Searching Musical Audio Datasets by a Batch of
Multi-Variant Tracks

Yi Yu
Department of Information and
Computer Sciences, Nara
Women’s University, Japan

yuyi@ics.nara-wu.ac.jp

Vincent Oria
Department of Computer
Science,New Jersey Institute
of Technology, USA

oria@nijit.edu

ABSTRACT

Multi-variant music tracks are those audio tracks of a par-
ticular song which are sung and recorded by different peo-
ple (i.e., cover songs). As music social clubs grow on the
Internet, more and more people like to upload music record-
ings onto such music social sites to share their own home-
produced albums and participate in Internet singing con-
tests. Therefore it is very important to explore a computer-
assisted evaluation tool to detect these audio-based multi-
variant tracks. In this paper we investigate such a task:
the original track of a song is embedded in datasets, with
a batch of multi-variant audio tracks of this song as input,
our retrieval system returns an ordered list by similarity
and indicates the position of relevant audio track. To help
process multi-variant audio tracks, we suggest a semantic in-
dexing framework and propose the Federated Features (FF)
scheme to generate the semantic summarization of audio
feature sequences. The conjunction of federated features
with three typical similarity searching schemes, K-Nearest
Neighbor (KNN), Locality Sensitive Hashing (LSH), and
Exact Buclidian LSH (E*LSH), is evaluated. From these
findings, a computer-assisted evaluation tool for searching
multi-variant audio tracks was developed to search over large
musical audio datasets.

Categories and Subject Descriptors

H.3.3 [Information Systems]: Information Search and Re-
trieval; H.5.5 [Information Systems]: Sound and Music
Computing; J.5 [Arts Humanities]: Music

General Terms

Algorithms, Performance, Experimentation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

MIR’08, October 30-31, 2008, Vancouver, British Columbia, Canada.
Copyright 2008 ACM 978-1-60558-312-9/08/10 ...$5.00.

J. Stephen Downie
Graduate School of Library
and Information Science

) UIUC, USA
jdownie@uiuc.edu

Lei Chen
Department of Computer
Science,Hong Kong University
of Science and Technology

leichen@cs.ust.hk
Kazuki Joe

Department of Information and

Computer Sciences, Nara
Women’s University, Japan
joe@ics.nara-wu.ac.jp

Keywords

Content-based audio retrieval, cover songs, musical audio
sequences summarization, hash-based indexing

1. INTRODUCTION

The World Wide Web (WWW) has become much more
lively musically speaking since we can upload our own audio
or video records onto the Internet and share them with the
world on such popular web sites as http://www.midomi.com,
http://www.yyfc.com and http://www.last.fm. Often, these
music social clubs provide an online forum for Internet singing
contests to attract people to vote for their favorite songs. Be-
sides people’s subjective comments, the computer-assisted
locating of a song version is also of great importance to
us. When a particular song is sung and recorded by dif-
ferent people, “cover songs” or “multi-variant audio tracks”
for the song are produced. As a branch of query-by-content
audio search and retrieval, locating and evaluating multi-
variant audio tracks is an interesting task [1]. Some inter-
esting examples of multi-variant audio tracks can be found at
http://www.e.ics.nara-wu.ac.jp/~yuyi/AudioExamples.htm.

Most of recent work [2, 3, 4] related to multi-variant audio
track detection focus on musical audio sequences compari-
son to achieve a perfect matching. However, it takes much
time to match two audio sequences since the feature sets
(Chroma [3], Pitch [5], MFCC [6]) used for audio data have
very high dimensionality. In this paper we review recent
research works on the popular query-by-content audio re-
trieval techniques in Figure 1. It consists of two main parts:
1) audio feature selection; and, 2) audio sequence matching
approaches. As shown in Figure 1 Dynamic Programming
(DP) [3, 5] is a very important matching method, that per-
forms exhaustive audio sequence comparisons which obtain
good exactness. However, DP lacks scalability and results
in slower retrieval speeds as databases get larger.

