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Abstract 
 

Cover song detection is becoming a very hot re-
search topic when plentiful personal music recordings 
or performance are released on the Internet. A nice 
cover song recognizer helps us group and detect cover 
songs to improve the searching experience. The tradi-
tional detection is to match two musical audio se-
quences by exhaustive pairwise comparisons. Different 
from the existing work, our aim is to generate a group 
of concatenated feature sets based on regression mod-
eling and arrange them by indexing-based approxi-
mate techniques to avoid complicated audio sequence 
comparisons. We mainly focus on using Exact Locality 
Sensitive Mapping (ELSM) to join the concatenated 
feature sets and soft hash values. Similarity-invariance 
among audio sequence comparison is applied to define 
an optimal combination of several audio features. Soft 
hash values are pre-calculated to help locate search-
ing range more accurately. Furthermore, we imple-
ment our algorithms in analyzing the real audio cover 
songs and grouping and detecting a batch of relevant 
cover songs embedded in large audio datasets.  
 
1. Introduction 
 

Powerful Internet provides us an open space to 
store and share with the world our music digital re-
cordings or performance. An increasing number of 
people are joining the online-based music social com-
munities via the Internet to upload their audio re-
cordings or performance. Cover song is a new rendi-
tion of a previously recorded song in popular music 

(see http://en.wikipedia.org/wiki/Cover_version). With 
the personal recordings and performance increasing on 
the music social website, unknown cover song detec-
tion is becoming extremely important. Through the 
audio sequence comparison, an accurate audio-based 
pairwise matching is usually obtained. However, fea-
ture extractor of musical audio sequence is very high 
dimensional, which makes it time-consuming to 
quickly detect relevant audio tracks. Solving this hard 
problem involves two main aspects: (i) refining music 
representation to improve the accuracy of musical se-
mantic similarity (pitch [5][22], Mel-Frequency Cep-
stral Coefficient (MFCC) [7], Chroma [19][21]) and 
(ii) organizing music documents in the way that helps 
speed up music similarity searching (trees structure 
[1][4][13] hierarchical structure[10], Locality Sensitive 
Hashing (LSH) [6][9]). Merely strengthening one point 
is not enough. For example, in [21] beat-synchronous 
Chroma features are successful for matching similar 
music audio sequences. Unfortunately, one pairwise 
comparison of feature sequences costs about 0.3 sec-
ond. This means it would take about 30s if the data-
base length is 100. 

We pay attention to the above addressed aspects to 
solve audio-based cover song detection and retrieval: 
accurately locate the searching range of music audio 
tracks with the concatenated feature sets via exact lo-
cality sensitive mapping. A novel melody-based sum-
marization principle is presented to determine a group 
of weights that define an optimal combination of sev-
eral audio features, Features Union (FU), by using 
multivariable regression. In addition, we study the re-
lationship between FU summarization and hash values 
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and propose two retrieval schemes called Exact Local-
ity Sensitive Mapping (ELSM) and SoftLSH. We con-
firm the practicality of our algorithms with real world 
multi-cover-version queries over the large musical 
audio datasets. Interesting examples of cover songs can 
be found and listened at http://www.e.ics.nara-wu.ac.jp 
/~yuyi/AudioExamples.htm. 
 
2. Related work 
 

To efficiently accelerate audio-based content detec-
tion, some researchers applied index-based techniques 
[1][4][6]. In [1] a composite feature tree (semantic 
features, such as timbre, rhythm, pitch, e.g.) was pro-
posed to facilitate KNN search. The weight of each 
individual feature is determined by multivariable re-
gression. Principle Component Analysis (PCA) is used 
to transform the extracted feature sequence into a new 
space sorted by the importance of acoustic features. In 
[4] the extracted features (Discrete Fourier Transform) 
are grouped by Minimum Bounding Rectangles 
(MBR) and compared with an R*-tree. Though the 
number of features can be reduced, sometimes the 
summarized (grouped) features may not sufficiently 
discriminate two different signals. 

