
Using Exact Locality Sensitive Mapping to Group and Detect Audio-Based
Cover Songs

Yi Yu+, J. Stephen Downie*, Fabian Moerchen**, Lei Chen++, Kazuki Joe+
+Department of Information and Computer Sciences, Nara Women's University
Kitauoya nishi-machi, Nara, 630-8506, Japan. {yuyi, joe}@ics.nara-wu.ac.jp

*Graduate School of Library and Information Science, University of Illinois at Urbana-
Champaign 501 E. Daniel St. Champaign, IL, 61820, USA. jdownie@uiuc.edu

**Siemens Corporate Research 755 College Road East Princeton NJ08540 USA.
fabian.moerchen@siemens.com

++Department of Computer Science, Hong Kong University of Science and Technology,
HKSAR, China. leichen@cs.ust.hk

Abstract

Cover song detection is becoming a very hot re-
search topic when plentiful personal music recordings
or performance are released on the Internet. A nice
cover song recognizer helps us group and detect cover
songs to improve the searching experience. The tradi-
tional detection is to match two musical audio se-
quences by exhaustive pairwise comparisons. Different
from the existing work, our aim is to generate a group
of concatenated feature sets based on regression mod-
eling and arrange them by indexing-based approxi-
mate techniques to avoid complicated audio sequence
comparisons. We mainly focus on using Exact Locality
Sensitive Mapping (ELSM) to join the concatenated
feature sets and soft hash values. Similarity-invariance
among audio sequence comparison is applied to define
an optimal combination of several audio features. Soft
hash values are pre-calculated to help locate search-
ing range more accurately. Furthermore, we imple-
ment our algorithms in analyzing the real audio cover
songs and grouping and detecting a batch of relevant
cover songs embedded in large audio datasets.

1. Introduction

Powerful Internet provides us an open space to
store and share with the world our music digital re-
cordings or performance. An increasing number of
people are joining the online-based music social com-
munities via the Internet to upload their audio re-
cordings or performance. Cover song is a new rendi-
tion of a previously recorded song in popular music

(see http://en.wikipedia.org/wiki/Cover_version). With
the personal recordings and performance increasing on
the music social website, unknown cover song detec-
tion is becoming extremely important. Through the
audio sequence comparison, an accurate audio-based
pairwise matching is usually obtained. However, fea-
ture extractor of musical audio sequence is very high
dimensional, which makes it time-consuming to
quickly detect relevant audio tracks. Solving this hard
problem involves two main aspects: (i) refining music
representation to improve the accuracy of musical se-
mantic similarity (pitch [5][22], Mel-Frequency Cep-
stral Coefficient (MFCC) [7], Chroma [19][21]) and
(ii) organizing music documents in the way that helps
speed up music similarity searching (trees structure
[1][4][13] hierarchical structure[10], Locality Sensitive
Hashing (LSH) [6][9]). Merely strengthening one point
is not enough. For example, in [21] beat-synchronous
Chroma features are successful for matching similar
music audio sequences. Unfortunately, one pairwise
comparison of feature sequences costs about 0.3 sec-
ond. This means it would take about 30s if the data-
base length is 100.

We pay attention to the above addressed aspects to
solve audio-based cover song detection and retrieval:
accurately locate the searching range of music audio
tracks with the concatenated feature sets via exact lo-
cality sensitive mapping. A novel melody-based sum-
marization principle is presented to determine a group
of weights that define an optimal combination of sev-
eral audio features, Features Union (FU), by using
multivariable regression. In addition, we study the re-
lationship between FU summarization and hash values

Tenth IEEE International Symposium on Multimedia

978-0-7695-3454-1/08 $25.00 © 2008 IEEE

DOI 10.1109/ISM.2008.18

302

and propose two retrieval schemes called Exact Local-
ity Sensitive Mapping (ELSM) and SoftLSH. We con-
firm the practicality of our algorithms with real world
multi-cover-version queries over the large musical
audio datasets. Interesting examples of cover songs can
be found and listened at http://www.e.ics.nara-wu.ac.jp
/~yuyi/AudioExamples.htm.

2. Related work

To efficiently accelerate audio-based content detec-
tion, some researchers applied index-based techniques
[1][4][6]. In [1] a composite feature tree (semantic
features, such as timbre, rhythm, pitch, e.g.) was pro-
posed to facilitate KNN search. The weight of each
individual feature is determined by multivariable re-
gression. Principle Component Analysis (PCA) is used
to transform the extracted feature sequence into a new
space sorted by the importance of acoustic features. In
[4] the extracted features (Discrete Fourier Transform)
are grouped by Minimum Bounding Rectangles
(MBR) and compared with an R*-tree. Though the
number of features can be reduced, sometimes the
summarized (grouped) features may not sufficiently
discriminate two different signals.

