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integrable system with two singular points
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Abstract We give a Hamiltonian system which is nonintegrable in a domain
containing two singular points and that is integrable in some neighborhood
of a singular point. The system is an arbitrarily small nontrivial perturbation
of an integrable Hamiltonian system given by confluence of regular singular
points of a hypergeometric system.
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1 Introduction

Let n ≥ 2 be an integer, and consider the Hamiltonian system




z2 dq

dz
= ∇pH(z, q, p),

z2 dp

dz
= −∇qH(z, q, p),

(1)

where q = (q2, ..., qn), p = (p2, ..., pn). Here

∇q :=

(
∂

∂q2
, ...,

∂

∂qn

)
, ∇p :=

(
∂

∂p2
, ...,

∂

∂pn

)
.
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The system (1) is equivalent to an autonomous one
{
q̇1 = Hp1

, q̇ = ∇pH,

ṗ1 = −Hq1
, ṗ = −∇qH,

(2)

where q1 = z and H(q1, q, p1, p) := q21p1 + H(q1, q, p) or H(q1, q, p1, p) :=
p1 + q−2

1 H(q1, q, p). We say that the Hamiltonian system (2) is Cω-Liouville
integrable if there exist first integrals φj ∈ Cω (j = 1, . . . , n) which are
functionally independent on an open dense set and Poisson commuting, i.e.,
{φj , φk} = 0, {H, φk} = 0, where {·, ·} denotes the Poisson bracket. The
Hamiltonian H is a first integral of this autonomous system. We abbreviate
Cω-Liouville integrable to Cω- integrable or integrable if there is no fear of
confusion.

In [2] Bolsinov and Taimanov showed a non Cω-integrability of some Hamil-
tonian system related with geodesic flow on a Riemannian manifold. Then
Gorni and Zampieri showed similar results in the local setting, namely for
a Hamiltonian system being singular at the origin they showed the non Cω-
integrability. (cf. [3], [4]). In this paper we study the nonintegrability from a
semi-global point of view. Namely we consider Hamiltonian system which is
singular at the origin q1 = 0 as well as q1 = 1. We will show that the system is
integrable near the origin, while it is not integrable in the domain containing
q1 = 0 and q1 = 1. The Hamiltonian function is given by the arbitrary small
non zero perturbation of an integrable Hamiltonian of the confluent hyperge-
ometric system. (cf. §3).

More precisely, we consider

H =
∑

j∈J ′

τj
λj

qjpj +
q21

(q1 − 1)2

∑

j∈J

τj
λj

qjpj + q21p1, (3)

where τj and λj 6= 0 are complex constants and J and J ′ are the sets of
multi-indices such that

J 6= ∅, J ′ 6= ∅, J ∩ J ′ = ∅, J ∪ J ′ = {2, ..., n}. (4)

The Hamiltonian is derived from the hypergeometric system by confluence of
singularities. (cf. §3). The Hamiltonian system (2)- (3) determines the Hamil-
tonian vector field

χH = q21
∂

∂q1
− 2q1p1

∂

∂p1
+

2q1
(q1 − 1)3



∑

j∈J

τj
λj

qjpj


 ∂

∂p1
(5)

+
∑

j∈J ′

τj
λj

(
qj

∂

∂qj
− pj

∂

∂pj

)
+

q21
(q1 − 1)2

∑

j∈J

τj
λj

(
qj

∂

∂qj
− pj

∂

∂pj

)
.

Let

H1 :=

n∑

j=2

p2
jBj(q1, p). (6)



Nonintegrability of Hamiltonian system 3

Note that H1 does not depend on q. Suppose that the nonresonance condition
(NRC) holds:

∀γ = (γ2, . . . , γn) ∈ Z
n−1 \ {0},

n∑

j=2

τj
λj

γj 6= 0, (7)

i.e. τj/λj ’s are linearly independent over Zn−1. Moreover, assume

(TC): For k ∈ J ′, the equation

q21
d

dq1
v − 2

τk
λk

v = Bk(q1, 0) (8)

has no solution v holomorphic at q1 = 0, and for k ∈ J , the equation

q21
d

dq1
w − 2

τk
λk

q21w

(q1 − 1)2
= Bk(q1, 0) +

τk
λk

q1Bk(0, 0)

(q1 − 1)2
+Bk(0, 0) (9)

has no solution w holomorphic at q1 = 1.

