 14
Number of hash instances

R
ec

al
l

KNN
ELSM
LSH
SoftLSH

Fig. 7. Recall under different numbers of hash instances |Kq| = |Sq|.

Figure 7 is the recall of the four schemes in question. Given the same feature
representation KNN is the golden standard and always performs best. LSH is always
inferior to the newly proposed schemes. When there are very few hash instances,
the ELSM feature has a low dimension and cannot well represent SU. As a result
the performance of ELSM and SoftLSH is poor compared to KNN. As the number
of hash instances increases from 2 to 6 the recall in both ELSM and SoftLSH
increases correspondingly and the curves of ELSM and SoftLSH approach the KNN
performance. The recall of SoftLSH is quite close to ELSM. This reflects that search
in the neighborhood of the query’s hash values has almost the same performance
as an exhaustive search. The gap between KNN and ELSM/SoftLSH also decreases
as more hash instances are used. The recall, however, does not increase linearly.
The slope of recall approaches 0 and a further increase in hash instances results
in diminishing returns. When the number of hash instances is greater than 10,
the gap between ELSM/SoftLSH and KNN is almost constant, which means that
the information loss due to utilizing a lower dimension feature cannot be salvaged
by an increase in hash instances. When there are 10 hash instances, among the
theoretically maximal 14452 relevant tracks KNN, ELSM, LSH and SoftLSH can
identify 68.2%, 63.3%, 44.5% and 62.5% respectively.

Figure 8 shows the average retrieval time for each query. The exhaustive KNN
always takes the longest time (0.0542s). Time consumption in the other three
schemes gradually increases as the number of hash instances does. Average retrieval
time of SoftLSH is about twice as much as LSH due to the search in multiple buck-
ets that intersect the query’s neighborhood. From Figs. 7–8 the tradeoff between
accuracy and retrieval time indicates that 10 hash instances are a suitable choice.
In such cases SoftLSH has a recall close to KNN and a retrieval time close to LSH.
The additional time saved by LSH would result in a significant drop in accuracy.
Therefore the number of hash instances is set to 10 in the following experiments of
this task.

September 8, 2009 15:44 WSPC/214-IJSC - SPI-J091 00073

Multi-Version Music Search 227

0

0.01

0.02

0.03

0.04

0.05

0.06

2 4 6 8 10 12 14
Number of hash instances

A
ve

ra
ge

 r
et

ri
ev

al
 t

im
e

(s
)

KNN
ELSM
LSH
SoftLSH

Fig. 8. Average retrieval time under different numbers of hash instances.

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50

Number of retrieved tracks

R
ec

al
l

KNN
ELSM
LSH
SoftLSH

Fig. 9. Recall at different number of retrieved tracks.

Figures 9–11 demonstrate recall, precision and F-measure scores of the four
schemes with respect to different numbers of retrieved tracks. It can be seen easily
that LSH always performs worst. KNN performs slightly better than ELSM and
SoftLSH at the cost of a much longer time to finish the search, as shown in Fig. 8.
Here we address the fact that when the number of the retrieved tracks is less than
that of the query’s covers in the database (|Kq| < |Sq|), an increase of the retrieved
tracks results in an almost linear increase of recall and a little decrease of precision.
Therefore F-measure increases quickly. When the number of retrieved tracks gets
greater than that of actual covers (|Kq| > |Sq|), the slopes of the recall curves in all
schemes become steady in Fig. 9. Increasing the retrieved tracks always results in a
decrease of precision in Fig. 10. In this experiment each query has an average number

September 8, 2009 15:44 WSPC/214-IJSC - SPI-J091 00073

228 Y. Yu et al.

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50

Number of retrieved tracks

Pr
ec

is
io

n

KNN

ELSM

LSH

SoftLSH

Fig. 10. Precision at different number of retrieved tracks.

0

0.2

0.4

0.6

0.8

0 10 20 30 40 50
Number of retrieved tracks

F-
m

ea
su

re

KNN
ELSM
LSH
SoftLSH

Fig. 11. F-measure at different numbers of retrieved tracks.

of 12.5 covers in the database. Coincidently in Fig. 11 the curves of KNN, ELSM
and SoftLSH reach the maximal F-measure score when the number of retrieved
tracks equals 12. This reflects that the SU feature is very effective in representing
the similarity of tracks in each group. The tracks in the same group that genuinely
have a short distance quickly appear in the returned list. Not-so-similar tracks
have a relatively large distance and too long a return list only results in a very
low precision and F-measure. It also confirms that SoftLSH is a good alternative
to KNN.