LSH [11] is an index-based data organization struc-
ture proposed to find all similar pairs of a query point 
in the Euclidean space. It has gained great success in 
different applications as a well-known solution to de-
termine whether any pair of documents are similar or 
not (web page [12], audio [6][9], image [15], video 
[14], etc.). Feature vectors are extracted from docu-
ment and regarded as similar to one another if they are 
mapped to the same hash value. Yang used random 
sub-set of the spectral features (Short Time Fourier 
Transform) to calculate hash values for the parallel 
LSH hash instances in [6]. With a query as input, its 
features match reference features from hash tables. 
Then Hough transformation is performed on these 
matching pairs to detect the similarity between the 
query and each reference song by the linearity filtering. 
In [9] MFCC is extracted as the feature from single 
speech word. Based on basic LSH idea they proposed 
multi-probe LSH, which can probe multiple buckets 
that are probable to contain the content similar to query. 

LSH scheme is described as follow. If two features 
( , )q iV V  are very similar they will have a small distance 

q iV V− , hash to the same value and fall into the same 
bucket with a high probability. If they are quite differ-
ent they will collide with a small probability. A func-
tion family { }h: S UH = → 　, each h mapping one point 
from domain S to U, is called locality sensitive, if for 
any features qV  and iV , the probability 

[ ]( ) ( ) ( ) :
rH q i q iProb t P h V h V V V t= = − =            (1) 

is a strictly decreasing function of t. That is, the colli-
sion probability of features qV  and iV  is diminishing as 
their distance increases. The family H  is further called 
( )1 2

, , ,R cR p p  ( 2 1
1,c p p> < ) sensitive if for any 

,q iV V S∈ , 

1

2

|| || , [ ( ) ( )]

|| || , [ ( ) ( )]

rH

rH

q i q i

q i q i

if V V R P h V h V p

if V V cR P h V h V p

− < = ≥

− > = ≤
            (2) 

A good family of hash functions will try to amplify 
the gap between 1p  and 2p . 

There is a significant shortcoming in existing works 
[1][4][6][9]. No analysis was done to investigate 
whether the used features can completely or maximally 
represent the original melody characteristics and have 
the capability in distinguishing two audio feature se-
quences. Also, there was no evaluation of the retrieval 
quality according to a natural benchmark (human per-
ception). In this work we study the correlation between 
audio feature sets and soft hash/mapping values by 
using exhaustive musical audio sequence comparisons 
to predict desired but unseen music songs, and give 
some simple principles to evaluate melody-based mu-
sic retrieval. In contrast to the existing works, our 
work has two advantages: (i). Similarity-invariance 
among audio feature sequence comparisons is applied 
in training semantic audio representations based on 
supervised learning. The proposed Features Union 
(FU) better represents musical audio sequences. (ii). 
We consider possible difference between perceptually 
similar audio documents and map the feature into con-
tinuous hash space (soft mapping). The neighborhood 
determined by the query will intersect buckets that 
possibly contain the similar documents. In comparison 
with the exhaustive KNN and previously used LSH 
retrieval schemes our algorithms achieve almost the 
same retrieval quality as KNN but with much less re-
trieval time. 
 
3. Algorithms 
 

In this section our algorithms include two main 
parts: spectrum-based audio semantic summarization 
and soft-hashing-based information retrieval. We re-
veal a principle of spectral-based similarity-invariance, 
by which we can summarize long audio feature se-
quences and generate a compact and semantic single 
feature FU. Instead of traditional hard hash values we 
assume a group of soft hash values and use exact local-
ity sensitive mapping, which help to locate searching 
range more accurately. Associated with FU two re-
trieval schemes are proposed to solve the problem of 
cover song detection. 
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3.1. Spectrum-based features union 
 

Audio documents can be described as time-series 
feature sequences. Directly computing the distance 
between audio feature sequences (matching audio 
documents) is an important task in implementing 
query-by-content audio information retrieval. Dynamic 
Programming (DP) [5][19] can be used in matching 
two audio feature sequences and is an essentially ex-
haustive searching approach (which offers high accu-
racy). But it lacks scalability and results in a lower 
retrieval speed as the database gets larger. To quicken 
the audio feature sequence comparison and obtain the 
scalable content-based retrieval, semantic features are 
extracted from the audio structures. The semantic fea-
tures (high-level) used in [1] are mainly proposed for 
musical genre classification [20] and can not effec-
tively represent melody-based lower-level music in-
formation. In the following section we propose a new 
semantic feature summarization suitable for melody-
based music information. 

