
Social Interactions over Location-Aware
Multimedia Systems

Yi Yu, Roger Zimmermann and Suhua Tang

Abstract Advancements in positioning techniques and mobile communications
have enabled location-based services with a broad range of location-aware multime-
dia applications. Accordingly, various social multimedia data, relevant to different
aspects of users’ daily life, is aggregated over time on the Internet. Such location-
aware multimedia data contains rich context of users and has two implications: in-
dividual user interest and geographic-social behaviors. Exploiting these multimedia
landscapes helps mine personal preferences, geographic interests and social con-
nections, and brings the opportunities of discovering more interesting topics. In this
chapter, we first introduce some examples of location-aware multimedia data and
social interaction data. Then, we report some latest methods related to context de-
tection and location-aware multimedia applications. We further present some anal-
ysis of geo-social data. Finally, we point out the trend in the integration of social
and content delivery networks. In brief, this chapter delivers a picture of emerging
geographic-aware multimedia technologies and applications, with location informa-
tion as a clue.

1 Motivation and Introduction

Conventionally, content sharing websites [1] and online social networks [2] are sep-
arately deployed. Users visit content sharing websites to upload, view, and share
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their multimedia contents. Users login to social networks to exchange messages
and keep in contact with their friends. Recently, various online communities (e.g.,
Flickr, Foursquare, Facebook, Twitter) have started to provide users with location-
based services [3]. In this way, users can record and upload geo-tagged images and
videos to these web sites anytime and anywhere with their mobile devices. For ex-
ample, many fantastic geo-tagged photos taken by users are shared at Flickr. As a
result, every day a huge volume of user-generated geo-tagged multimedia data is
generated in the Internet.

Location, as an extra information, is playing an important part in complement-
ing content retrieval and recommendation [4, 5, 6, 7, 8, 9]. As shown in Fig. 1,
it also serves as an important element to connect content sharing services and on-
line social services, which facilitates personalized, localized, and socialized mul-
timedia content discovery, retrieval, recommendation, and diffusion across diverse
user-generated multimedia datasets. In particular, registered users can check in1 at
various venues and contact their friends nearby to share experience with them. Ge-
ographic trajectories of users are associated with their preferences and can be used
for personalized location recommendation [10]. Check-in information at business
venues can be leveraged for geo-fencing services [11, 12, 13, 14], mobile advertis-
ing [15, 16], business analytics, and used to analyze the geo-spatial distribution of
users and user social behaviors.

A new trend is the integration of social networks and content sharing platforms
[4], as follows: Users share their opinions of multimedia contents or recommend
multimedia contents on social networking platforms; This helps to spread multime-
dia contents and events all over the world through the social connections between
users [17]; In addition, the geo-spatial distribution of users and social connections
between users can be further exploited to optimize the distributed cache [18] of
multimedia contents.

The rest of this chapter addresses different parts in Fig. 1. First, we introduce
different location-aware media data in Sec. 2. Then, we show some methods related
to location inference and geo-fencing in Sec. 3. Next, we present some location-
aware multimedia applications in Sec. 4 and the analysis of geo-social data in Sec. 5.
We also discuss the integration of social networks and content-sharing networks in
Sec. 6. Finally, we conclude this chapter with Sec. 7.

2 Geo-Tagged Multimedia Data on Social Networks

Here, we introduce several typical examples of location-aware multimedia data,
e.g., Flickr images, Foursquare check-in, Twitter messages. This demonstrates how
user-centric location-aware datasets are associated with multimedia contents. Such

1 Many social networking services allow users to self-report presence (known as
check in) to a physical place and share their locations with their friends. Refer to
http://en.wikipedia.org/wiki/Check-in
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Fig. 1 Connecting social networks and content-sharing platforms via location information.

location-aware social multimedia data with geo-tags can be exploited in later sec-
tions to analyze user behaviour, especially user interest.

2.1 Geo-Tagged Photos on Flickr

Location information is important for remembering where a particular photo came
from and showing off user’s favorite photos to the world over a map. Online photo
sharing website Flickr2 has created the geo-tagging3 function to let users geo-tag
their photos, as shown in Fig. 2. According to the location names, these geo-tagged
photos can be classified and displayed on a map.

Flickr acts as a repository of all kinds of photos together with geo-tags. Through
crowdsourcing from Flickr’s geo-tagged photo collections, geographic discovery
can be studied to discover knowledge about different aspects of information on the
surface of the Earth, for example, classifying the land-use into classes [19] of aca-
demic, sports and residential according to both images and their geo-tags.
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Fig. 2 Geo-tagged Flickr photos shown on the map.

Fig. 3 Top check-in countries and categories in Foursquare, reported by
http://gnip.com/foursquare/.

2.2 Geo-Social Data on Foursquare

Foursquare4 implements a location layer for the Internet, which is an intersection of
virtual social networks and physical world to help connect people with their friends
around the world. In addition, Foursquare provides an API to map location infor-
mation to geo-categories. Specifically, with a given location (latitude and longi-
tude), Foursquare returns venues nearby with metadata (geo-category etc.). From

2 https://www.flickr.com/
3 Geo-tagging is the process of adding geographical identification metadata to various media data.
Refer to http://en.wikipedia.org/wiki/Geotagging
4 https://foursquare.com/
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Fig. 3, we can see top 10 check-in countries and top 10 check-in geo-categories in
Foursquare.