We do not adopt DP in our scheme. Instead a novel
weighting scheme-Federated Features (FF)-is proposed to
generate the semantic summarization of audio sequence. We
also use musicminer [7] to generate more potentially useful
audio features as candidates for the FF. According to the im-
portance of features used in audio sequence comparisons, we
are interested in the combination between frequently-used

Audio Features
Fourier transform [8]

Similarity Matching
Locality Sensitive Hash [8]

MFCC [6] Locality Sensitive Hash [6]
Timbre, Rhythm and Pitch [9] K-Nearest Neighbor [9]
MFCC [10] K-Nearest Neighbor [10]
STFT [4] Locality Sensitive Hash [4]
Chroma [3] Dynamic Programming [3]
Pitch [5] Dynamic Programming [5]

Figure 1: Existing audio retrieval techniques.

and musicminer-generated audio features. Through a large
audio corpus we evaluate the proposed audio feature training
scheme and show the weighted audio feature summarization
can effectively represent melody-based lower-level music in-
formation.

The conjunction of the proposed Federated Feature (FF)
with three typical searching schemes, K-Nearest Neighbor
(KNN), Locality Sensitive Hash (LSH), and Exact Euclid-
ian LSH (E2LSH) [11], is evaluated. We also extend and
summarize our work as an evaluation tool to help search
musical datasets with a batch of multi-variant audio tracks.

2. BACKGROUND

Audio feature descriptors of musical audio sequences have
very high dimensionality, which makes it increasingly diffi-
cult to quickly detect audio documents that closely resem-
ble a given input query as the number of audio tracks in
the database increase. Solving this hard problem is mainly
related to two points: 1) refining music representation to im-
prove the accuracy of musical semantic similarity (pitch [5],
Mel-Frequency Cepstral Coefficient (MFCC) [10], Chroma
[2, 3]); and, 2) organizing music documents in the way that
helps speed up music similarity searching (LSH [4, 6, 8],
E?LSH [4, 16], tree structure [9, 15]).

2.1 Related Work

Chroma and DP are applied in [2, 3] to perform cover song
detection. They guarantee the retrieval accuracy, however,
at the cost of long sequence comparison time. In [4] LSH
and E2LSH are used to accelerate sequence comparisons in
query-by-content music retrieval. Yang used random sub-
sets of spectral features derived from a Short Time Fourier
Transform (STFT) to calculate hash values for the paral-
lel LSH hash instances in [8]. With a query as input, the
relevant features are matched from hash tables. To resolve
bucket conflicts, a Hough transformation is performed on
these matching pairs to detect the similarity between the
query and each reference song by the linearity filtering.

In [9] a composite feature tree (semantic features, such as
timbre, rhythm, pitch, e.g.) was proposed to facilitate KNN
search. Principle Component Analysis (PCA) was used to
transform the extracted feature sequence into a new space
sorted by the importance of acoustic features. In [15] the ex-
tracted features (Discrete Fourier Transform) are grouped
by Minimum Bounding Rectangles (MBR) and compared
with an R*-tree. Though the number of features can be re-
duced, sometimes the summarized (grouped) features may
not sufficiently discriminate two different signals. In [16]

application of LSH in large-scale music retrieval is evalu-
ated. Shingles are created by concatenating consecutive
frames and used as high-dimensional features. E2LSH is
then adopted to compare a query with references.

2.2 LSH and E°LSH

LSH [11] is an index-based data organization structure
proposed to find all similar pairs of a query point in the Eu-
clidean space. It has been used in such applications as the
well-known solution to determine whether any pair of docu-
ments are similar or not (image [12], audio [6, 8], video [13],
etc.). Features are extracted from documents and projected
with a group of hash functions to hash values (index point).
Feature vectors are regarded as similar to one another if they
are projected to the same hash value.

If two features (Vg,V;) are very similar they will have a
small distance ||V, — V5|, hash to the same value and fall
into the same bucket with a high probability. If they are
quite different they will collide with a small probability. A
function family H = {h : S — U}, each h mapping one point
from domain S to U, is called locality sensitive, if for any
features V5 and V; , the probability

Prob(t) = Pra [h(Ve) = h(Vi) - [Vg = Vil =] (1)

is a strictly decreasing function of ¢t. That is, the collision
probability of features V; and V; is diminishing as their dis-
tance increases. The family H is further called (R, cR, p1, p2)
(¢ > 1, p2 < p1) sensitive if for any Vg, V; € S

if Vg = Vill <R, Prul[h(Vy) = h(Vi)] > p
if [|Va = Vill > ¢R, Pru[h(Vy) = h(Vi)] < p2 ()

A good family of hash functions will try to amplify the gap
between p; and pa.