A single feature can not well summarize a song. 
Multiple features can be combined to represent a song. 
These features play different roles in the query stage 
and must be weighed by different weights. Existing 
retrieval schemes have selected different audio features. 
We choose several competitive audio features and in-
troduce a scheme based on multivariable regression to 
determine the weight for each feature. The goal of our 
approach is to apply linear and non-parametric regres-
sion models to investigate the correlation. In the model 
we use K (K=7) groups of features (218-dimension): 
Mean and Std of MFCC (13+13) [7], Mean and Std of 
Mel-Magnitudes (40+40) [8], Mean and Std of Chroma 
(12+12) [21], Pitch Histogram (88) [5]. 

Let the groups of features of mith song be 
,1 ,2 ,, , ...,mi mi mi Kv v v  (i=1,2). With different weight kα  

assigned to each feature group the total summary vec-
tor is 

1 ,1 2 , 2 ,
[ , , ..., ]T

mi mi mi K mi K
V v v vα α α=               (3) 

The Euclidean distance between two features 1m
V  and 

2m
V  is 

2

1 2 1, 2, 1, 2,

1 1 1

( , ) ( , ) ( , )
K K K

m m k m k k m k k m k m k

k k k

d V V d v v d v vα α α
= = =

= =∑ ∑ ∑ (4) 

To determine the weight in Eq.(3), we apply multivari-
able regression process. Consider a training database 
composed of M pairs of songs 1 2

, , 1, 2, ...,
m m

R R m M< > = , 
which contain both similar pairs and non-similar pairs. 
From these pairs we obtain the sequences of Chroma 
similar to [21] and then calculate M sequence distances 

1 2
( , )

DP m m
d R R  via DP. 

We will choose the weight in Eq.(3) so that the dis-
tance 1 2

( , )
m m

d V V , calculated by the summary, is as near 
to the sequence distance 1 2

( , )
DP m m

d R R  as possible, i.e., 
we hope the melody information is contained in the 
summary. After we determine the distance between the 
pairs of training data, we get a M*K matrix V

D  and a 
M-dimension column vector DP

D . The mth row of V
D  

has K distance values calculated from independent 
features 1, 2 ,

( , ), 1, 2, ...,
m k m k

d v v k K=  and the mth element 
of DP

D  is the normalized distance between the two fea-
ture sequences 1 2 1 2

( , ) /(| | | |)
DP m m m m

d R R K R R⋅ ⋅ . Let 
2 2 2

1 2
[ , , , ]

T

K
A α α α= " . According to Eq.(4) V

D , A  and 
DP

D  satisfies the equation V
D A⋅  = DP

D  Then 
1

( )
T T

V V V DP
A D D D D

−

=  and we obtain the weight kα . We 
are only interested in the absolute value of kα . The 
feature set defined in Eq.(3) is call features union (FU). 
 
3.2. Exact locality sensitive hashing/mapping 
 

Almost all the hash schemes, including LSH, use 
hard (discrete) integer hash values. In LSH a FU i

V  is 
locality-sensitively mapped to ( )

i
H V , which is further 

quantized to integer hash value ( ) ( ( ))
i i

H V round H V=  
( ( )round x  is the nearest integer of x ). Two FUs ( i

V  
and j

V ) with a short distance ( ( , )
i j

d V V ) have the same 
integer hash value ( ( ) ( )

i j
H V H V= ) with a high prob-

ability. By assigning integer hash values to buckets, 
the songs located in the same bucket as the query can 
be found quickly. 