LSH [11] is an index-based data organization struc-
ture proposed to find all similar pairs of a query point
in the Euclidean space. It has gained great success in
different applications as a well-known solution to de-
termine whether any pair of documents are similar or
not (web page [12], audio [6][9], image [15], video
[14], etc.). Feature vectors are extracted from docu-
ment and regarded as similar to one another if they are
mapped to the same hash value. Yang used random
sub-set of the spectral features (Short Time Fourier
Transform) to calculate hash values for the parallel
LSH hash instances in [6]. With a query as input, its
features match reference features from hash tables.
Then Hough transformation is performed on these
matching pairs to detect the similarity between the
query and each reference song by the linearity filtering.
In [9] MFCC is extracted as the feature from single
speech word. Based on basic LSH idea they proposed
multi-probe LSH, which can probe multiple buckets
that are probable to contain the content similar to query.

LSH scheme is described as follow. If two features
(,)q iV V are very similar they will have a small distance

q iV V− , hash to the same value and fall into the same
bucket with a high probability. If they are quite differ-
ent they will collide with a small probability. A func-
tion family { }h: S UH = → 　, each h mapping one point
from domain S to U, is called locality sensitive, if for
any features qV and iV , the probability

[]() () () :
rH q i q iProb t P h V h V V V t= = − = (1)

is a strictly decreasing function of t. That is, the colli-
sion probability of features qV and iV is diminishing as
their distance increases. The family H is further called
()1 2

, , ,R cR p p (2 1
1,c p p> <) sensitive if for any

,q iV V S∈ ,

1

2

|| || , [() ()]

|| || , [() ()]

rH

rH

q i q i

q i q i

if V V R P h V h V p

if V V cR P h V h V p

− < = ≥

− > = ≤
 (2)

A good family of hash functions will try to amplify
the gap between 1p and 2p .

There is a significant shortcoming in existing works
[1][4][6][9]. No analysis was done to investigate
whether the used features can completely or maximally
represent the original melody characteristics and have
the capability in distinguishing two audio feature se-
quences. Also, there was no evaluation of the retrieval
quality according to a natural benchmark (human per-
ception). In this work we study the correlation between
audio feature sets and soft hash/mapping values by
using exhaustive musical audio sequence comparisons
to predict desired but unseen music songs, and give
some simple principles to evaluate melody-based mu-
sic retrieval. In contrast to the existing works, our
work has two advantages: (i). Similarity-invariance
among audio feature sequence comparisons is applied
in training semantic audio representations based on
supervised learning. The proposed Features Union
(FU) better represents musical audio sequences. (ii).
We consider possible difference between perceptually
similar audio documents and map the feature into con-
tinuous hash space (soft mapping). The neighborhood
determined by the query will intersect buckets that
possibly contain the similar documents. In comparison
with the exhaustive KNN and previously used LSH
retrieval schemes our algorithms achieve almost the
same retrieval quality as KNN but with much less re-
trieval time.

3. Algorithms

In this section our algorithms include two main
parts: spectrum-based audio semantic summarization
and soft-hashing-based information retrieval. We re-
veal a principle of spectral-based similarity-invariance,
by which we can summarize long audio feature se-
quences and generate a compact and semantic single
feature FU. Instead of traditional hard hash values we
assume a group of soft hash values and use exact local-
ity sensitive mapping, which help to locate searching
range more accurately. Associated with FU two re-
trieval schemes are proposed to solve the problem of
cover song detection.

303

3.1. Spectrum-based features union

Audio documents can be described as time-series
feature sequences. Directly computing the distance
between audio feature sequences (matching audio
documents) is an important task in implementing
query-by-content audio information retrieval. Dynamic
Programming (DP) [5][19] can be used in matching
two audio feature sequences and is an essentially ex-
haustive searching approach (which offers high accu-
racy). But it lacks scalability and results in a lower
retrieval speed as the database gets larger. To quicken
the audio feature sequence comparison and obtain the
scalable content-based retrieval, semantic features are
extracted from the audio structures. The semantic fea-
tures (high-level) used in [1] are mainly proposed for
musical genre classification [20] and can not effec-
tively represent melody-based lower-level music in-
formation. In the following section we propose a new
semantic feature summarization suitable for melody-
based music information.