Figure 12 is the precision-recall curve achieved by adjusting the number of sys-
tem outputs. As expected at the same recall KNN always has the highest precision
and LSH has the lowest. Some of the perceptually similar tracks have quite different

September 8, 2009 15:44 WSPC/214-IJSC - SPI-J091 00073

Multi-Version Music Search 229

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Recall

Pr
ec

is
io

n

KNN

ELSM

LSH

SoftLSH

Fig. 12. Precision-recall curve (10 hash instances).

features and they can only be retrieved when KNN returns many tracks. Therefore
the precision of KNN decreases quickly when recall is around 0.7. The performance
of ELSM and SoftLSH approaches that of KNN, however, at the same precision they
have an absolute loss of about 0.04 in recall compared with KNN due to utilizing
a lower dimensional feature. Since the number of hash instances is fixed at 10 in
the experiment, some of the tracks cannot be retrieved by the LSH scheme at all.
Therefore the recall of LSH is upper bounded at 0.5 and a higher recall requires
many more hash instances in LSH compared with SoftLSH.

4.4. Task 2 evaluation

Batch queries, multi-query against one-object. From each of the 79 songs
in Covers79 one track is selected and altogether 79 tracks compose the ground
truth. ISMIR, RADIO and JPOP are added as noise datasets (the whole database
contains 79 + 1431 + 1458 + 1314 = 4282 tracks). Remaining tracks in Covers79
(1072 − 79 = 993) are used as queries and the top 20 retrieved tracks are analyzed
by default. Mean reciprocal rank (MRR(1)) and recall of the ground truth are
calculated as the evaluation metrics.

Figure 13 shows the effect of different database sizes. The three databases respec-
tively contain Cover79 (79), Cover79 & RADIO (79 + 1431 = 1510), Cover79 &
RADIO & ISMIR (79+1431+1458 = 2968), Cover79 & RADIO & ISMIR & JPOP
(79 + 1431 + 1458 + 1314 = 4282). It is obvious that the increase of database size
has very little effect on the MRR, which confirms that the SU set can effectively
distinguish the (newly added) non-similar tracks.

Figure 14 shows MRR(1) of the four schemes against different numbers of hash
instances. When there are only two hash instances, ELSM and SoftLSH perform as
poorly as LSH. ELSM and SoftLSH far outperform LSH when the number of hash
instances is greater than 3. Their performances approach KNN when the number
of hash instances is increased to 10. Table 4 shows the Top-1 and Top-20 recall

September 8, 2009 15:44 WSPC/214-IJSC - SPI-J091 00073

230 Y. Yu et al.

0

0.2

0.4

0.6

0.8

1

79 1510 2968 4282

M
R

R
(1

)

KNN ELSM

LSH SoftLSH

Fig. 13. MRR(1) at different database sizes.

0

0.2

0.4

0.6

0.8

1

2 4 6 8 10 12 14

Number of hash instances

M
R

R
(1

)

KNN
ELSM

LSH
SoftLSH

Fig. 14. MRR(1) at different number of hash instances.

Table 4. Top-1 and Top-20 recall.

10 Hash inst KNN ELSM SoftLSH LSH

Top-1 0.6354 0.5811 0.5771 0.4090
Top-20 0.7543 0.7402 0.7271 0.4703
Top20/Top1 1.1870 1.2738 1.2599 1.1474

achieved by the four schemes with 10 hash instances. We also list the ratio of recall
achieved at Top-20 to that achieved at Top-1. This shows that ELSM and SoftLSH
gain more benefit than KNN and LSH from the increase of the output, which means
that in the two former schemes more non-similar songs appear in the first place while
true covers appear behind. This is due to the following fact: KNN and LSH utilize
the high-dimension SU feature while ELSM and SoftLSH use the lower-dimension
ELSM feature. The dimension reduction loses some information, which affects the

September 8, 2009 15:44 WSPC/214-IJSC - SPI-J091 00073

Multi-Version Music Search 231

distinguishing capability of ELSM and SoftLSH. However, this reduction is not so
harmful when the dimension of ELSM is high enough, as reflected in Fig. 14.