However even if two similar FUs i
V  and j

V  have a 
short distance ( , )i jd V V , it is not always guaranteed 
that they have the same hash values due to the map-
ping and quantization errors. When a vector of N hash 
values instead of a single hash value is used to locate a 
bucket the precision can be improved and the effect of 
quantization error gets more obvious. To find a similar 
song from the database with a specific query, multiple 
parallel and independent hash instances are necessary, 
which in turn takes more time and requires more space. 

Our solution to the above problem is to exploit the 
continuous non-quantized hash values with two 
schemes, Exact Locality Sensitive Mapping (ELSM) 
and SoftLSH. 

 
3.2.1 SoftLSH 

We assume the search-by-hash system has L paral-
lel hash instances and each hash instance has a group 
of N locality sensitive mapping functions. In the mth 
hash instance the function group is 1 2

{ , , ..., }
m m m mN

H h h h= . 
Its kth function ( )mkh ⋅  maps an FU feature V  to a con-
tinuous non-quantized hash value ( )

mk
h V . After map-

ping, the hash vector in the mth hash instance corre-
sponding to V  is 1 2

( ) { ( ), ( ), ..., ( )}
m m m mN

H V h V h V h V= . 
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Consider the kth dimension of the hash vectors ( )
m i

H V  
and ( )

m j
H V  corresponding to i

V  and j
V  respectively. 

By the first order approximation of Taylor series, the 
difference between ( )

mk i
h V  and ( )

mk j
h V  is 

( ) ( ) ( )( )
mk i mk j mk j i j

h V h V h V V V′− ≈ −               (5) 
When i

V  and j
V  are similar to each other, they have a 

short distance ( , )
i j

d V V . Then according to Eq.(5) 
( )

mk i
h V  and ( )

mk j
h V  are close to each other and so is the 

vector ( )
m i

H V  and ( )
m j

H V . 
At the quantization stage the hash space is divided 

into non-overlapping squares, where ( )
m

H V  is quan-
tized to a set of N integer hash values ( )

m
H V , the cen-

ter of the squares. Two FUs falling in the same square 
have the same integer hash values. But this quantiza-
tion can not well retain the distance between two FUs. 
Figure 1 shows an example where N equals 2. 

( ( ), ( ))
m i m j

d H V H V  is less than the allowed error, but 
neither of the integer hash values of the two FUs is the 
same. ( )

m i
H V  is quantized to ( )

m i
H V =(2,3) while 

( )
m j

H V  is quantized to ( )
m j

H V =(1,2). By careful ob-
servation we can learn that the quantization error usu-
ally happens when both ( )

m i
H V  and ( )

m j
H V  are near the 

edge of the squares. Even a little error near the edge 
will result in an error up to N between two integer hash 
set ( )

m i
H V  and ( )

m j
H V . 

hm1=1 hm1=2 hm1=3

hm2=1

hm2=2

hm2=3

Vi

Vj

( )m jH V

( )m iH V

( )m iH V
( )m jH V

hm1=1 hm1=2 hm1=3

hm2=1

hm2=2

hm2=3

Vi

Vj

( )m jH V

( )m iH V

( )m iH V
( )m jH V

 
Figure 1 Concept of Soft LSH. 

In Figure 1 the FU feature i
V  is a neighbor of j

V  
and the hash value ( )

m i
H V  is located in the neighbor-

hood C(Hm(Vj), r), a ball centered at ( )
m j

H V  with a 
radius r . But ( )

m i
H V  and ( )

m j
H V  are located in differ-

ent squares and result in a big distance after quantiza-
tion. Here each square corresponds to a bucket. It is 
obvious that C(Hm(Vj), r) intersects several quantiza-
tion squares simultaneously, including the square 
where ( )

m i
H V  lies. Then with j

V  as query and C(Hm(Vj), 
r) calculated in advance, the buckets that possibly hold 

i
V  can be easily found. From all the features in these 
buckets, the ones located in C(Hm(Vj), r) are taken as 
the candidates. Then the KNN algorithm is applied to 

the candidates to find the features that are actually 
similar to j

V . Of course i
V  will be one of the nearest 

neighbors. 