User-generated geographic data may be shared on social networking platforms.
For example, checking-in at a venue via Foursquare, Foursquare will tell you who
and what are nearby and broadcast your location to your friends and update your
Twitter and Facebook status. Foursquare also can serve as a metadata of local busi-
ness information. When users check-in at the stores, the check-in data provides a
spatial distribution of users visiting these stores, and can be used for analyzing the
primary trade areas of these stores [15]. Check-ins in Foursquare also can provide
user visit information [10].

Data about the geographic positions of users can be made publicly available,
together with their online social connections. For example, many Foursquare users
choose to automatically push their check-ins to Twitter messages. Although Foursquare
does not provide unauthorized access to user friends list, each tweet provides a URL
to the Foursquare website, where information about the geographic location of the
venue can be acquired. Twitter provides a public API to search and download these
tweets. Then, friendship ties and location information can be acquired from tweets.
These datasets are publicly available and can be used to study social and geographic
networks of users.

2.3 Location-Aware Messages on Twitter

As music plays an important role in our life, users often tweet music-related topics
on Twitter5. Through crowdsourcing in Twitter, tweets with geospatial coordinates
can be leveraged for estimating artist similarity, popularity, and local music trends.
In addition, geographic music listening pattern inferred from all music tweets can
be visualized on an electronic map [20].

Some social media systems utilize and provide location information at various
accuracy levels and run over different geographical scopes (e.g. a street, a suburb, a
city, a country), and work with different social web sources (e.g. Twitter, Facebook,
etc.). For example, Crisis tracker6 is a web-based system that automatically tracks
sets of keywords on Twitter, and filters stories based on location information.

3 Location and Context-Awareness

Location-based services have experienced different generations. The first genera-
tion location-based services were released around 2000 [3]. Various icons are used
to represent different categories of point of interest on an electronic map. The pre-

5 https://twitter.com/
6 http://irevolution.net/2012/07/30/collaborative-social-media-analysis/
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Fig. 4 Location information that can be inferred from social media data.

ferred application was the delivery of nearby points of interest (such as restaurants
and bars). Advancements in positioning techniques and mobile communications
have enabled the second generation location-based services with a broad range of
new and sophisticated applications. Here, we mention two typical applications as
examples. (i) Social community platforms like Facebook and Foursquare have en-
abled location sharing for the mutual exchange of location data between users. A
special form of location sharing is the check-in function. It is used to explicitly ac-
quire user locations at certain venues. (ii) Locating people to provide special offers
or discounts has attracted much attention in mobile marketing. In this way, advertis-
ers could catch the attentions of users by providing advertisements matching their
needs. The area of mobile marketing is the next big thing in the mobile Internet
[16]. Particularly, we explain in detail the geo-fencing application [13], which is a
promising technique for user-centric mobile location-based services.

3.1 Location Inference from Social Messages

Social media messages contain different types of location information, such as place
names appearing in the message, a location from which the message was sent, and so
on. Four types of locations, shown in Fig. 4, can be inferred from social web data.
Location in text is a location type for place names described in a target message
(for example, London, Canada, Ontario). Targeted location is relevant to the main
topic of the target message (for example, Canada, Ontario). User location profile is
a location type that a user discloses in his profile (for example, Los Angeles). The
user’s current location is a location type that is obtained from location-based service
in physical world (for example, 1095 Mainland St.).

When we geo-locate a message, we should consider which location type is ap-
propriate. A framework is proposed in [21] for classifying location elements and a
method for their extraction from social web data. This work is related to location
inference from text messages. Usually the inputs are the messages and the outputs
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are the locations. There are two components in the system: location name recogni-
tion and toponym resolution. The system extracts terms that are possibly location
names as location candidates, and resolves whether or not they are location names
in the toponym resolution component. A confidence score for each location instance
is calculated by multiplying the location popularity and region context scores [21].
After these calculations, the location instance with the highest confidence score is
selected as the result of toponym resolution. Finally, the detected location is as-
signed coordinates.

3.2 Location Inference from Tweets via the SAGE Model

Term distribution of tweets written by a given user depends on several factors such
as user preference, region distribution and topic distribution. A user has his prefer-
ences over regions where he usually spends his time, and preferences over topics
that he often tweets about. In addition, at a specific region, the tweets may contain
localized keywords such as an airport, a park, a mall, a city, etc. Moreover, the con-
tent of tweets may be associated with the topics at a region and can be classified
as sports, politics, travel, daily life, etc. Therefore, a tweet is composed of a bag of
words from topic, region and background language models. Then, given a tweet, its
location can be inferred by using these language models.