4.5. Screenshot of demonstration system

Figure 15 illustrates our COSIN system for multi-version music searching, which is
developed in C++. From the left side, the features and similarity searching methods
can be selected. In this demo system, the query set consists of 79 groups with 1072
audio tracks (which is also embedded in the datasets). Any audio content in “Query
List” can be freely selected as a query to retrieve over the datasets with 5275 audio
tracks. Then the system gives an ordered list of the retrieval results in “Ranked
List”. The relevant audio tracks (which is decided by the number of group mem-
bers) are reported automatically with the best similarity audio track as the first.
Both queries and retrieval results can be played to confirm the correctness of search-
ing. This system not only retrieves relevant audio tracks from the datasets, but also
evaluates the performance of our approaches. In the current setting in Fig. 15 Fea-
ture “SFS”(Semantic Feature Summarization, i.e. SU), Similarity Searching “KNN”
and the fourth member of the fourth group in “Query List” are set up respectively.
In “Ranked List”, the retrieval results are ordered and the relevant audio tracks are
given in the list (amount “14” is also given) . The corresponding evaluation results
are shown at the upper right side. We can easily see that with the fourth varsion of
the song in group 4 as query input after searching over the datasets its best relevant
audio track “Song04-Version15” appears in the first position.

Fig. 15. Screenshot of COSIN DEMO.

September 8, 2009 15:44 WSPC/214-IJSC - SPI-J091 00073

232 Y. Yu et al.

5. Conclusion and Future Work

This work has focused on designing a scalable audio-based MIR system which
enables real-time response to the audio-content query. To improve the scalability of
audio-based MIR system we study both feature representations and indexing-based
techniques and arrange our approaches in three steps. 1) The principle of similarity-
invariance is applied to summarize audio feature sequences and utilized in training
semantic audio representations based on supervised learning. The proposed FU (and
its special implementation SU) better represents musical audio sequences. 2) Con-
sider possible difference between perceptually similar audio documents and map
the features into a continuous hash space (soft mapping). The neighborhood deter-
mined by the query will intersect buckets that possibly contain similar documents.
3) Extend our approaches to an MIR demonstration system that can implement
multi-version audio tracks detection and retrieval over a large audio song collection.

We would like to consider the following different conditions to start our future
work: (1) Music representation and approximate retrieval techniques are the key but
independent aspects in achieving scalability of audio-based MIR. It is easy to make
the proposed retrieval schemes applicable to other applications with a bit effort
(especially video, bio-informatics, e.g.). We plan to refine our soft locality sensitive
mapping and apply it to solve live video retrieval. (2) Information retrieval and
search play an important role in MIR field, however, the human computer interac-
tion aspects of MIR systems are often poorly designed. We further plan to explore
an interactive MIR framework involves several aspects, such as, the relationship
among system effectiveness, system efficiency, user’s performance and satisfaction.
(3) With the advent and popularity of commercial distribution of volumes of audio
information, a great account of music content is shared and exchanged over P2P
networks. Therefore it is necessary that distributed content-based search algorithms
be developed for a P2P environment. This will also be a part of our future work.

Acknowledgements

This work was supported by the Graduate Initiative Project of JSPS, a DoD grant
from the KIMCOE Center of Excellence, and the Andrew W. Mellon Foundation.

References

[1] B. Cui, J. Shen, G. Cong, H. Shen and C. Yu, Exploring composite acoustic features
for efficient music similarity query, in Proc. ACM MM’06, 2006, pp. 634–642.

[2] M. Robine, P. Hanna, P. Ferraro and J. Allali, Adaptation of string matching
algorithms for identification of near-duplicate music documents, in Proc. SIGIR
Workshop on Plagiarism Analysis, Authorship Identification, and Near-Duplicate
Detection, 2007.

[3] J. F. Serrano and J. M. Inesta, Music motive extraction through hanson intervallic
analysis, in Proc. CIC’06, 2006, pp. 154–160.

[4] I. Karydis, A. Nanopoulos, A. N. Papadopoulos and Y. Manolopoulos, Audio indexing
for efficient music information retrieval, in Proc. MMM’05, 2005, pp. 22–29.

September 8, 2009 15:44 WSPC/214-IJSC - SPI-J091 00073

Multi-Version Music Search 233

[5] W. H. Tsai, H. M. Yu and H. M. Wang, A query-by-example technique for retriev-
ing cover versions of popular songs with similar melodies, in Proc. ISMIR’05, 2005,
pp. 183–190.