3.2.2 Query with ELSM 
 
Our first solution to the quantization problem is to 

utilize the ELSM feature together with KNN instead of 
assigning FUs to buckets. 

…

1 2 3
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Hash instance
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1 2 3
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Summary Vi
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Hash instance

 
Figure 2 Feature organization in the database. 

Each song in the database is processed as in Figure 
2. Its FU feature V is obtained by the regression model. 
The mth hash instance has its own sets of N hash func-
tions ( ) ( ) /

mk mk mk mk
h V a V b w= ⋅ +  (1≤k≤N), which is 

determined by amk and bmk, the random variables, and 
wmk, the quantization interval. By wmk, standard devia-
tions of soft hash values in different hash instances are 
made almost equal and the distribution of hash vectors 
roughly spans a square in the Euclidean space. The 
hash set for the summarized semantic FU feature V  is 

1 2
( ) [ ( ), ( ), ..., ( )]

m m m mN
H V h V h V h V=  in the mth hash instance. 
When there are L parallel hash instances, the hash vec-
tors generated from the FU feature V for all hash in-
stances are 1 2

( ) [ ( ), ( ), ..., ( )]
L

H V H V H V H V= , which 
has N*L dimensions. Since the mapping function ( )

mk
h ⋅  

is locality sensitive, the new hash vector ( )H V  con-
tains most of the information embedded in V.  

( )H V  can serve as a feature (ELSM) and be used 
together with KNN. With the soft mapping value, it 
will not suffer quantization information loss. This 
scheme can also be regarded as an ideal hash, where 
each bucket only contains the ELSM features that are 
very similar to each other. When a query comes, its 
ELSM feature locates the bucket that contains all the 
similar songs (which are the same as exhaustive KNN). 
In such ideal cases the search accuracy is the same as 
where ELSM is utilized together with the exhaustive 
KNN. Usually N*L is much smaller than the dimension 
of FU. Though it can not provide a response as fast as 
SoftLSH, it is still much faster than utilization of the 
FU feature directly. Meanwhile its search accuracy up 
bounds that of SoftLSH. With ELSM as the feature in 
the KNN search, we can verify the effectiveness of 
locality sensitive mapping. 
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3.2.3 Query with SoftLSH 
 
Our second solution to the quantization problem is 

to exploit the non-quantized hash values (SoftLSH) to 
locate in a hash instance all the buckets that possibly 
hold features similar to the query. 

For the ith song with its FU feature Vi, in the mth 
hash instance its sequence number i is stored in the 
bucket ( )

m i
H V . Its soft hash values corresponding to 

all hash instances, ( )
i

H V , are stored together in a sepa-
rate buffer and utilized as the ELSM feature. The re-
sidual part ( )

m i
H V - ( )

m i
H V  reflects the uncertainty. This 

part is usually neglected in all LSH indexing schemes. 
Fully exploiting this part facilitates the accurate locat-
ing of the buckets that possibly contain the similar 
features. In times of retrieval the FU of the query, qV , 
is calculated. In this way its ELSM feature, 

1 2
( ) [ ( ), ( ), ..., ( )]

q q q L q
H V H V H V H V= , is also calculated. 
In the mth hash instance the features similar to q

V  will 
be located in the buckets that intersect the neighbor-
hood ( ( ), )

m q
C H V r . Due to the quantization effect the 

buckets are squares. Any vertex of a bucket lying in 
the neighborhood will result in its intersection with the 
neighborhood. 

Buckets in a hash instance are centered at a vector 
of integer hash values. Their vertexes are the center 
plus or minus 0.5. ( )

m q
H V , the integer part of ( )

m q
H V , 

indicates the bucket that most possibly contains similar 
features. The buckets near ( )

m q
H V  also possibly con-

tain features similar to the query. Vertexes of these 
buckets, 1

( ) ( 0.5, ..., 0.5)
m q N

H V j j+ ± ± , are examined. 
For the vector 1( ..., ), Nj j  where the vertexes falling in 

( ( ), )
m q

C H V r , 1
( ) ( , ..., )

m q L
H V j j+  are the centers of the 

buckets that possibly contain the similar features. Fea-
tures falling in these buckets are examined by KNN 
with the ELSM feature. 