We first give some preliminaries in Fig. 5 on how to model term frequency in the
log space. For a term v in a model φ , its term frequency is βv, and its log frequency is
defined as φv = logβv. Then, the term distribution can be computed by normalizing
βv, and more importantly, it is equivalent to computing the term distribution directly
from the log frequency φv (Eq.(1)).

p(v|φ) = βv

∑
v

βv
=

exp(φv)

∑
v

exp(φv)
. (1)
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Now consider the sparse additive generative model (SAGE) [22], where several
models φ0, φu, φg are added together (Eq.(2)). Their addition in the log space is
equivalent to the multiplication of term frequency. In this process, φ0 is a basic ref-
erence model (β 0 is the term frequency distribution), φu is the difference between
one model and the reference model (β u is the rate by which term frequency is in-
creased in this model), and φg is the difference between another model and the
reference model.

p(v|φ0 +φu +φg) =
exp(φ0

v +φu
v +φg

v )

∑
v

exp(φ0
v +φu

v +φg
v )

. (2)

The above SAGE model can be used to represent multiple facets involved in
automatic generation of text messages. For example, here, use φ0 to denote the log
value of term frequencies of a background model. Other components, such as φu and
φg, are used to describe the topic model and perspective model, which only record
the difference from the background model. The SAGE model has two properties.
First is sparsity-inducing for a specific model. In other words, only the difference
of term frequency of a subset of terms is modeled. For example, in Fig. 5, φu and
φg only have a few non-zero items. Second is to combine generative facets through
simple addition in log space. For each term, the non-zeros values in all models are
added together, and then normalized to get the distribution of terms.

Next, we introduce how a tweet is automatically generated using the SAGE
model, based on the term distribution, regional language models, global topics,
user preferences etc [23]. A tweet is generated by several steps. In the first step,
using both global distribution over latent regions η0 and user dependent distri-
bution over latent regions ηu, a region r is drawn from the mixed region model
p(r|η0 +ηu). In the second step, using global distribution over topics θ0, regional
distribution over topics θr, and user dependent distribution over topics θu, a topic
z is drawn from the mixed topic model p(z|θ0 + θr + θu). In the third step, each
word w in the tweet is successively generated by drawing from the aggregate distri-
bution p(w|φ0 +φr +φz), where φ0 parametizes a global distribution over terms, φr
describes the region-dependence of terms, and φz is a topic-specific distribution of
terms.

Although Twitter provides location service, currently only 1% of tweets are geo-
tagged (latitude and longitude). The previous tweet generation model can be used
for location prediction of tweets [23], as shown in Fig. 6. Location prediction for
a new tweet is based on the words used in the tweet and its user information. User
information gives the user dependent distribution over latent regions (ηu). The addi-
tive model for region gives a guess of a region r from the model p(r|η0+ηu). Words
in the tweet are related to regional distribution over topics (θr) and user dependent
distribution (θu) over topics. On this basis, the additive model p(z|θ0 + θr + θu)
for topic gives a guess of topic which maximizes the probability. This probability is
associated with the region r. Further maximizing this probability with respect to dif-
ferent regions gives the most proper region for the tweet. This is a rough estimation
of the location for the tweet.
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Fig. 7 Semantic geo-boundaries in real life reported from http://www.maponics.com/.

3.3 Context Awareness via Geo-fencing

More and more location-based social services want to locate, reach and interact with
users on-the-go and provide various services. To this end, the geo-fencing service
[13] (e.g., placecast, sensewhere, zentracker) is introduced to respond to personal
user needs, and recent years have seen a growing need for user-centric geo-fencing
technique in location-based services.

A geo-fence is a virtual perimeter for a real-world confined geographic area.
This area can be the coverage of a particular radio cell or a Wi-Fi access point, or
specified by a geographic shape. As a result, geo-fences may have different shapes,
e.g., circles, rectangles, polygons, which are specified by geographic coordinates.
The basic idea behind geo-fencing is very intuitive: when users enter or exit geo-
fences based on geo-fencing-enabled location preferences, notifications are sent out
to users or their networks of friends.

Various semantic geo-fence boundaries can be predefined to target very specific
geographic areas and customers, visualize business opportunities and help to make
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Fig. 8 Polygons, points and edges from training dataset of ACM SIGSPATIAL GIS Cup 2013.

more informative decisions. Fig. 7 shows example geo-fences corresponding to zip
code boundaries, college campus boundaries, carrier route boundaries, shopping
boundaries, respectively.

Geo-fencing is a big feature for user-centric location-based social networks. It
mainly deals with pairing a point (a user’s coordinate) with a polygon (a semantic
geo-fence boundary). In other words, the task is to estimate whether a point is IN-
SIDE or WITHIN a distance of a polygon. Each point has multiple instances each
with a unique sequence number, i.e., points can be moving. Each polygon has mul-
tiple instances each with a unique sequence number, i.e., the shapes and positions
of polygons may change as well. A point may appear in several polygons (in the
overlapping area of polygons). Sequence numbers of points and polygons belong to
the same space and have no overlapping. Sequence number works as timestamp and
a large sequence number means a recent time. When the sequence number of a point
is given, all instances of polygons up to that time should be examined. Fig. 8 shows
examples of polygons. Here, we can find polygons usually are irregular, and each
polygon on average contains around 200 edges. Two polygons (12 and 13) further
have inner rings, whose numbers of edges are equal to 15 and 20, respectively.