A single feature can not well summarize a song.
Multiple features can be combined to represent a song.
These features play different roles in the query stage
and must be weighed by different weights. Existing
retrieval schemes have selected different audio features.
We choose several competitive audio features and in-
troduce a scheme based on multivariable regression to
determine the weight for each feature. The goal of our
approach is to apply linear and non-parametric regres-
sion models to investigate the correlation. In the model
we use K (K=7) groups of features (218-dimension):
Mean and Std of MFCC (13+13) [7], Mean and Std of
Mel-Magnitudes (40+40) [8], Mean and Std of Chroma
(12+12) [21], Pitch Histogram (88) [5].

Let the groups of features of mith song be
,1 ,2 ,, , ...,mi mi mi Kv v v (i=1,2). With different weight kα

assigned to each feature group the total summary vec-
tor is

1 ,1 2 , 2 ,
[, , ...,]T

mi mi mi K mi K
V v v vα α α= (3)

The Euclidean distance between two features 1m
V and

2m
V is

2

1 2 1, 2, 1, 2,

1 1 1

(,) (,) (,)
K K K

m m k m k k m k k m k m k

k k k

d V V d v v d v vα α α
= = =

= =∑ ∑ ∑ (4)

To determine the weight in Eq.(3), we apply multivari-
able regression process. Consider a training database
composed of M pairs of songs 1 2

, , 1, 2, ...,
m m

R R m M< > = ,
which contain both similar pairs and non-similar pairs.
From these pairs we obtain the sequences of Chroma
similar to [21] and then calculate M sequence distances

1 2
(,)

DP m m
d R R via DP.

We will choose the weight in Eq.(3) so that the dis-
tance 1 2

(,)
m m

d V V , calculated by the summary, is as near
to the sequence distance 1 2

(,)
DP m m

d R R as possible, i.e.,
we hope the melody information is contained in the
summary. After we determine the distance between the
pairs of training data, we get a M*K matrix V

D and a
M-dimension column vector DP

D . The mth row of V
D

has K distance values calculated from independent
features 1, 2 ,

(,), 1, 2, ...,
m k m k

d v v k K= and the mth element
of DP

D is the normalized distance between the two fea-
ture sequences 1 2 1 2

(,) /(| | | |)
DP m m m m

d R R K R R⋅ ⋅ . Let
2 2 2

1 2
[, , ,]

T

K
A α α α= " . According to Eq.(4) V

D , A and
DP

D satisfies the equation V
D A⋅ = DP

D Then
1

()
T T

V V V DP
A D D D D

−

= and we obtain the weight kα . We
are only interested in the absolute value of kα . The
feature set defined in Eq.(3) is call features union (FU).

3.2. Exact locality sensitive hashing/mapping

Almost all the hash schemes, including LSH, use
hard (discrete) integer hash values. In LSH a FU i

V is
locality-sensitively mapped to ()

i
H V , which is further

quantized to integer hash value () (())
i i

H V round H V=
(()round x is the nearest integer of x). Two FUs (i

V
and j

V) with a short distance ((,)
i j

d V V) have the same
integer hash value (() ()

i j
H V H V=) with a high prob-

ability. By assigning integer hash values to buckets,
the songs located in the same bucket as the query can
be found quickly.

However even if two similar FUs i
V and j

V have a
short distance (,)i jd V V , it is not always guaranteed
that they have the same hash values due to the map-
ping and quantization errors. When a vector of N hash
values instead of a single hash value is used to locate a
bucket the precision can be improved and the effect of
quantization error gets more obvious. To find a similar
song from the database with a specific query, multiple
parallel and independent hash instances are necessary,
which in turn takes more time and requires more space.

Our solution to the above problem is to exploit the
continuous non-quantized hash values with two
schemes, Exact Locality Sensitive Mapping (ELSM)
and SoftLSH.

3.2.1 SoftLSH

We assume the search-by-hash system has L paral-
lel hash instances and each hash instance has a group
of N locality sensitive mapping functions. In the mth
hash instance the function group is 1 2

{ , , ..., }
m m m mN

H h h h= .
Its kth function ()mkh ⋅ maps an FU feature V to a con-
tinuous non-quantized hash value ()

mk
h V . After map-

ping, the hash vector in the mth hash instance corre-
sponding to V is 1 2

() { (), (), ..., ()}
m m m mN

H V h V h V h V= .

304

Consider the kth dimension of the hash vectors ()
m i

H V
and ()

m j
H V corresponding to i

V and j
V respectively.