3.2.4 Summary 
 
The original concept of LSH [11] was introduced 

in section 2. In E2LSH [16] a high-dimensional feature 
vector is first projected to sub-feature space by a group 
of locality sensitive functions. Then hash values are 
calculated from the sub-features. ELSM is similar to 
the first half of E2LSH. However, in ELSM the sub- 
feature vector is not calculated to obtain hash values. 
They are directly used as new features to perform ex-
haustive KNN searching. The ELSM feature is logi-
cally related to the number of hash instances. However, 
the ELSM feature is not mapped to the integer hash 
values. We also propose a SoftLSH scheme as a varia-
tion of LSH. It quantizes the ELSM feature into integer 
hash values and utilizes the ELSM feature to accu-
rately locate the searching region. 

All the LSH members solve Approximate Nearest 
Neighbors problem in a Euclidean space. E2LSH [16] 
enhances LSH to make it more efficient for the re-
trieval with the very high dimensional feature. It per-
forms locality sensitive dimension reduction to get the 
projection of the feature in different low-dimension 
sub-spaces. With multiple hash tables in parallel, the 
retrieval accuracy can be guaranteed meanwhile the 
retrieval speed is accelerated. Panigraphy [17] consid-
ered the distance d(p,q) between the query q and its 
nearest neighbor p in the query stage of the LSH 
scheme. By selecting a random point p’ at a distance 
d(p,q) from q and checking the bucket that p’ is hashed 
to, the entropy-based LSH scheme ensures that all the 
buckets which contain p with a high probability are 
probed. An improvement of this scheme by multi-
probe was proposed in [9], where minor adjustment of 
the integer hash values are conducted to find the buck-
ets that may contain the point p. According to Eq.(5) 
when the feature summary of two tracks are similar to 
each other, their non-quantized hash values will also be 
similar to each other. Instead of probing, our SoftLSH 
scheme utilizes the ELSM feature to accurately locate 
all the buckets that intersect the neighborhood deter-
mined by the query. 
 
4. Experimental setup 
 

Our music collection includes 5275 tracks that fall 
into five non-overlapping datasets. Trains80 is col-
lected from www.yyfc.com (a non-commercial amuse-
ment website where users can sing her/his favorite 
songs, make records online, and share them with 
friends) and our personal collections. It consists of 80 
pairs of tracks. 40 pairs each contain two versions of 
the same song while each of the other 40 pairs contains 
different songs. These 160 tracks are used to train the 
weights of regression model proposed in section 3.1. 
Covers79 is also collected from www.yyfc.com and 
consists of 79 popular Chinese songs each represented 
in different versions (sung by different people with 
similar background music). Each song has 13.5 
versions on the average resulting in a total of 1072 
audio tracks. 

RADIO is from www.shoutcast.com and ISMIR is 
collected from http://ismir2004.ismir.net/genre_contest. 
JPOP (Japanese popular songs) is from our personal 
collections. Covers79, ISMIR, RADIO and JPOP are 
used in the evaluation and altogether there are 5275 
tracks and the last three Datasets are used as back-
ground audio files of simulation. Each track is 30s long 
in mono-channel wave format, 16bit per sample and 
the sampling rate is 22.05KHz. The audio data is nor-
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malized and then divided into overlapped frames. Each 
frame contains 1024 samples and the adjacent frames 
have 50% overlap. Each frame is weighed by a ham-
ming window and further appended with 1024 zeros to 
fit the length of FFT (2048 point). From FFT result the 
instantaneous frequencies are extracted and Chroma is 
calculated. From the amplitude spectrum pitch, MFCC 
and Mel-magnitude are calculated. Then the summary 
is calculated from all frames. 