[6] C. Yang, Efficient acoustic index for music retrieval with various degrees of similarity,
in Proc. ACM Multimedia, 2002, pp. 584–591.

[7] T. Pohle, M. Schedl, P. Knees and G. Widmer, Automatically adapting the structure
of audio similarity spaces, in Proc. 1st Workshop on Learning the Semantics of Audio
Signals (LSAS), 2006, pp. 66–75.

[8] N. C. Maddage, H. Li and M. S. Kankanhalli, Music structure based vector space
retrieval, in Proc. SIGIR’06, 2006, pp. 67–74.

[9] Q. Lv, W. Josephson, Z. Wang, M. Charikar and K. Li, Multiprobe LSH: efficient
indexing for high dimensional similarity search, in Proc. of the Very Large Data Base
(VLDB), 2007, pp. 950–961.

[10] N. Bertin and A. Cheveigne, Scalable metadata and quick retrieval of audio signals,
in Proc. ISMIR’05, 2005, pp. 238–244.

[11] P. Indyk and R. Motwani, Approximate nearest neighbor: towards removing the curse
of dimensionality, in Proc. 30th Annual ACM Symposium on Theory of Computing,
1998, pp. 604–613.

[12] J. Reiss, J. J. Aucouturier and M. Sandler, Efficient multi dimensional searching
routines for music information retrieval, in Proc. 2nd ISMIR, 2001.

[13] http://web.mit.edu/andoni/www/LSH/index.html LSH Algorithm and Implementa-
tion (E2LSH).

[14] R. Panigrahy, Entropy based nearest neighbor search in high dimensions, in Proc.
ACM-SIAM Symposium on Discrete Algorithms (SODA), 2006.

[15] M. Lesaffre and M. Leman, Using fuzzy to handle semantic descriptions of music in
a content-based retrieval system, in Proc. LSAS’06, 2006, pp. 43–52.

[16] J. P. Bello, Audio-based cover song retrieval using approximate chord sequences:
testing shifts, gaps, swaps and beats, in Proc. ISMIR’07, 2007, pp. 239–244.

[17] G. Tzanetakis and P. Cook, Musical genre classification of audio signals, IEEE Trans.
on Speech and Audio Processing 10(5) (2002) 293–302.

[18] D. Ellis and G. Poliner, Identifying cover songs with chroma features and dynamic
programming beat tracking, in Proc. ICASSP’07, 2007, pp. 1429–1432.

[19] R. Miotto and N. Orio, A methodology for the segmentation and identification of
music works, in Proc. ISMIR’07, 2007, pp. 239–244.

[20] L. Rabiner and B. H. Juang, Fundamentals of Speech Recognition (Prentice-Hall,
1993).

[21] www.midomi.com.
[22] M. Casey and M. Slaney, Song intersection by approximate nearest neighbor search,

in Proc. ISMIR’06, 2006, pp. 144–149.
[23] F. Moerchen, I. Mierswa and A. Ultsch, Understandable models of music collection

based on exhaustive feature generation with temporal statistics, in Proc. KDD’06,
2006, pp. 882–891.

[24] Y. Yu, K. Joe and J. S. Downie, Efficient query-by-content audio retrieval by locality
sensitive hashing and partial sequence comparison, IEICE Trans. on Information and
System E91-D(6) (2008) 1730–1739.

[25] http://en.wikipedia.org/wiki/Information retrieval.
[26] http://en.wikipedia.org/wiki/Mean reciprocal rank.
[27] J. Serra, E. Gomez, P. Herrera and X. Serra, Chroma binary similarity and local

alignment applied to cover song identification, IEEE Trans. on Audio, Speech and
Language Processing 16(6) (2008) 1138–1152.

September 8, 2009 15:44 WSPC/214-IJSC - SPI-J091 00073

234 Y. Yu et al.

[28] K. Kashino, G. Smith and H. Murase, Time-series active search for quick retrieval of
audio and video, in Proc. ICASSP’99, 1999, pp. 2993–2996.

[29] T. K. Vintsyuk, Speech discrimination by dynamic programming, Kibernetika 4(2)
(1968) 81–88.

[30] R. De Maesschalck, D. Jouan-Rimbaud and D. L. Massart, The Mahalanobis distance,
Chemometrics and Intelligent Laboratory Systems 50(1) (2000) 1–18.