In E’LSH the locality sensitive dimension reduction can
be applied on a vector X whose each dimension follows the
same P-stable distribution D. fg, (X), the inner product
between X and a real vector ¥k, linearly combines all di-
mensions of X and generates a single output. With the
matrix Y = (71, 42, --., Ym) an m-dimension vector fy (X) =
(f71 (X)), f3o(X), ..., fom (X))T can be obtained, each dimen-
sion of which also follows the distribution D. When each
dimension of V; and V; follows a P-stable distribution, each
dimension of fy (V) and fy (Vi) also follows the same dis-
tribution. Then V; and V; can be replaced by fy (V;) and
fy (V3) respectively in Eq.(1-2).

2.3 This Work

This present work mainly aims to retrieve cover songs with
a batch of multi-variant audio tracks. For this purpose, we
introduce a semantic indexing framework for content-based
music information and propose a novel semantic feature re-
gression model based on fundamental similarity rules. Two
groups of audio feature sets (frequently-used features in Fig-
ure 1 and musicminer-generated features [7]) are respectively
trained via the proposed regression model. Our new Feder-
ated Features (FF) set results from the combination of the
trained set of frequently-used features and the trained set of
musicminer-generated features. A group of more meaningful
weights are assigned to FF. In this way the musical audio
sequence can be summarized as the especially interesting se-
mantic audio representation. Searching schemes, KNN, LSH
and E2LSH are implemented to evaluate FF. Moreover, we
develop an audio detection system to batch multi-variant

audio queries. The experimental results show that our FF
is also very helpful for the large datasets.

3. APPROACHES

In this section we discuss the similarity searching prob-
lems associated with the musical audio content and give the
definition of musical audio datasets searching by a batch
of multi-variant tracks. To solve this retrieval problem, we
propose a new semantic-based audio similarity principle and
explain how to train a group of meaningful weights for our
FF set and how to map the semantic audio representation
to the indexable hash values.

3.1 Problem Description

Content-based music similarity searching strives to cap-
ture relevant music content/semantic-description (which may
be a song [8, 9], or an established category related to genre
[7], emotion [17], etc.) in the database with a query exam-
ple, where the query example (from some defined description
of music) is similar [8, 9] or categorized [7, 17] to the refer-
ence/provided content/attribute according to some similar-
ity criteria. Content-based music similarity can be defined
over a wide continuum since it is related to search intention,
musical culture, personal opinion and emotion, etc. This
work takes into account a similarity retrieval mechanism as
follows: 1) taking a batch of multi-variant tracks as audio
inputs (which are originally from the same popular song but
recorded by different people); 2) performing LSH/E?LSH
and KNN searches; 3) returning the ordered audio tracks
list; and, 4) evaluating the retrieval results by relevance.
For each group/batch of multi-variant audio tracks, there
is only one relevant audio track in the test datasets. As
introduced in Section 1, this is an essential component for
browsing, searching and evaluating the musical audio-based
content information on the Internet (or personal digital me-
dia player).

To maintain notional consistency throughout the paper,
the general description of key symbols in this work is given
here. Given a collection of songs R = {r;; : 1i; € R;, 1 <
i < |R|,1 < j < |Ri|}, (ri; is the j** spectral feature of
the i*" song R;), the feature sequence r; ; of the it" song R;
is summarized to Vi, an n-dimension feature vector in the
Euclidean space (V; € ®"). The summarized feature V; in-
stead of the feature sequence 7; ; can then be utilized in the
retrieval stage. To further accelerate the retrieval speed,
hash-based indexing is also adopted. Each hash function
hi(-) maps V; to a single value. Then the group of N in-
dependent hash functions hi(:), ha(-),...,hn(-) generate a
vector of hash values H(V;) = [h1(Vi), ha(V3), ..., A (V3)] T
Inside a hash instance each hash vector is assigned to a
bucket and two summarized features with the same hash
vector fall into the same bucket. L parallel hash instances
are constructed to support a high recall. Given a query song
Q (with the summarized feature V;) and a similarity func-
tion p(-,-), we would like to compute the similarity degree
p(Vq, Vi) between the query @ and each of the songs R; in
the database. They are similar if p(V;, V;) is above the pre-
defined similarity threshold 8. The similarity between two
feature vectors can be computed by several similarity mea-
sures, Euclidean distance, cosine measure, etc. In this paper
we feed our semantic musical audio features into Euclidean
space, d(Vy, Vi) = [[Va = Villa/(IVall, - IIVill,)-