The ground truth is set up according to human per-
ception. We have listened to all the songs and manu-
ally labeled them so that retrieval results of our algo-
rithms correspond to human perception to support 
practical application. Trains80 and Covers79 datasets 
were divided into groups according to their verse (the 
main theme represented by the song lyrics) to judge 
whether tracks belong to the same group or not (one 
group represents one song and different versions of 
one song are members in this group). The 30s seg-
ments in these two datasets are extracted from verse 
sections of songs. 
 
5. Evaluation  
 

In this section we present the performance evalua-
tion of the searching schemes, KNN, ELSM, LSH and 
SoftLSH, and give the corresponding analysis and 
demonstrate their potential applications in query-by-
content musical audio retrieval. All schemes are based 
on the FU feature. KNN is an exhaustive search while 
LSH represents quantization into hash buckets KNN 
achieves highest recall and precision (upper bound). 
LSH has the least retrieval time (lower bound). We 
hope our algorithms would approach KNN in the per-
formance while retaining almost the same retrieval 
time as LSH. Our task is mainly to solve the problem 
of cover songs detection or near duplicate detection of 
audio files similar to [2][5][19][21]. Our methods can 
be extended to solve the query-by-example audio-
based retrieval problems. 

Dataset Covers79 is embedded in the evaluation set 
with 5275 tracks (Covers79+ISMIR+RADIO +JPOP). 
The whole evaluation set has a broad range of music 
genres (classical, electronic, metal, rock, world, etc.). 
With each track in the Covers79 as the query in turn 
we would calculate the ranked tracks similar to the 
query. Each query q chosen from Covers79 has its 
relevant set 

q
S  (perceptually similar songs), which is 

determined according to the number of audio cover 
tracks in each group. The average size of query’s rele-
vant set is 12.5 (on the average each song in Coves79 
has 13.5 covers. When one cover is used as query, the 
rest covers are in the database). The total number of 
relevant items can be calculated from each group (a 

theoretical maximum is 14452). The retrieval system 
also outputs the retrieved set q

K . To evaluate perform-
ance of the algorithms, in our experiment recall and 
precision are respectively defined as | | / | |

q q q
S K S∩  

and | | / | |
q q q

S K K∩ , and also F-measure is defined as 
( )2 /recall precision precision recall⋅ ⋅ + . 
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Figure 3 Recall under different number of hash in-

stances. 
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Figure 4 Average retrieval time under different number 
of hash instances. 

Figure 3 is the recall of the four schemes in ques-
tion. KNN is the golden standard given this feature 
representation and always performs best. LSH is al-
ways inferior to the new proposed schemes. When 
there are very few hash instances, ELSM feature has a 
low dimension and can not well represent FU. As a 
result the performance of ELSM and SoftLSH is poor 
compared to KNN. As the number of hash instances 
increases from 2 to 6 the recall in both ELSM and 
SoftLSH increases correspondingly and the curves of 
ELSM and SoftLSH are approaching the KNN per-
formance. The recall of SoftLSH is quite close to 
ELSM. This reflects that search in the neighborhood of 
the query’s hash values has almost the same perform-
ance as an exhaustive search. The gap between KNN 
and ELSM/SoftLSH also decreases as more hash in-
stances are used. The recall, however, does not in-
crease linearly. The slope of recall approaches 0 and 
further increase of hash instances results in diminish-
ing returns. When the number of hash instances is 
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greater than 10, the gap between ELSM/SoftLSH and 
KNN is almost constant, which means that the infor-
mation loss due to utilizing a lower dimension feature 
can not be salvaged by the increase of hash instances. 
When there are 10 hash instances, 0.682*14452 can be 
identified with KNN, 0.633*14452 are identified with 
ELSM, 0.445*14452 are identified with LSH and 
0.625*14452 are identified with SoftLSH. 