By the first order approximation of Taylor series, the
difference between ()

mk i
h V and ()

mk j
h V is

() () ()()
mk i mk j mk j i j

h V h V h V V V′− ≈ − (5)
When i

V and j
V are similar to each other, they have a

short distance (,)
i j

d V V . Then according to Eq.(5)
()

mk i
h V and ()

mk j
h V are close to each other and so is the

vector ()
m i

H V and ()
m j

H V .
At the quantization stage the hash space is divided

into non-overlapping squares, where ()
m

H V is quan-
tized to a set of N integer hash values ()

m
H V , the cen-

ter of the squares. Two FUs falling in the same square
have the same integer hash values. But this quantiza-
tion can not well retain the distance between two FUs.
Figure 1 shows an example where N equals 2.

((), ())
m i m j

d H V H V is less than the allowed error, but
neither of the integer hash values of the two FUs is the
same. ()

m i
H V is quantized to ()

m i
H V =(2,3) while

()
m j

H V is quantized to ()
m j

H V =(1,2). By careful ob-
servation we can learn that the quantization error usu-
ally happens when both ()

m i
H V and ()

m j
H V are near the

edge of the squares. Even a little error near the edge
will result in an error up to N between two integer hash
set ()

m i
H V and ()

m j
H V .

hm1=1 hm1=2 hm1=3

hm2=1

hm2=2

hm2=3

Vi

Vj

()m jH V

()m iH V

()m iH V
()m jH V

hm1=1 hm1=2 hm1=3

hm2=1

hm2=2

hm2=3

Vi

Vj

()m jH V

()m iH V

()m iH V
()m jH V

Figure 1 Concept of Soft LSH.

In Figure 1 the FU feature i
V is a neighbor of j

V
and the hash value ()

m i
H V is located in the neighbor-

hood C(Hm(Vj), r), a ball centered at ()
m j

H V with a
radius r . But ()

m i
H V and ()

m j
H V are located in differ-

ent squares and result in a big distance after quantiza-
tion. Here each square corresponds to a bucket. It is
obvious that C(Hm(Vj), r) intersects several quantiza-
tion squares simultaneously, including the square
where ()

m i
H V lies. Then with j

V as query and C(Hm(Vj),
r) calculated in advance, the buckets that possibly hold

i
V can be easily found. From all the features in these
buckets, the ones located in C(Hm(Vj), r) are taken as
the candidates. Then the KNN algorithm is applied to

the candidates to find the features that are actually
similar to j

V . Of course i
V will be one of the nearest

neighbors.

3.2.2 Query with ELSM

Our first solution to the quantization problem is to

utilize the ELSM feature together with KNN instead of
assigning FUs to buckets.

…

1 2 3
Feature

Summary Vi

D
im

en
si

on

Feature sequence

Time

Hash value
Hm(Vi)

Hash instance

…

1 2 3
Feature

Summary Vi

D
im

en
si

on

Feature sequence

Time

Hash value
Hm(Vi)

Hash instance

Figure 2 Feature organization in the database.

Each song in the database is processed as in Figure
2. Its FU feature V is obtained by the regression model.
The mth hash instance has its own sets of N hash func-
tions () () /

mk mk mk mk
h V a V b w= ⋅ + (1≤k≤N), which is

determined by amk and bmk, the random variables, and
wmk, the quantization interval. By wmk, standard devia-
tions of soft hash values in different hash instances are
made almost equal and the distribution of hash vectors
roughly spans a square in the Euclidean space. The
hash set for the summarized semantic FU feature V is

1 2
() [(), (), ..., ()]

m m m mN
H V h V h V h V= in the mth hash instance.
When there are L parallel hash instances, the hash vec-
tors generated from the FU feature V for all hash in-
stances are 1 2

() [(), (), ..., ()]
L

H V H V H V H V= , which
has N*L dimensions. Since the mapping function ()

mk
h ⋅

is locality sensitive, the new hash vector ()H V con-
tains most of the information embedded in V.

()H V can serve as a feature (ELSM) and be used
together with KNN. With the soft mapping value, it
will not suffer quantization information loss. This
scheme can also be regarded as an ideal hash, where
each bucket only contains the ELSM features that are
very similar to each other. When a query comes, its
ELSM feature locates the bucket that contains all the
similar songs (which are the same as exhaustive KNN).
In such ideal cases the search accuracy is the same as
where ELSM is utilized together with the exhaustive
KNN. Usually N*L is much smaller than the dimension
of FU. Though it can not provide a response as fast as
SoftLSH, it is still much faster than utilization of the
FU feature directly. Meanwhile its search accuracy up
bounds that of SoftLSH. With ELSM as the feature in
the KNN search, we can verify the effectiveness of
locality sensitive mapping.