Let Ω1 ⊂ C be a domain containing {q1 = 0, 1}, and Ω2 ⊂ C2n−1 be a
neighborhood of (p1, q, p) = (0, 0, 0) and define Ω := Ω1 ×Ω2. Then we have

Theorem 1 Assume that (NRC) and (TC) are satisfied. Then, there exists
Ω such that the Hamiltonian system (2) is not Cω-integrable in Ω. More pre-
cisely, for every first integral φ satisfying χH+H1

φ = 0 and holomorphic in Ω,
there exists a holomorphic function ψ(t) defined in some neighborhood of the
origin t = 0 ∈ C such that φ(q1, q, p1, p) = ψ(H + H1) in some neighborhood
of the origin.

Remark. (i) In §4 we will show that (TC) holds on an open dense set in the set
of analytic functions. (TC) also implies that H1 could be replaced by εH1 with
an arbitrary small ε 6= 0. On the other hand, it is necessary in Theorem 1 that
H1 does not vanish identically because H is integrable in view of Lemma 2. (cf.
§3). Hence the non-integrability occurs by an arbitrary small non-zero generic
perturbation. In Proposition 1 we also show that our class of Hamiltonians
contains subclass for each of which the integrability at the origin holds. Hence
the (non-) integrability in Theorem 1 is caused by the interference of singular
points.

2 Proof of Theorem 1

Let φ =: u be a holomorphic first integral in Ω and expand u at p = 0

u =
∑

α

uα(q1, q, p1)p
α. (10)
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Substitute (10) into χH+H1
u = 0 and compare the powers like p0 = 1 of both

sides. Then we have the equation of u0 = u0(q1, q, p1)

{q21p1, u0}+
∑

j∈J ′

τj
λj

qj
∂

∂qj
u0 +

q21
(q1 − 1)2

∑

j∈J

τj
λj

qj
∂

∂qj
u0 = 0. (11)

Indeed, no constant term in p appears from χH1
u in view of the definition of

χH1
.
Substituting the expansion u0 =

∑
β u0,β(q1, p1)q

β into (11), we see that

U0 := u0,0 satisfies {q21p1, U0} = 0, namely
(
q1

∂

∂q1
− 2p1

∂

∂p1

)
U0 = 0. (12)

Substitute the expansion U0 =
∑

ν,µ cνµq
µ
1 p

ν
1 into (12). Then we have∑

ν,µ cν,µ(µ − 2ν)qµ
1 p

ν
1 = 0. It follows that cν,µ = 0 for µ 6= 2ν. Hence we

obtain

U0 =
∑

ν

cν,2νq
2ν
1 pν

1 =
∑

ν

cν,2ν(q21p1)
ν . (13)

It follows that there exists a function of one variable t, φ0(t) holomorphic in
some neighborhood of t = 0 such that U0 = φ0(q

2
1p1).

Next, we focus on the equation of u0,β with β 6= 0

{q21p1, u0,β}+
∑

j∈J ′

τj
λj

βju0,β +
q21

(q1 − 1)2

∑

j∈J

τj
λj

βju0,β = 0.

Expand

u0,β =
∑

ν

ωβ,ν(q1)p
ν
1 , (14)

and consider the equation of ωβ,ν . If ν = 0, then, by comparing the coefficients
of p0

1 = 1, we have

q21
d

dq1
ωβ,0 +


∑

j∈J ′

τj
λj

βj +
q21

(q1 − 1)2

∑

j∈J

τj
λj

βj


ωβ,0 = 0. (15)

Since β 6= 0, it follows from (NRC), (7), that either A′ :=
∑

j∈J ′

τj
λj

βj 6= 0

or A :=
∑

j∈J

τj
λj

βj 6= 0 is valid. If A′ 6= 0, then we have ωβ,0 = 0 in some

neighborhood of q1 = 0. Indeed, by subsituting the expansion ωβ,0 =

∞∑

l=0

Clq
l
1

into (15) and by using the relations

q21
d

dq1
ωβ,0 =

∞∑

l=0

Cllq
l+1
1
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and

q21
(q1 − 1)2

∑

j∈J

τj
λj

βjωβ,0 =

∞∑

l=0

C′l q1
l+2

for some C′l , we obtain

C0A
′ = 0 i.e. C0 = 0,

C1A
′ + C0 · 0 = 0 i.e. C1 = 0,

C2A
′ + C′0 + C1 = 0 i.e. C2 = 0,

· · ·

Note that C′0 = 0 since C0 = 0. Hence we have ωβ,0 = 0.
In the case where A′ = 0 and A 6= 0, (15) is written in

(q1 − 1)2
d

dq1
ωβ,0 +Aωβ,0 = 0. (16)

Similarly to the case A′ 6= 0, we obtain ωβ,0 = 0 in some neighborhood of
q1 = 1. Therefore, we have ωβ,0 = 0 in Ω1.