3.3.1 Efficient Geo-fencing

Geo-fencing is broadly applied in location-based services, e.g., advertisements,
child location service. It can be well solved by using the crossing number algorithm
[11] (or the winding number algorithm [12]). However, with the rapid increase of
geo-spatial datasets, the geo-fencing technique is required to process millions of
points and hundreds of polygons or even more in real-time. So, how to efficiently
pair points with polygons is becoming a very important task. Here, we introduce a
simple but effective and efficient geo-fencing algorithm [14], which is one of top
winners in ACM SIGSPATIAL GIS Cup 2013.
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According to the crossing number algorithm [12], the number of intersections
for a ray passing from a point to the exterior of a polygon, if odd, indicates that the
point lies inside the polygon, as shown in Fig. 9. But this crossing number algorithm
requires checking all edges, and becomes inefficient when each polygon contains
many edges. Actually, this problem can be simplified by two steps [14]: First, by
exploiting the minimum bounding rectangle (MBR) of a polygon, a point outside the
MBR of a polygon is surely outside the polygon. An R-tree is further used to quickly
detect whether a point is inside the MBR of a polygon. Second, when the point is
inside the MBR, instead of an exhaustive search, an edge-based locality sensitive
hashing (LSH) scheme is proposed to adapt to the crossing number algorithm. As
for the WITHIN detection in Fig. 10, a point might be outside the MBR of a polygon
but still within a distance dth of the outer-ring of the polygon. In this case, a rectangle
centered at the point, with an edge length being 2dth is constructed. If this rectangle
does not overlap with the MBR of the polygon, the point is surely not within a
distance dth of the polygon. Applying LSH in the WITHIN detection is a little more
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Fig. 11 MBR of polygons are organized in the R-tree.

complex. A probing scheme is suggested to locate adjacent buckets so as to check
all edges near to the target point.

Fig. 11 shows an example of the relationship between an input point and its latest
instances of polygons. In this figure, each polygon has its own MBR, and 15 basic
MBRs are further divided into three groups in a higher level in an R-tree. In this way,
MBRs that contain the given point are quickly found instead of exhaustive search.
The corresponding polygons are regarded as candidates and are further examined.

3.4 Localized and Personalized Search

Personalization has been a trend of web searching. A method to personalized search
is to exploit the location information. As is known, there is a geographic locality
in user’s interest and culture. So, for the same query, people in different areas may
expect different results. These days, search engines can return most relevant local
results to users according to the location information in user’s profile, while filter-
ing out irrelevant information. For example in Fig. 12, users searching for pasta
restaurant in Kyoto and Singapore may get local relevant results. From these search
results, it is obvious that Google search engine may personalize results based on
users’ location information. In this way, location information, as an important di-
mension, complements multimedia retrieval and recommendation.
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4 Location-Aware Multimedia Applications

Here, we introduce emerging geo-tagged multimedia applications and techniques
(e.g., land-use classification, geo-tagged image retrieval). Their common part is to
incorporate geographic information as a context in multimedia information process-
ing.

4.1 Music Geo-Listening Patterns

Twitter streaming API can be leveraged to retrieve tweets with geo-spatial coordi-
nates. Further using music-related hashtags helps to extract music listening-related
tweets. Then, artist information can be extracted by parsing and analyzing the con-
tent of these tweets. Music-related tweets often contain patterns, for example artist
name followed by song title. In some cases, artist name might appear as a valid
song title, which results in some ambiguity. Generally, pattern-based approach can
be used to match potential artist names against the artist dictionary. Track infor-
mation can be used to help distinguish artist names, by exploiting the musicbrainz
database as a knowledge base for artist names and related song titles.
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These music related tweets are classified according to artist genre information
[20]. More specifically, the genre tags available for each artist are collected from
last.fm, and further refined by using a list of known genres from freebase. Then, the
artists (and genre tags) are split into k clusters, k ranging from 10 to 20. Next, each
tweet is assigned an artist cluster number based on its included artist information.
Further exploiting the coordinates of tweets, the number of tweets per artist cluster
per area can be computed as music listening pattern and visualized on a world map.

4.2 Geo-Tagged Images for Land-Use Classification

Next example is exploring geo-tagged images for land-use classification. In this ap-
plication, the problem of geographic discovery, particularly land-use classification,
is investigated through crowdsourcing of geographic information from geo-tagged
photo collections in Flickr. The geo-tagged photos are represented by their visual or
text features to perform land-use classification. This is formulated as a supervised
classification problem, in which support vector machine (SVM) [24] is used. Three
land-use classes are considered in [19]: academic, residential, and sports. To gen-
erate a predicted land-use map, the target area is divided into multiple sub-regions,
each separately classified.

Visual feature and text feature are main components in land-use classification
model [19]. An intuitive question in the classification is how to model proximate
sensing from visual features or textual feature contained in geo-tagged images. Bag
of visual words (BoW) with a soft-weighing scheme is used to extract a BoW fea-
ture from each image, and a dictionary of 500 visual words is used. Flickr images
commonly have user-supplied text associated with them. A dictionary of terms is
created based on the words extracted from the title, descriptions, and tags associ-
ated with each image. The text analysis is performed at the group level since there
is typically not enough text associated with the individual images for effective clas-
sification. Each of the text components associated with an image is parsed into a set
of terms, and each group of images is represented by a histogram of terms among
the dictionary. Then, pLSA (probabilistic latent semantic analysis) [25] is used as a
tool to reduce the dimensionality of the term histogram of each image group.