I 1
I 1
| The set of H
i | frequently-used i
— features ™ Semantic H
Audi¢ input regression | Federated | 1
L model Features | |
7 The set of — (FF) |
' musicminer- 1
! generated features h, () H
_____________________________ R P N
______________________ —17 R ()

LHash table1| Hashtablen |

Bucket 1 Bucket 1 H

Bucket 2 Bucket 2 H

Bucket 3 | Bucket 3 ——+—*

Figure 2: Federated features based indexing frame-
work.

3.2 Semantic Indexing Framework

The indexing framework for semantic musical audio rep-
resentation includes two major parts: 1) effectively gener-
ating semantic feature summarization; and, 2) accurately
calculating hash values. Figure 2 demonstrates a seman-
tic indexing framework based on federated features. Audio
feature representation is a very important component for de-
signing the content-based audio retrieval engine, especially
when there are multi-variant audio queries. To achieve a
better semantic audio representation, we select the set of
frequently-used audio features introduced in Section 3.3 and
the set of musicminer-generated audio features [7] as candi-
dates to train a group of weights by our semantic regression
model. For each audio track the summarized semantic FF is
calculated and mapped to hash values. The FF features of
audio tracks in the datasets are organized by LSH/E*LSH
in hash tables. The FF of an audio query can be calculated
and mapped to one fixed hash value (or directly perform
exhaustive KNN searching). If hash values of two FF col-
lide into the same bucket, it would mean that they are very
similar with a high probability.

3.3 Federated Features

Audio documents can be described as time-varying feature
sequences. Directly computing the distance between two
audio documents (matching audio documents) is one impor-
tant task in implementing query-by-content music retrieval.
DP can be used in matching two audio feature sequences
and is an essentially exhaustive search approach (which of-
fers high accuracy). However it lacks scalability and results
in slower retrieval speeds as databases grow larger.

To quicken the audio feature sequences comparison and
obtain the scalable retrieval, semantic features are extracted
from the audio structure or based on the extracted semantic
features the weight for each feature is determined by regres-
sion method [9]. Unfortunately, the semantic feature extrac-
tion (high-level) used in [9] is originally and mainly proposed
to summarize the audio feature sequence for musical genre
classification [18]. These semantic feature summarizations
cannot effectively represent melody-based lower-level music
information. We can find the most popular query-by-content

Short time . Long time
Feature . - function . .
dimension dimension
MFCC 13 Mean(), Std(), 13*8
Mel-Magnit 40 Skew(), Kurt(), 40%8
udes Mean(|Al), Std(|A]),
Chroma 12 Skew(|A[), Kurb(jA[) 12*8
Pitch 1 histogram 88
Total 25 groups 608

Figure 3: Dimension of features.

audio retrieval techniques in Figure 1 in terms of audio se-
quence representations. Different features represent differ-
ent aspects of audio signals and were proposed for different
purposes. For example, Pitch [5] is extracted from the sung
melody to generate a note sequence while semitone-based
Chroma [3] is used to tolerate differences in instrumentation
and general musical style.

In [7] the large scale generation of long-term audio fea-
tures is used to obtain concise and interpretable features
summarizing a complete song and indicate the probability
of this song belonging to a certain group. Frequently-used
features in Figure 1 and musicminer-generated features [7]
encourage us to combine them by using multivariable regres-
sion to train a group of features that are summarized as a
simple descriptor to represent the characteristics of one au-
dio sequence as comprehensively and effectively as possible.
The dimensionality of final musical audio features is kept
low through the summarization created by our proposed re-
gression model. The goal is to avoid the heavy computation
of feature sequence comparisons and make query-by-content
music retrieval for large databases possible.