305

3.2.3 Query with SoftLSH

Our second solution to the quantization problem is

to exploit the non-quantized hash values (SoftLSH) to
locate in a hash instance all the buckets that possibly
hold features similar to the query.

For the ith song with its FU feature Vi, in the mth
hash instance its sequence number i is stored in the
bucket ()

m i
H V . Its soft hash values corresponding to

all hash instances, ()
i

H V , are stored together in a sepa-
rate buffer and utilized as the ELSM feature. The re-
sidual part ()

m i
H V - ()

m i
H V reflects the uncertainty. This

part is usually neglected in all LSH indexing schemes.
Fully exploiting this part facilitates the accurate locat-
ing of the buckets that possibly contain the similar
features. In times of retrieval the FU of the query, qV ,
is calculated. In this way its ELSM feature,

1 2
() [(), (), ..., ()]

q q q L q
H V H V H V H V= , is also calculated.
In the mth hash instance the features similar to q

V will
be located in the buckets that intersect the neighbor-
hood ((),)

m q
C H V r . Due to the quantization effect the

buckets are squares. Any vertex of a bucket lying in
the neighborhood will result in its intersection with the
neighborhood.

Buckets in a hash instance are centered at a vector
of integer hash values. Their vertexes are the center
plus or minus 0.5. ()

m q
H V , the integer part of ()

m q
H V ,

indicates the bucket that most possibly contains similar
features. The buckets near ()

m q
H V also possibly con-

tain features similar to the query. Vertexes of these
buckets, 1

() (0.5, ..., 0.5)
m q N

H V j j+ ± ± , are examined.
For the vector 1(...,), Nj j where the vertexes falling in

((),)
m q

C H V r , 1
() (, ...,)

m q L
H V j j+ are the centers of the

buckets that possibly contain the similar features. Fea-
tures falling in these buckets are examined by KNN
with the ELSM feature.

3.2.4 Summary

The original concept of LSH [11] was introduced

in section 2. In E2LSH [16] a high-dimensional feature
vector is first projected to sub-feature space by a group
of locality sensitive functions. Then hash values are
calculated from the sub-features. ELSM is similar to
the first half of E2LSH. However, in ELSM the sub-
feature vector is not calculated to obtain hash values.
They are directly used as new features to perform ex-
haustive KNN searching. The ELSM feature is logi-
cally related to the number of hash instances. However,
the ELSM feature is not mapped to the integer hash
values. We also propose a SoftLSH scheme as a varia-
tion of LSH. It quantizes the ELSM feature into integer
hash values and utilizes the ELSM feature to accu-
rately locate the searching region.

All the LSH members solve Approximate Nearest
Neighbors problem in a Euclidean space. E2LSH [16]
enhances LSH to make it more efficient for the re-
trieval with the very high dimensional feature. It per-
forms locality sensitive dimension reduction to get the
projection of the feature in different low-dimension
sub-spaces. With multiple hash tables in parallel, the
retrieval accuracy can be guaranteed meanwhile the
retrieval speed is accelerated. Panigraphy [17] consid-
ered the distance d(p,q) between the query q and its
nearest neighbor p in the query stage of the LSH
scheme. By selecting a random point p’ at a distance
d(p,q) from q and checking the bucket that p’ is hashed
to, the entropy-based LSH scheme ensures that all the
buckets which contain p with a high probability are
probed. An improvement of this scheme by multi-
probe was proposed in [9], where minor adjustment of
the integer hash values are conducted to find the buck-
ets that may contain the point p. According to Eq.(5)
when the feature summary of two tracks are similar to
each other, their non-quantized hash values will also be
similar to each other. Instead of probing, our SoftLSH
scheme utilizes the ELSM feature to accurately locate
all the buckets that intersect the neighborhood deter-
mined by the query.

4. Experimental setup

Our music collection includes 5275 tracks that fall
into five non-overlapping datasets. Trains80 is col-
lected from www.yyfc.com (a non-commercial amuse-
ment website where users can sing her/his favorite
songs, make records online, and share them with
friends) and our personal collections. It consists of 80
pairs of tracks. 40 pairs each contain two versions of
the same song while each of the other 40 pairs contains
different songs. These 160 tracks are used to train the
weights of regression model proposed in section 3.1.
Covers79 is also collected from www.yyfc.com and
consists of 79 popular Chinese songs each represented
in different versions (sung by different people with
similar background music). Each song has 13.5
versions on the average resulting in a total of 1072
audio tracks.