Next, by comparing the coefficients of p1
1 = p1, we have the equation of

ωβ,1(q1)
(
q21

d

dq1
− 2q1

)
ωβ,1 +

(
A′ +

q21
(q1 − 1)2

A

)
ωβ,1 = 0. (17)

Similarly to the above, A′ 6= 0 implies ωβ,1 = 0 near q1 = 0, while A′ = 0 and
A 6= 0 imply ωβ,1 = 0 near q1 = 1. Hence we have ωβ,1 = 0 in Ω1. By the
same argument we obtain ωβ,ν = 0 in Ω1 for all ν ∈ N ∪ {0}. It follows that
u0,β = 0 for all β 6= 0.

Therefore, we have

u0 = u0,0(q
2
1p1) +

∑

β 6=0

u0,β(q21p1)q
β = φ0(q

2
1p1) (18)

for some φ0(t) of one variable being analytic at t = 0. Note that

u|p=0 − φ0(H +H1)|p=0 = u0(q1, p1)− φ0(H|p=0)

= φ0(q
2
1p1)− φ0(q

2
1p1) ≡ 0.

Hence, without loss of generality, we may assume u|p=0 = 0.
Next we consider uα = uα(q1, p1, q) for |α| = 1. Write α = ek (2 ≤ k ≤ n)

where ek := (0, ..., 0, 1, 0, ..., 0) is the k-th unit vector. Then, uα satisfies

{q21p1, uα}+
∑

j∈J ′

τj
λj

(
qj

∂

∂qj
− δk,j

)
uα (19)

+
q21

(q1 − 1)2

∑

j∈J

τj
λj

(
qj

∂

∂qj
− δk,j

)
uα = 0,
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where δk,j is the Kronecker’s delta, δk,j = 1 if k = j, and =0 if otherwise.
Note that, because u0 = 0, χH1

gives no term.
Substitute the expansion uα =

∑
β uα,β(q1, p1)q

β into (19), and compare

the powers like q0 = 1. Then we have the equation of uα,0

{q21p1, uα,0} −
τk
λk



∑

j∈J ′

δk,j


 uα,0 −

q21
(q1 − 1)2



∑

j∈J

τj
λj

δk,j


uα,0 = 0. (20)

If k ∈ J ′, then

{q21p1, uα,0} −
τk
λk

uα,0 = 0.

Because τk/λk 6= 0 by (NRC) condition, we have uα,0 = 0.
On the other hand, if k ∈ J , then

{q21p1, uα,0} −
q21

(q1 − 1)2
τk
λk

uα,0 = 0.

By considering the equation around q1 = 1 together with (NRC) condition we
obtain uα,0 = 0.

Next we consider uα,β(β 6= 0) (α = (α2, ..., αn), αj = δj,k).

{q21p1, uα,β}+
∑

j∈J ′

τj
λj

(βj − αj)uα,β (21)

+
q21

(q1 − 1)2

∑

j∈J

τj
λj

(βj − αj)uα,β = 0.

If β 6= α, then (NRC) condition yields uα,β = 0, by the similar argument as in
the above. If β = α, then we have {q21p1, uα,α} = 0. Hence, there exists φα(t)
of one variable t such that uα,α = φα(q21p1). Therefore we obtain

u =
∑

|α|=1

φα(q21p1)q
αpα +O(|p|2). (22)

Now we consider the equation for uα when |α| = 2. We substitute (10) and
(22) into the equation χH+H1

u = 0 and compare the powers like pα (|α| = 2).
In order to get the expressions of the powers like pα, we note that the following
terms appear from χHu:

{q21p1, uα}+
∑

j∈J ′

τj
λj

(
qj

∂

∂qj
− αj

)
uα +

q21
(q1 − 1)2

∑

j∈J

τj
λj

(
qj

∂

∂qj
− αj

)
uα

(23)

+
2q1

(q1 − 1)3

∑

j∈J

τj
λj

qα ∂

∂p1
φα−ej

.
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On the other hand, the following terms appear from χH1
u.

∑

ν

∂

∂pν



∑

j

p2
jBj(q1, p)


 ∂

∂qν
(φeν

qνpν) (24)

−
∂

∂q1


∑

j

p2
jBj(q1, p)


 ∂

∂p1
(
∑

|α|=1

φαq
αpα).