The feature sets used in training the regression model are
given in Figure 3. They are used in audio content retrieval.
For a description of the feature extraction methods the in-
terested reader is referred to [3, 5, 7, 10, 19, 20].

3.3.1 Similarity-Invariance of Summarization

Two questions occur in the summarizing stage: 1) how to
summarize the high dimensional features? and, 2) how to
guarantee that a summarized feature descriptor reflects the
melody information? As for the first question, there are sev-
eral summarizing methods such as calculating the mean and
standard deviation of all the features, PCA, etc. As for the
second question the summarizing procedure should exhibit
substantive characteristics of similarity-invariance, i.e., simi-
lar melodies lead to similar summaries, non-similar melodies
lead to non-similar summaries. To solve the above issues a
basic melody-based summarization principle is considered as
follows. 7;; is the ji* spectral feature of the it reference
song. The sequence similarity between " song and k** song
is @i ({ri;}, {rr;}). The i*" audio feature sequence {r; ;} is
summarized to V;. The similarity between the " and k"
feature summary is ;5 (V;, Vi). A similarity threshold 0 or
0’ would state how close between any two feature sequences
or summarized features. With a good summarization we
could expect that

eic({rij} rrs}) > 0 & i (Vi, Vi) > 0 (3)

In this sense the summarization is similarity-invariant.

3.3.2 Regression model

A single feature can not well summarize a song. Multiple
features must be combined to represent a song. These fea-
tures play different roles in the query and must be weighed
by different weights. We introduce a scheme based on mul-
tivariable regression to determine the weight for each fea-
ture. The goal of our approach is to apply linear and non-
parametric regression models to investigate the correlation.

In the model we use K (K=25 according to Figure 3)
groups of features. Let the groups of features of i*" song be
Vi1, Vi2, ..., Vi. With different weight «y assigned to each
feature group, the total summary vector is

‘/i = [alv“,agvig,...,aKviK]T (4)

The Euclidean distance between two features V; and Vj is

K K K
d(Vi, Vi) = (Y awvie, y_ awvje) = Y akd(vir, vjr) (5)
k=1 k=1 k=1

To determine the weight of the above equation, we apply
multivariable regression process. For training purpose, we
select from the database M pairs of songs, which contain
both similar pairs and non-similar pairs. By these pairs
we obtain the sequences of Chroma similar to [3], and then
calculate M pairs of sequence similarity D(R;, R;).

We will choose the weight in Eq.(4) so that the similarity
calculated by the summary is as near to the sequence sim-
ilarity as possible, i.e., we hope the melody information is
contained in the summary. After we determine the similarity
between the pairs of training data, we get a M * K matrix Dy
and the M-dimensional column vector Dpp. The i row of
Dy has K distance values calculated from independent fea-
tures d(vig,vjx), k = 1,2, ..., K and the i*" element of Dpp
is the normalized distance between the two feature sequences
D(Ri,R;)-K/(|R:|-|R;]). Let A =[a?,a3,---,a%]". Then
A= (D‘T/Dv)le‘T/DDp and we obtain the weight a. We
are only interested in the absolute value of a. The feature
set defined in Eq.(4) is called the Federated Features (FF)
set.

3.4 KNN and LSH/E?LSH Searching

After training a group of weights for federated features, we
obtain the combined independent high dimensional feature
set for each audio sequence. It can be used together with
KNN and LSH/E*LSH.

Here we first introduce the indexing structure of datasets
with LSH/E?LSH. According to Figure 2, the federated fea-
tures of the songs in the datasets are stored in the hash tables
in terms of their hash values. When LSH is used, the hash
values are directly calculated from the FF and each hash
instance has its own hash functions. On the other hand,
when E2LSH is used, the FF is first projected to a lower di-
mension vector in each hash instance. Then hash values are
calculated. In Figure 2 the total effect of the hash function
is represented as Hy(.) for the k' hash instance.

Consider a query V; and its relevant song V; in the dataset.
With KNN, V; is compared against each of the song in the
dataset and the one with least distance is regarded as the
relevant song. When LSH/ELSH is used, instead of per-
forming an exhaustive search, from the query Vj, its hash
value Hy(V;) is calculated for the k™" hash instance. The
features located in the bucket of Hy(V;) are then found and
V4 is only compared against these features. With locality

sensitive mapping, V;; and its relevant song V; have the same
hash values Hy(Vy) = Hi(V;) in at least one of the hash in-
stances with a high probability. Therefore V; will probably
be located in the buckets indexed by Hy(V;) and be found.