RADIO is from www.shoutcast.com and ISMIR is
collected from http://ismir2004.ismir.net/genre_contest.
JPOP (Japanese popular songs) is from our personal
collections. Covers79, ISMIR, RADIO and JPOP are
used in the evaluation and altogether there are 5275
tracks and the last three Datasets are used as back-
ground audio files of simulation. Each track is 30s long
in mono-channel wave format, 16bit per sample and
the sampling rate is 22.05KHz. The audio data is nor-

306

malized and then divided into overlapped frames. Each
frame contains 1024 samples and the adjacent frames
have 50% overlap. Each frame is weighed by a ham-
ming window and further appended with 1024 zeros to
fit the length of FFT (2048 point). From FFT result the
instantaneous frequencies are extracted and Chroma is
calculated. From the amplitude spectrum pitch, MFCC
and Mel-magnitude are calculated. Then the summary
is calculated from all frames.

The ground truth is set up according to human per-
ception. We have listened to all the songs and manu-
ally labeled them so that retrieval results of our algo-
rithms correspond to human perception to support
practical application. Trains80 and Covers79 datasets
were divided into groups according to their verse (the
main theme represented by the song lyrics) to judge
whether tracks belong to the same group or not (one
group represents one song and different versions of
one song are members in this group). The 30s seg-
ments in these two datasets are extracted from verse
sections of songs.

5. Evaluation

In this section we present the performance evalua-
tion of the searching schemes, KNN, ELSM, LSH and
SoftLSH, and give the corresponding analysis and
demonstrate their potential applications in query-by-
content musical audio retrieval. All schemes are based
on the FU feature. KNN is an exhaustive search while
LSH represents quantization into hash buckets KNN
achieves highest recall and precision (upper bound).
LSH has the least retrieval time (lower bound). We
hope our algorithms would approach KNN in the per-
formance while retaining almost the same retrieval
time as LSH. Our task is mainly to solve the problem
of cover songs detection or near duplicate detection of
audio files similar to [2][5][19][21]. Our methods can
be extended to solve the query-by-example audio-
based retrieval problems.

Dataset Covers79 is embedded in the evaluation set
with 5275 tracks (Covers79+ISMIR+RADIO +JPOP).
The whole evaluation set has a broad range of music
genres (classical, electronic, metal, rock, world, etc.).
With each track in the Covers79 as the query in turn
we would calculate the ranked tracks similar to the
query. Each query q chosen from Covers79 has its
relevant set

q
S (perceptually similar songs), which is

determined according to the number of audio cover
tracks in each group. The average size of query’s rele-
vant set is 12.5 (on the average each song in Coves79
has 13.5 covers. When one cover is used as query, the
rest covers are in the database). The total number of
relevant items can be calculated from each group (a

theoretical maximum is 14452). The retrieval system
also outputs the retrieved set q

K . To evaluate perform-
ance of the algorithms, in our experiment recall and
precision are respectively defined as | | / | |

q q q
S K S∩

and | | / | |
q q q

S K K∩ , and also F-measure is defined as
()2 /recall precision precision recall⋅ ⋅ + .

0

0.2

0.4

0.6

0.8

2 4 6 8 10 12 14
Number of hash instances

R
ec

al
l

KNN
ELSM
LSH
SoftLSH

Figure 3 Recall under different number of hash in-

stances.

0

0.01

0.02

0.03

0.04

0.05

0.06

2 4 6 8 10 12 14
Number of hash instances

A
ve

ra
ge

 re
tri

ev
al

 ti
m

e
(s

)
KNN
ELSM
LSH
SoftLSH

Figure 4 Average retrieval time under different number
of hash instances.

Figure 3 is the recall of the four schemes in ques-
tion. KNN is the golden standard given this feature
representation and always performs best. LSH is al-
ways inferior to the new proposed schemes. When
there are very few hash instances, ELSM feature has a
low dimension and can not well represent FU. As a
result the performance of ELSM and SoftLSH is poor
compared to KNN. As the number of hash instances
increases from 2 to 6 the recall in both ELSM and
SoftLSH increases correspondingly and the curves of
ELSM and SoftLSH are approaching the KNN per-
formance. The recall of SoftLSH is quite close to
ELSM. This reflects that search in the neighborhood of
the query’s hash values has almost the same perform-
ance as an exhaustive search. The gap between KNN
and ELSM/SoftLSH also decreases as more hash in-
stances are used. The recall, however, does not in-
crease linearly. The slope of recall approaches 0 and
further increase of hash instances results in diminish-
ing returns. When the number of hash instances is

307

greater than 10, the gap between ELSM/SoftLSH and
KNN is almost constant, which means that the infor-
mation loss due to utilizing a lower dimension feature
can not be salvaged by the increase of hash instances.
When there are 10 hash instances, 0.682*14452 can be
identified with KNN, 0.633*14452 are identified with
ELSM, 0.445*14452 are identified with LSH and
0.625*14452 are identified with SoftLSH.