4.3 Geo-Visual Image Similarity

Sometimes, it is necessary to identify geo-tagged images that contain similar views
of identical objects so as to retrieve similar images taken in the same location. The
geographic location of the photo image is measured where the picture is captured,
not where the object is located. So, the position in the geo-tag is not the position of
the captured object (but camera position where the object is taken). Images having
identical objects are defined as orthologous images, for example, in Fig. 13, three
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Fig. 13 Different photos showing the identical Merlion.

photos are similar to each other. Then, an orthologous identity function (OIF) [26]
is used to estimate the degree to which two images are similar. OIF is a similarity
rating function that uses both the geographic distance and image distance of photos.

4.4 Geo-Location and Context-Based Pedestrian Detection

In previous examples, we introduced classification of immovable objects such as
land-use. Now we discuss the classification of movable objects, pedestrian detection
related to geo-location.

Pedestrian detection can be conducted by different models with different com-
plexities [27]. In the conventional model, the detection problem can be simply
formulated as computing the posterior probability p(P|V), where P denotes the
pedestrian label and V denotes visual appearance of image or image batch. The
second model adds the geographic location G as p(P|V,G). Different locations will
influence both the visual appearance and pedestrian presence probability. There-
fore, the third model further exploits the environment context E , considering that
different environments will influence the visual appearance of pedestrians. This
model involves all factors including geographic location and environment context.
Its context-based posterior probability p(P|V,G,E) means the probability that an
image contains a pedestrian given visual appearance V , the location G and environ-
ment E .

By leveraging a vast amount of web images, a contextual image database is con-
structed, in which each image is automatically attached with geographic location
(i.e., latitude and longitude) and environment information (i.e., season, time and
weather condition). Two pre-trained classifiers are exploited: a time classifier to de-
cide whether an image was taken in the daytime or at night, a season classifier to
decide which season an image was taken in. There is no any hint on weather condi-
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tion in image metadata. Therefore, the weather condition is divided into three classes
(snow, fog and normal), and a weather classifier is trained as well. By incorporat-
ing visual feature, geographic location (i.e., latitude and longitude) and environment
context (i.e., season, time and weather condition), a context-based pedestrian detec-
tion method [27] can be realized by the probabilistic model discussed above.

4.5 Soundtrack Recommendation for User-Generated Videos via
Context Information

Most user-generated videos, taken outdoor, lack suitable soundtracks. Adding a
matching soundtrack to a video can make the video much more attractive for shar-
ing. Generally, different geo-locations convey different affective atmospheres. For
example, a busy city has a different atmosphere from a majestic mountain view. In
this sense, each geo-category is associated with a mood. Based on mood similarity,
a soundtrack can be recommended to a video scene.

Table 1 Relationship between geo-categories and moods.

Geographic category Related mood(s)

Arts & Entertainment Quiet, calm
Colleagues & Universities Quiet, calm
Food Sweet, happy
Great Outdoors Dreamy
Nightlife Spots Funny, intense, playful
Professional & Others Places Aggressive, heavy
Residences Sweet, sleepy
Shops & Services Happy
Travel & Transport Melancholy, bittersweet, funny

Geo-locations can be classified into geo categories through leveraging Foursquare
API. A geo-category is further associated with an atmosphere, or a mood at a venue.
Table 1 shows a potential mapping from geo-categories to moods [7]. User study is
conducted to identify which mood should be associated with each geo contextual
category. By using the relationship in this table, a system can automatically rank
mood categories for a given geo-location.

The whole soundtrack generation system [7] has two parts: smartphone applica-
tion and server side. User generated videos are captured by smartphones together
with continuous streams of geo-sensor (GPS) information. These geo-sensor data
streams are mapped to a set of ranked, textual geo-tags. Geo-tags are further clas-
sified to geo-categories via the API provided by Foursquare, and then mapped to
mood tags according to a predetermined geo-mood mapping table (refer to Table 1).
Mood-tags provide the input into a music retrieval engine, which returns a music
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soundtrack most matching these tags. Finally, the music soundtrack is associated
with the video and the new video is ready for sharing.

The performance of soundtrack recommendation for user-generated videos can
be further improved by exploiting visual features as well. Especially, the classifi-
cation results from geo-feature and visual feature via SVM [24] are late-fused to
generate a more robust result, as discussed in [8, 9].

5 Analysis of Geo-Social Data

Social media are user-centric, and designed for the interactions and communica-
tions between users all over the world. Social networking platforms provide ways
to create and exchange user-generated contents while sustaining human contact at
the same time. Social media have different forms and languages, which include,
e.g., videos, images, audio songs, comments, reviews, ratings. Users participate in
social networking platforms via different devices, e.g., using desktop PC, tablet,
smart phone, or game console. Conventionally, user interface approaches address
the user’s interaction with devices, the interactions between a user and a software
or application. In comparison, online social interactions [2] are the communications
between users via the help of social interface. They are established through the self-
reinforcing activities of participating users. Social interactions reveal what is going
on, what an application or site is about, and reflect psychological views of identity,
the self, interpersonal relationships, and social structures.