4. EXPERIMENTS

In this section we introduce our experimental setup, show
some evaluation results over a large audio datasets, and
demonstrate a novel content-based music information de-
tection system with multi-variant audio (i.e., cover song)
queries.

4.1 Experimental Setup

Our music collection includes 4121 songs that fall into four
non-overlapping datasets. Trains80 is collected from our
personal collections and www.yyfc.com (a non-commercial
amusement website where users can sing her/his favorite
songs, make records online, and share them with friends
or the yyfc community). It consists of 40 popular songs
each represented in two versions and 80 single-version songs.
These 160 tracks are used to train the weights of regres-
sion model proposed in section 3.3.2. Covers79 is also col-
lected from www.yyfc.com and consists of 79 popular Chi-
nese songs each represented in different versions (sung by
different people with possibly similar background music).
FEach song on average has 13.5 versions, resulting in a total of
1072 audio tracks. The corpora RADIO (1431) and ISMIR
(1458) are used as noise background datasets and respec-
tively collected from the public websites www.shoutcast.com
and http://ismir2004.ismir.net/genre_contest/index.htm.

Each song is 30s long in mono-channel wave format, 16bit
per sample and the sampling rate is 22.06KHz. The audio
data is normalized and then divided into overlapped frames.
Each frame contains 1024 samples and the adjacent frames
have 50% overlap. Each frame is weighed by a hamming win-
dow and further appended with 1024 zeros to fit the length
of FFT (2048 point). From FFT result the instantaneous
frequencies are extracted and Chroma is calculated. From
the amplitude spectrum pitch, MFCC and Mel-magnitude
are calculated. Then the summary is calculated from all
frames.

The ground truth is set up according to human perception.
We have listened to all the songs and manually labeled them
so that retrieval results of our algorithms correspond to hu-
man perception to support practical application. Trains80
and Covers79 datasets were divided into groups according to
their verse (the main theme represented by the song lyrics)
to judge whether songs belong to the same group or not (one
group represents one song and different versions of one song
are members in this group). The 30s segments in these two
datasets are extracted from verse sections of tracks.

The experiments were run on a PC with an Intel Core2
CPU (2GHz) and 1GB DRAM under Microsoft Windows
XP Professional OS.

4.2 Performance Evaluation

Our task is to detect the musical audio content with multi-
variant tracks. In this section we provide some experimental
evaluation results. The whole evaluation was run over 2968
(79+1431+1458) audio tracks, where the original track of
each song in Cover79 were put in the dataset. The rest
(1072-79=993) tracks in Cover79 were used as queries. Mean
reciprocal rank (MRR) of the ground truth were calculated

1 -
08
= 06 r
o
o
= 04 F
0‘2 7 I I
,
mean mean mean hist FF
MFCC Mel Chroma Pitch Regress

Figure 4: MRR achieved by different features.

1
08,##::#######:
S 06 :

2
2
204,
—e—KNN
L
02 1 —a—LSH
—=— E2LSH
0
2 4 6 8 0 12 14

Number of hash instances

Figure 5: Mean reciprocal rank at different number
of hash instances.

as the evaluation metric. The top 20 retrieved songs were
analyzed by default.

First we trained the weights used in the FF sets by us-
ing the Trains80 dataset as the ground truth. We selected
40 pairs of similar songs (each pair includes two versions of
the same song) and 40 pairs of non-similar songs (one pair
includes two different songs). We selected some long term
features as the final semantic audio representation according
to their importance. Figure 4 compares MRR(1) achieved
by different features utilizing exhaustive KNN search. With
each feature, 993 queries were performed against 2968 tracks.
FF has the best performance in comparison with other sep-
arate competitive feature sets. Moreover it also reveals that
FF set can represent human perception more effectively.
However, MRR(1) of FF is only 0.823. It can not reach
1 even by the exhaustive search due to the following factor:
some of the perceptually similar tracks have quite different
features and result in quite large distances in feature space.