Figure 4 shows the average retrieval time for each
query. The exhaustive KNN always takes the longest
time (0.542s). Time consumption in the other three
schemes gradually increases as the number of hash
instances does. Average retrieval time of SoftLSH is
about double as much as LSH due to the search in mul-
tiple buckets that intersect the query’s neighborhood.
From Figure 3 and Figure 4 the tradeoff among accu-
racy and time indicates that 10 hash instances are a
suitable choice. In such cases SoftLSH has a recall
close to KNN with a much less retrieval time. The ad-
ditional time saved by LSH would result in a signifi-
cant drop of accuracy. Therefore the number of hash
table is set to 10 in the following experiments.

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Recall

Pr
ec

is
io

n

KNN
ELSM
LSH
SoftLSH

Figure 5 Precision-recall curve (10 hash instances).

0

0.2

0.4

0.6

0.8

0 10 20 30 40 50
Number of retrieved tracks

F-
m

ea
su

re

KNN
ELSM
LSH
SoftLSH

Figure 6 F-measure at different number of re-

trieved tracks.

Figure 5 is the precision-recall curve achieved by
adjusting the number of system outputs. As expected at
the same recall KNN always has the highest precision
and LSH has the lowest precision. Some of the percep-
tually similar tracks have quite different features and

they can only be retrieved when KNN returns many
tracks. Therefore the precision of KNN decreases
quickly when recall is around 0.7. ELSM and SoftLSH
have a performance approaching that of KNN. But at
the same precision they have a loss of about 4% in
recall compared with KNN due to utilizing a lower
dimensional feature. The number of hash instances is
fixed at 10 in the experiment. Some of the tracks can
not be retrieved by the LSH scheme at all. Its recall is
upper bounded at 0.5 and a higher recall requires much
more hash instances in LSH compared with SoftLSH.

Figure 6 demonstrates F-measure scores of the four
schemes with respect to different number of retrieved
tracks. It can be seen easily that the LSH always per-
forms worst. KNN performs slightly better than ELSM
and SoftLSH at the cost of a much longer time to fin-
ish the search, as shown in Figure 4. Here we would
address that when the number of the retrieved tracks is
less than that of the query’s covers in the database, an
increase of the retrieved tracks results in an almost
linear increase of recall and a little decrease of preci-
sion. Therefore F-measure increases quickly. When the
number of retrieved tracks gets larger than the actual
tracks, the slopes of the recall curves in all schemes
become steady while increasing the retrieved tracks
always results in a decrease of precision. In this ex-
periment each query has an average number of 12.5
covers in the database. Coincidently in Figure 6 the
curves of KNN, ELSM and SoftLSH reach the maxi-
mal F-measure score when the number of returned
songs equal 12. This reflects that the FU feature is very
effective in representing the similarity of tracks in each
group. The tracks belonging to the same group that
really have a short distance quickly appear in the re-
turned list. Not-so-similar tracks have a relatively large
distance and too many retrieved tracks only result in a
very low precision and F-measure. It also confirms the
SoftLSH is a good alternative to KNN.

6. Conclusion

Both the representation and organization of audio
files play important roles in audio content detection. In
this paper we have considered both the semantic sum-
marization of audio documents and the hash-based
approximate retrieval for the purpose of reducing re-
trieval time and improving retrieval quality. By a new
principle of similarity-invariance, a concise audio fea-
ture representation (FU) is generated based on multi-
variable regression. Associated with the FU, variants
of LSH (ELSM and SoftLSH) are proposed. Different
from the conventional LSH schemes, soft hash values
are exploited to accurately locate the searching region

308

and improve the retrieval quality without requiring
many hash instances. It is easy to make the proposed
retrieval schemes applicable to other applications with
a bit effort (especially video, bio-informatics, e,g.).

We experimentally show the efficacy of our algo-
rithms via evaluation on ‘multi-versions’ music covers
datasets, adopting human perception as a quality meas-
ure. As expected our results demonstrate that (i) the
FU feature is a good summary of audio sequence (ii)
SoftLSH achieves a better balance between retrieval
time and accuracy than conventional LSH and KNN.
This work remains the room to be improved. In the
future we will study semantic features that better rep-
resent melody information and other training models
that best combine feature groups.