In the following, we show with examples some approaches related to the analysis
of geo-social data, especially personal preference mining, social knowledge discov-
ery, and geographic distribution of social activities.

5.1 Analysis of Social Expertise Based on Number of Check-ins

A user visits different venues and generates different check-ins online. These check-
ins reflect user’s location history in the physical world. Foursquare has a hierarchical
category structure which includes 9 top categories and 410 sub-categories. Using
the API provided by Foursquare, the geographic trajectory of a user can be con-
verted to a series of geo-categories, which contains user’s personal preferences. A
user’s location history is regarded as a document and categories or sub-categories
are considered as terms in the document. By exploiting the TF-IDF (term frequency
inverse document frequency) method [28], features can be computed at different
levels, using either categories or sub-categories as vocabularies. When computing
the similarity between two users in terms of the trajectories, a similarity score can
be computed at each level of the hierarchical category, and their weighted sum gives
a total similarity between two users [10].
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Fig. 14 Iterative model for social expertise discovery.

An example is used to explain how to make use of an iterative model for social
expertise discovery [10]. In the model shown in Fig. 14, each user has his scores for
different venue categories, and a venue category is associated with multiple users.
For a specific category m, a user’s knowledge, um.h, can be represented by the sum
of the authority scores (vm.a) of the venues visited by the user (Eq.(3)). On the other
hand, the authority score of a venue, vm.a, can be represented by the hub scores
(um.h) of the users who have visited this venue (Eq.(4)).

um.h = ∑
u.v∈m

vm.a. (3)

vm.a = ∑
u∈U

um.h. (4)

Then, a user with a high score in a category is regarded as a local expert of
that category. To identify the local experts of a venue category, for example, Italian
food, based on category information recorded in the user’s location history, a user’s
expertise in each category in different cities can be computed by an iterative model,
known as mutual inference [29]. In this process, the initial authority and hub scores
are set as the number of user’s visits.

5.2 Analysis of Business Venues Based on Check-ins

As mentioned before, Foursquare has 9 top-categories and 410 sub-categories. How-
ever, in some cases, for example, in trade area analysis, shopping habits are desired
[15]. Top 9 categories cannot effectively distinguish check-in patterns. 410 sub-
categories can be more valuable in user profiling but with too high dimension.

The LDA (latent dirichlet allocation) method [30] can be used to identify hidden
check-in patterns as topics from the histogram of user check-ins in terms of sub-
categories. LDA is widely adopted in document topic modeling. It assumes that
each document contains a mixture of topics and each topic has certain probability of
mentioning a word. LDA identifies topics and calculates the proportion of different
topics in each document by examining word distributions in the documents.
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Fig. 15 Business attractiveness, the size of an icon is proportional to the popularity of the corre-
sponding business.

More specifically, the distribution of different topics is calculated for a document.
Each user is treated as a document, and each topic is regarded as a term. By analyz-
ing the distribution of topics of customers of a store and computing the histogram
of the main topic of all customers, the stores can be profiled as well in terms of
potential topics [15].

Another example is shown in Fig. 15 for business attractiveness discovery, where
the size of an icon is proportional to the popularity of the corresponding business.
Consider a number of customers C1 to Cn and a number of competitor venues V1
to Vm. ai j represents the number of visits of customer Ci to venue Vj. Then, the
probability that a venue Vj is visited can be calculated via

P(Vj) =
∑n

i=1 ai j

∑n
i=1 ∑m

k=1 aik
. (5)

This probability is an indicator of local popularity of a business venue. In other
words, the probability of venue Vj being visited by all customers in an area reflects
its business attractiveness compared with other competitor venues.

5.3 Analysis of User Check-ins in Yelp

In this section, we investigate user behaviors in physical world, by using experimen-
tal check-ins data. This data includes 11,537 businesses and 8,282 sets of check-ins
from March 2005 to January 2013 in Phoenix, which was provided by Yelp.

Fig. 16 and Fig. 17 respectively show user activity patterns across the 10 most
popular categories of Yelp on weekdays and on weekend. Top 7 categories are the
same in the two figures, which indicates that user business activities on weekdays
and weekend have no significant differences in the area of Phoenix. However, we
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Fig. 16 User activities on weekdays in Yelp.
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Fig. 17 User activities on weekend in Yelp.
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Fig. 18 CCDF of the number of check-ins at business venues in Yelp.

still can find that more people like to travel and go to grocery on weekend than on
weekday.

Fig. 18 shows the CCDF (complementary cumulative distribution function) of
the number of per-user check-ins. The number of check-ins varies greatly among
users. 50% users have a check-in count no more than 20. On the other hand, 1%
users have more than 1000 check-ins.
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Fig. 19 Distribution of the number of visits to different categories for a user.