Figure 5 shows MRR(1) of the three schemes with respect
to different numbers of hash instances. KNN always per-
forms best and E2LSH always has the worst performance.
When there are only two hash instances, LSH performs as
poorly as E?’LSH. However LSH outperforms E?LSH when
the number of hash instances is greater than 3. MRR(1) in-
creases as the number of hash instances does. However this
increase is not linear. Their performances start approaching
steadiness when the number of hash instances increases to
10. Further increase in hash instances results in diminishing

OKNN BE2LSH OLSH

MRR(1)

79 79+1431 79+1431+1458

Figure 6: MRR at different database sizes.

mSearching Datasets with Batch Multi-Variant Queries

Featurs Query Source Play Source

©* MFGG e &
 Mel-Magnitude * Query List & Query List
(" Ranked List
" Chroma nked Lis
" Pitch
\ Play |
& FF
| Pause |
Similarity Searchine m
 KNN Retrieve =
op
< MRR]
GrouplD
bt Query List s Rarked List |05

" DP QueryD5-\ersionll Sone1005-Version001
Clusr Sor cnll

11
Son rion0l]
Songl3-Wersion007
Songhl41-Version001
Soneg3425-Version001
Soned810-Version001
Song2308-Version001

GueryD5-Yersion10
CQueryD5-Version12

Figure 7: Searching with multi-variant audio con-
tent.

returns. This is because feature summarization results in
information loss which can not be salvaged by the increase
of hash instances. Therefore the number of hash table is set
to 10 in the following experiment.

Figure 6 shows the effect of different database sizes. The
three databases respectively contain Cover79 (79), Cover79
& RADIO (79+1431), Cover79 & RADIO & ISMIR (79+1431
+1458). It is obvious that the increase of database size has
very little effect on the MRR(1), which confirms that the FF
set can effectively distinguish the (newly added) non-similar
tracks.

4.3 Searching Datasets with Multi-Variant Au-
dio Tracks

Figure 7 illustrates our content-based music information
retrieval demo system developed in C++. From the left
side, the features and similarity searching methods can be
selected. In this demo system, the query set consists of 79
groups with 1072-79=993 audio tracks (the original track of
each song is in the datasets). Any group ID can be freely
specified to show the query audio tracks. With any audio

track selected as query, the system can give a ranked list of
the retrieval result. The first eight relevant audio tracks are
reported automatically with the best similarity audio track
as the first. Both queries and retrieval results can be played
to confirm the correctness of searching.

This system not only retrieves relevant audio tracks from
the datasets, but also evaluates the performance of our ap-
proaches. In the current setting in Figure 7 Feature “FF”,
Similarity Searching “LSH” and Query Group ID “5” are set
up respectively. In “Ranked List”, the retrieval results are
ordered and the first eight relevant audio tracks are given in
the list. The corresponding evaluation result is also given at
the right side. We can easily see that with the third variant
of the song in Group 5 as query input after searching over
the datasets its relevant audio track appears in the second
position (MRR(1) is 0.5).

S. CONCLUSION

With more and more personal music recordings available
via the WWW, there is an increasing demand in develop-
ing tools for detecting multi-variant audio music recordings.
The goal of such retrieval tools is to rank a collection of
music recordings according to their similarity. To help pro-
cess multi-variant audio tracks, musical audio feature ex-
traction plays an important role in audio content retrieval
and searching. A good audio feature not only needs to ef-
fectively represent musical sequence characteristics but also
is easily mapped to an indexable format. In this paper we
introduced an index-based semantic framework for speeding
up the content-based audio retrieval. We proposed a seman-
tic regression model to train a meaningful semantic audio
summarization called Federated Features (FF). Three simi-
larity searching schemes were adopted to test our proposed
approach to musical audio representation. The experimen-
tal results demonstrate that our weighting scheme is useful
for audio content detection over the large databases. We
also developed a retrieval system to not only retrieve audio
content with a batch of multi-variant audio tracks, but also
evaluate the performance of searching schemes.