Acknowledgment

We thank Initiative Project of Nara Women’s Univer-
sity for supporting the first author to visit IMIRSEL,
where this work was partly discussed in summer, 2007.
The second author was supported by the Andrew W.
Mellon and national Science Foundation (NSF) under
Nos. IIS-0340597 IIS-0327371.

References

[1] B. Cui, J. Shen, G. Cong, H. Shen, C. Yu. Exploring
Composite Acoustic Features for Efficient Music Similarity
Query, ACM MM’06, pp.634-642, 2006.

[2] M. Robine, P. Hanna, P. Ferraro and J. Allali. Adapta-
tion of String Matching Algorithms for Identification of
Near-Duplicate Music Documents, SIGIR Workshop on
Plagiarism Analysis, Authorship Identification, and Near-
Duplicate Detection, 2007.

[3] J. F. Serrano J. M. Inesta. Music Motive Extraction
through Hanson Intervallic Analysis. CIC’06, pp.154-160,
2006.

[4] I. Karydis, A. Nanopoulos, A. N. Papadopoulos and Y.
Manolopoulos, “Audio Indexing for Efficient Music Infor-
mation Retrieval”, MMM’05, pp.22-29, 2005.

[5] W. H. Tsai, H. M. Yu and H. M. Wang, “A Query-by-
Example Technique for Retrieving Cover versions of Popular
Songs with Similar Melodies”, pp.183-190, ISMIR2005.

[6] C.Yang, “Efficient Acoustic Index for Music Retrieval
with Various Degrees of Similarity”, ACM Multimedia,
pp.584-591, 2002.

[7] T. Pohle, M. Schedl, P. Knees, and G. Widmer. Auto-
matically Adapting the Structure of Audio Similarity Spaces.

Proceedings of the 1st Workshop on Learning the Semantics
of Audio Signals (LSAS), pp.66-75, 2006.

[8] L.Rabiner and B.-H. Juang. Fundamentals of Speech
Recognition. Prentice-Hall, 1993.

[9] Q. Lv , W. Josephson, Z. Wang, M. Charikar, K. Li,
“MultiProbe LSH: Efficient Indexing for High Dimensional
Similarity Search”, In Proc. of the Very Large Data Base
(VLDB), pp.950-961, 2007.

[10] N. Bertin, A. Cheveigne, “Scalable Metadata and Quick
Retrieval of Audio Signals”, ISMIR 2005, pp.238-244, 2005.

[11] P. Indyk and R. Motwani. Approximate Nearest
Neighbor: Towards Removing the Curse of Dimensionality.
In Proc. of the 30th Annual ACM Symposium on Theory of
Computing, pp.604–613, 1998.

[12] M. Henzinger. Finding Near-Duplicate Web Pages: a
Large-Scale Evaluation of Algorithms. In Proc. of the 29th
conference on research and development in IR, 2006.

[13] J. Reiss, J. J. Aucouturier and M. Sandler, “Efficient
multi dimensional searching routines for music information
retrieval”, 2nd ISMIR, 2001.

[14] S. Hu, “Efficient Video Retrieval by Locality Sensitive
Hashing”, ICASSP 2005, pp.449-452, 2005.

[15] P. Indyk and N. Thaper, “Fast color image retrieval via
embeddings,” Workshop on Statistical and Computational
Theories of Vision (ICCV), 2003.

[16] LSH Algorithm and Implementation (E2LSH)
http://web.mit.edu/andoni/www/LSH/index.html.

[17] R. Panigrahy. Entropy based nearest neighbor search in
high dimensions. In Proc. of ACM-SIAM Symposium on
Discrete Algorithms(SODA), 2006.

[18] M. Lesaffre and M. Leman, “Using Fuzzy to Handle
Semantic Descriptions of Music in a Content-based Retrieval
System.”, In Proc. LSAS06, pp.43-5, 2006.

[19] J. P. Bello, “Audio-based Cover Song Retrieval Using
Approximate Chord Sequences: Testing Shifts, Gaps, Swaps
and Beats”, pp.239-244, ISMIR2007.

[20] G. Tzanetakis and P. Cook, “Musical Genre Classifica-
tion of Audio Signals”, IEEE Transactions on Speech and
Audio Processing, Vol.10, No.5, pp. 293-302, 2002.

[21] D. Ellis and G. Poliner. Identifying cover songs with
chroma features and dynamic programming beat tracking. In
Proceedings of ICASSP-07, Volume: 4, pp.1429-1432, 2007.

[22] R. Miotto and N. Orio. “A Methodology for the Seg-
mentation and Identification of Music Works.”, pp.239-244,
ISMIR 2007.

309