Figure 4 shows the average retrieval time for each 
query. The exhaustive KNN always takes the longest 
time (0.542s). Time consumption in the other three 
schemes gradually increases as the number of hash 
instances does. Average retrieval time of SoftLSH is 
about double as much as LSH due to the search in mul-
tiple buckets that intersect the query’s neighborhood. 
From Figure 3 and Figure 4 the tradeoff among accu-
racy and time indicates that 10 hash instances are a 
suitable choice. In such cases SoftLSH has a recall 
close to KNN with a much less retrieval time. The ad-
ditional time saved by LSH would result in a signifi-
cant drop of accuracy. Therefore the number of hash 
table is set to 10 in the following experiments. 
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Figure 5 Precision-recall curve (10 hash instances). 
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Figure 6 F-measure at different number of re-

trieved tracks. 

Figure 5 is the precision-recall curve achieved by 
adjusting the number of system outputs. As expected at 
the same recall KNN always has the highest precision 
and LSH has the lowest precision. Some of the percep-
tually similar tracks have quite different features and 

they can only be retrieved when KNN returns many 
tracks. Therefore the precision of KNN decreases 
quickly when recall is around 0.7. ELSM and SoftLSH 
have a performance approaching that of KNN. But at 
the same precision they have a loss of about 4% in 
recall compared with KNN due to utilizing a lower 
dimensional feature. The number of hash instances is 
fixed at 10 in the experiment. Some of the tracks can 
not be retrieved by the LSH scheme at all. Its recall is 
upper bounded at 0.5 and a higher recall requires much 
more hash instances in LSH compared with SoftLSH. 

Figure 6 demonstrates F-measure scores of the four 
schemes with respect to different number of retrieved 
tracks. It can be seen easily that the LSH always per-
forms worst. KNN performs slightly better than ELSM 
and SoftLSH at the cost of a much longer time to fin-
ish the search, as shown in Figure 4. Here we would 
address that when the number of the retrieved tracks is 
less than that of the query’s covers in the database, an 
increase of the retrieved tracks results in an almost 
linear increase of recall and a little decrease of preci-
sion. Therefore F-measure increases quickly. When the 
number of retrieved tracks gets larger than the actual 
tracks, the slopes of the recall curves in all schemes 
become steady while increasing the retrieved tracks 
always results in a decrease of precision. In this ex-
periment each query has an average number of 12.5 
covers in the database. Coincidently in Figure 6 the 
curves of KNN, ELSM and SoftLSH reach the maxi-
mal F-measure score when the number of returned 
songs equal 12. This reflects that the FU feature is very 
effective in representing the similarity of tracks in each 
group. The tracks belonging to the same group that 
really have a short distance quickly appear in the re-
turned list. Not-so-similar tracks have a relatively large 
distance and too many retrieved tracks only result in a 
very low precision and F-measure. It also confirms the 
SoftLSH is a good alternative to KNN. 
 
6. Conclusion 
 

Both the representation and organization of audio 
files play important roles in audio content detection. In 
this paper we have considered both the semantic sum-
marization of audio documents and the hash-based 
approximate retrieval for the purpose of reducing re-
trieval time and improving retrieval quality. By a new 
principle of similarity-invariance, a concise audio fea-
ture representation (FU) is generated based on multi-
variable regression. Associated with the FU, variants 
of LSH (ELSM and SoftLSH) are proposed. Different 
from the conventional LSH schemes, soft hash values 
are exploited to accurately locate the searching region 
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and improve the retrieval quality without requiring 
many hash instances. It is easy to make the proposed 
retrieval schemes applicable to other applications with 
a bit effort (especially video, bio-informatics, e,g.). 

We experimentally show the efficacy of our algo-
rithms via evaluation on ‘multi-versions’ music covers 
datasets, adopting human perception as a quality meas-
ure. As expected our results demonstrate that (i) the 
FU feature is a good summary of audio sequence (ii) 
SoftLSH achieves a better balance between retrieval 
time and accuracy than conventional LSH and KNN. 
This work remains the room to be improved. In the 
future we will study semantic features that better rep-
resent melody information and other training models 
that best combine feature groups.  
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