5.4 Analysis of Interest Focus and Entropy in Foursquare

User-generated geo-social data contains user behaviors in physical world and also
reflects geographic reach and interest of a geo-category context or a multimedia
content across the globe. Here, some methods and examples are given to address
geographic distribution of social activities related to geographic popularity of pho-
tos, tips and videos.

We investigate the distribution of social media data of LA and NYC, crawled
from Foursquare, where 2,728,411 venue photos and 1,212,136 tips are used in the
experiments. Since Foursquare is a location-based social networking platform, large
volumes of tips and photos are posted in this community. Each user has different
interest over all the geo-categories, reflected in the variations of the number of per-
category tips or photos. In other words, the distribution of a user’s visit in terms of
geo-category would likely exhibit a non-uniform distribution, with a large fraction
of visits in only a few categories. The distribution of user interest can be measured
by two metrics, interest focus and interest entropy.

Fig. 19 shows the distribution of the number of visits of a user in each category,
which is usually non-uniform. Let vik represent the number of visits of a single user
i to a category k. Then, interest focus of a user is defined as its highest fraction of
visits, as follows:

Fi = max
j

vi j

∑k vik
. (6)

A higher interest focus means the interest of a user is more limited to a specific
category.

CCDF of per-user interest focus is shown in Fig. 20, where the visit is defined
in terms of tips (messages) or photos. In this figure, we used the top-9 categories.
Nearly 50% users have an interest focus greater than 0.5, which indicates that many
users have a primary interest (in terms of geo-category).

Interest entropy is the other metric for evaluating how user interests are dis-
tributed over different categories. With the fraction of visits to a category in Fig. 19
as a probability, interest entropy is computed as a standard entropy, as follows:

Hi = −∑
k

pik log2 pik, (7)
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Fig. 20 CCDF of interest focus in terms of photos and tips in Foursquare.
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Fig. 21 CCDF of interest entropy in terms of photos and tips in Foursquare.

pik =
vik

∑ j vi j
.

It reflects how user interests are distributed over different categories. A higher inter-
est entropy means a more uniform distribution of visits to different categories while
a lower value means interests are focused in fewer categories.

Fig. 21 shows the CCDF of per-user interest entropies, in terms of tips and pho-
tos. Only 20% users has an interest entropy of photo greater than 1bit, or the number
of categories being frequently visited is equal to 2. The interest entropy of tips is
lower.
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6 Integration of Social and Content Networks

These days, users find videos from the Internet by different methods. Some of the
videos are directly searched via the web sites, some other videos may be recom-
mended between users through their social connections. As a result, social connec-
tion has a significant impact on video views. In addition, the effect of social sharing
is becoming more important as more users are involved in the social networks.

6.1 Geo-Social Networks

Every day, a huge volume of Internet traffic is generated by online multimedia shar-
ing platforms such as YouTube, Flickr, Last.fm. These platforms often rely on con-
tent delivery networks [1] to distribute their content from storage servers to multiple
locations over the planet. Servers exchange content in a cooperative way to maxi-
mize the overall efficiency. Recently, content diffusion is also fostered by web-links
shared on online social networks [2]. This may generate large amounts of requests
to the provider through the cascading across a user’s social links. Content discovery
heavily depends on the web search. Web search services like Bing and Google Web
Search now are an integral part of our daily life. Google Search alone receives 12.8
billion queries7 every month from U.S. users. People use web search for a couple
of reasons, including listening to music, watching baseball, and making purchase
decisions.

Lots of applications and services on the Internet have been developed to make
use of location information to meet users’ daily needs. The increase of various so-
cial media services requires a global platform for sharing user-generated contents,
such as videos, images, music, blogs and tweets. Location-enabled tagging for so-
cial contents via smart phones and social media services reflects geo-spatial logs of
user activities. Users can link their presences and multimedia contents (for example,
video, image) to a particular place. Geo-spatial footprints generated by users pro-
vide interesting information about the spatio-temporal dynamics of online memes
[31], which have important implications for a variety of multimedia systems and
applications [8, 20, 32]. On the one hand, geo-spatial data contains personal physi-
cal logs of each individual user. On the other hand, it also reflects social behaviors
related to the community as data of more users is aggregated. These geo-spatial data
could be very useful for studying various lifestyle patterns [33], e.g., public health,
cultural identification, urban computing.

7 http://bit.ly/ThGnOc
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Fig. 22 Friendship and great circle distance.

6.1.1 Graph Representation of Geo-Social Networks

Next we introduce how to model social networks via a graph [17]. Online users
are located over the 2-dimensional surface of the Earth. The great-circle distance is
adopted as the metric. The distance in Fig. 22 between any two nodes is calculated
as a great-circle distance from their geographic coordinates. The social tie between
two nodes is represented by a link between them.

A social network can be represented as an undirected graph G, with a node set
N and a link set K. When there is a social tie between two users i and j, a link is
established between them. The link length is associated with the great circle distance
li j. It is useful to find how friends of a user are geographically distributed. One
useful metric is node locality (Eq.(8)). Considering node i and all its neighbors in
a set Γi, the geographic closeness between two nodes is measured by a function of
normalized distance using a parameter β . The average over all nodes in the neighbor
set Γi gives node locality [17] of node i.