6. ACKNOWLEDGMENTS

We thank Initiative Project of Nara Women’s Unveirsity
for offering an opportunity to study abroad. This work was
partly discussed and done when Yi visited International Mu-
sic Information Retrieval System Evaluation Laboratory (IM
IRSEL) in summer, 2007. The second author is a founder of
IMIRSEL at UIUC, and was supported by the Andrew W.
Mellon and national Science Foundation (NSF) under Nos.
11S-0340597 11S-0327371. The fourth author was partially
supported by a grant from DoD-ARL through the KIMCOE
center of Excellence.

7. REFERENCES

[1] J. S. Downie. The Music Information Retrieval Evalu-
ation eXchange (MIREX). In D-Lib Magazine 12, 2006.
http://dlib.org/dlib/december06 /downie/12downie.html.

[2] J. P. Bello. Audio-based Cover Song Retrieval Using
Approximate Chord Sequences: Testing Shifts, Gaps,
Swaps and Beats. ISMIR’07, pp.239-244, 2007.

[3] D. Ellis and G. Poliner. Identifying cover songs with

chroma features and dynamic programming beat
tracking. ICASSP’07, 2007.

[4]

[5]

[6]

[9]

(10]

Y. Yu, K. Joe, and J. S. Downie. Efficient Query-by-
Content Audio Retrieval by Locality Sensitive Hashing
and Partial Sequence Comparison. IEICE Transaction
on Information and System, Vol.E91-D, No.6,
pp1730-1739, 2008.

Y. Yu, J. S. Downie, and K. Joe. An Evaluation of
Feature Extraction for Query-by-Content Audio
Information Retrieval. Ninth IEEE International
Symposium on Multimedia Workshops (ISMW), pp.
297-302, 2007.

Y. Yu, M. Takata, and K. Joe. Index-Based Similarity
Searching with Partial Sequence Comparison for
Query-by-Content Audio Retrieval. Workshop on
Learning Semantics of Audio Signals (LSAS’06),
pp.76-86, 2006.

F.Moerchen, 1. Mierswa, and A. Ultsch.
Understandable Models of Music Collection based on
Exhaustive Feature Generation with Temporal
Statistics. KDD’06, pp.882-891, 2006.

C.Yang. Efficient Acoustic Index for Music Retrieval
with Various Degrees of Similarity. ACM Multimedia,
pp-584-591, 2002.

B. Cui, J.L. Shen, G. Cong, H.T. Shen, and C. Yu.
Exploring Composite Acoustic Features for Efficient
Music Similarity Query. ACM MM’06, pp.634-642,
2006.

T. Pohle, M. Schedl, P. Knees, and G. Widmer.
Automatically Adapting the Structure of Audio
Similarity Spaces. Workshop on Learning Semantics of
Audio Signals (LSAS’06), pp.66-75, 2006.

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(19]

20]

LSH Algorithm and Implementation (E*LSH)
http://web.mit.edu/andoni/www/LSH/index.html.

P. Indyk and N. Thaper. Fast color image retrieval via
embeddings. Workshop on Statistical and
Computational Theories of Vision (ICCV), 2003.

S.Y. Hu. Efficient Video Retrieval by Locality
Sensitive Hashing. ICASSP’05, pp.449-452, 2005.

J. Reiss, J. J. Aucouturier, and M. Sandler. Efficient
multi dimensional searching routines for music
information retrieval. ISMIR’01, 2001.

I. Karydis, A. Nanopoulos, A. N. Papadopoulos and
Y. Manolopoulos. Audio Indexing for Efficient Music
Information Retrieval. MMM’05, pp.22-29, 2005.

M. Casey and M. Slaney. Song Intersection by
Approximate Nearest Neighbor Search. ISMIR’06,
pp.144-149, 2006.

M. Lesaffre and M. Leman. Using Fuzzy to Handle
Semantic Descriptions of Music in a Content-based
Retrieval System. Workshop on Learning Semantics of
Audio Signals (LSAS’06), pp.43-5, 2006.

G. Tzanetakis and P. Cook. Musical Genre
Classification of Audio Signals. IEEE Transactions on
Speech and Audio Processing, Vol.10, No.5, pp.
293-302, 2002.

R. Miotto and N. Orio. A Methodology for the
Segmentation and Identification of Music Works.
ISMIR’07, pp.239-244, 2007.

L.Rabiner and B.-H. Juang. Fundamentals of Speech
Recognition. Prentice-Hall, 1993.