Li =
1
|Γi| ∑

j∈Γi

e−li j/β . (8)

In this way, the node locality represents the average closeness between a user and his
friends, and decreases as the actual distance gets larger. It is useful when exploiting
social connections to recommend multimedia contents, as is discussed later.

The node locality can be investigated by using the cascade of Twitter messages.
Twitter messages are shown on the author’s personal page and also sent to the au-
thor’s followers. A node is used to represent a user with a geographic location. Then,
a directed graph of users can be extracted from the dataset of tweets, and node lo-
cality of each user can be calculated.

A more interesting phenomenon is the spreading of YouTube video links via
tweets. A cascade over a social network begins when the first user shares some con-
tent and becomes the initiator of the cascade. After this event, some of his contacts
will share the same content again, and the cascade will recursively spread over the
social links.
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Fig. 23 Content delivery networks handling locally popular and globally popular contents differ-
ently.

6.2 Geo-Social Multimedia Content Delivery

Now we introduce some methods related to multimedia content diffusion, for exam-
ple, geo-social cascades, caching policies and distributed cache. The popularity of
multimedia content over the Web can be driven by public media coverage. This type
of phenomena often results in globally popular items, which should be widely repli-
cated throughout a content delivery network. Alternatively, content may become
popular over social networking platforms because people share it and talk about it.
In this way, content may easily spread from a small set of users to a vast audience
through social connections, for example, 700 YouTube video links are shared on
Twitter every minute 8.

Social sharing also has a large impact on content delivery network. The latter
is a system of networked servers holding copies of data items, placed at different
geographic locations as shown in Fig. 23. Its performance is influenced by the geo-
graphical distributions of the requests. Then, it would be very useful to understand
whether an item becomes popular on a planetary scale or just in a particular geo-
graphic area. A globally popular content item should be replicated at every location,
since it receives many requests from all around the world. On the other hand, when
content is only locally popular, it should be cached only in specific locations.

As for standard caching policies [34] used in content delivery networks, each
policy assigns a priority P(v) to a video v, and the video with the lowest priority is
chosen for deletion when the cache buffer gets full. There are three typical caching
policies. In Least-Recently-Used (LRU) policy, P(v) equals clock(v). clock(v) is
the last time that the video v is watched, and it involves the simple aging effect.
In Least-Frequently-Used (LFU) policy, P(v) equals Freq(v), where Freq(v) is the
number of times video v has been requested since it was stored in the cache. The
mixed policy combines LRU and LFU, and the priority of video v is given by P(v) =
clock(v)+Freq(v), in order to balance both temporal and popularity effects.

8 http://www.streamsend.com/
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Fig. 25 Geocascade in geographic social networks: users are in the same social cascade.

The above caching policies can be further augmented by exploiting geo-social
information. Twitter fosters the popularity of YouTube, since users tend to tweet
about videos they like, triggering a spreading of the video. This provides us some
opportunities to investigate how geographic information is extracted and used to
improve caching of multimedia files. There are two augment catching policies [18]
based on the characteristics of the geo-social cascades involving one video. One is
Geosocial (shown in Fig. 24), the extra weight of video v, which is added to its
priority, is the sum of the node locality values of all the users that have posted a
message about the video, even though they are not involved in a social cascade. The
other is Geocascade (shown in Fig. 25), the extra weight of video v that is added
to the priority is the sum of the node locality values of all the users participating in
the video’s social cascade. In this way, exploiting social connections helps to find
whether a video becomes popular and helps to optimize the cache management.

7 Summary of This Chapter

With an overwhelming amount of social multimedia content on the Internet, it is
difficult to find what users are really interested in. For example, a search for “pasta”
may return hundreds of millions of social media items. In addition, sometimes,
an incomplete query may lead to results of different meanings, where more accu-
rate search requires further information on user preference. For example, a search
for “apple” returns the fruit apple and the apple brand. Personalization has been a
trend of web searching. Recently, many social networking platforms has provided
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location-based services, by either explicitly letting users choose their places or im-
plicitly enabling geo-tagging to associate multimedia content with latitude and lon-
gitude. Location information has been a very important aspect that helps better un-
derstand online social media contents and people activities in physical world.

This chapter takes user location as a clue to discuss a broad topics over location-
aware multimedia systems. We have talked about fundamental components related
to geographic-aware social media, mobile users, social activities and multimedia
content delivery. More specifically, geo-social data contains rich context and has
two aspects of implication: individual user interest and geographic-social behav-
iors. We have shown some examples of geographic-aware social media and social
interaction data, and reported latest geographic-aware multimedia applications and
methods, for example, how to leverage tweets with geospatial information for min-
ing music listening patterns, how to map geo-categories to moods. We also have
discussed some location-enabled advanced topics and approaches. Particularly, we
explained geo-fencing in detail, which is a promising technique for user-centric mo-
bile location-based services. We showed some approaches related to personal pref-
erence mining, social knowledge learning, geographic distribution of social activi-
ties and multimedia content diffusion. To sum up, exploiting location information to
mine user preference and social links to predict content popularity will greatly affect
the form of content retrieval and delivery, which are attracting, and will continue to
attract much research interest.
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