Note that the second term in (24) is O(|p|3). Hence it does not appear in
the recurrence formula because |α| = 2. Moreover, since we consider terms of
O(|p|2), the first term yields

2
∑

ν

φeν
Bν(q1, 0)δα,2eν

. (25)

Therefore, by comparing the powers like pα in χH+H1
u = 0 we have

{q21p1, uα}+
∑

j∈J ′

τj
λj

(
qj

∂

∂qj
− αj

)
uα (26)

+
q21

(q1 − 1)2

∑

j∈J

τj
λj

(
qj

∂

∂qj
− αj

)
uα

+
2q1

(q1 − 1)3
qα
∑

j∈J

τj
λj

∂

∂p1
φα−ej

+ 2
∑

ν

φeν
Bν(q1, 0)δα,2eν

= 0.

Expand uα with respect to q, uα =
∑

β uα,β(q1, p1)q
β and insert the expansion

into (26). By comparing the power of qβ we obtain the recurrence relation for
uα,β(q1, p1). We consider 4 cases:

(i) α 6= 2eν for every ν and β 6= α.
(ii) α = 2ek for some k and β 6= α, 0.
(iii) α = 2ek for some k and β = 0.
(iv) β = α.

Case (i): We note that the fourth and the fifth terms of the left-hand side
of (26) yield no term in the recurrence relation for uα,β . Indeed, the fourth
term is a monomial of qα. Hence, uα,β satisfies

{q21p1, uα,β}+
∑

j∈J ′

τj
λj

(βj − αj)uα,β +
q21

(q1 − 1)2

∑

j∈J

τj
λj

(βj − αj)uα,β = 0.

(27)

By virtue of (NRC) and β 6= α, either
∑

j∈J ′ τjλ
−1
j (βj − αj) 6= 0 or∑

j∈J τjλ
−1
j (βj − αj) 6= 0 holds. One can easily show that uα,β = 0 by the

holomorphy of uα,β .
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Case (ii): Because the fourth and fifth terms of the left-hand side of (26)
do not yield terms by the assumption β 6= α, 0, we see that uα,β satisfies (27).
Therefore, we have uα,β = 0.

Case (iii): Let k ∈ J ′. Because the fourth term of the left-hand side of
(26) is a monomial qα, uα,0 satisfies

{q21p1, uα,0} − 2
τk
λk

uα,0 + 2φek
(q21p1)Bk(q1, 0) = 0. (28)

Expand uα,0(q1, p1) =
∑

ν uα,0,ν(q1)p
ν
1 and compare the constant terms in p1

of both sides of (28). Then we have

q21
d

dq1
uα,0,0 − 2

τk
λk

uα,0,0 + 2φek
(0)Bk(q1, 0) = 0. (29)

If φek
(0) 6= 0, then v := uα,0,0/(−2φek

(0)) satisfies

q21
d

dq1
v − 2

τk
λk

v = Bk(q1, 0),

which contradicts (TC). Hence, φek
(0) = 0 and (29) reduces to

q21
d

dq1
uα,0,0 − 2

τk
λk

uα,0,0 = 0.

(NRC) condition implies 2τk/λk 6= 0, and the holomorphcity of uα,0,0 at q1 = 0
tells us uα,0,0 = 0.

Next, uα,0,1 satisfies

(q21
d

dq1
− 2q1)uα,0,1 − 2

τk
λk

uα,0,1 + 2Bk(q1, 0)φ′ek
(0)q21 = 0. (30)

Since uα,0,1(q1) = O(q21), we put uα,0,1(q1) = q21 ũα,0,1(q1) with ũ := ũα,0,1(q1)
satisfying

q21
d

dq1
ũ− 2

τk
λk

ũ = −2Bk(q1, 0)φ′ek
(0).

If φ′ek
(0) 6= 0, then, by putting v = ũ/(−2φ′ek

(0)), we have a contradiction to
(TC). Therefore, φ′ek

(0) = 0 and ũ = 0.

Similarly we can show uα,0,ν = 0 and φ
(ν)
ek (0) = 0 for ν ∈ N ∪ {0}, which

implies uα,0 = 0 and φek
= 0 for every k ∈ J ′.

Let k ∈ J . Then uα,0 satisfies

{q21p1, uα,0} − 2
τk
λk

q21
(q1 − 1)2

uα,0 + 2φek
(q21p1)Bk(q1, 0) = 0.

Expand uα,0(q1, p1) =
∑

ν uα,0,ν(q1)p
ν
1 . Then uα,0,0 satisfies

q21
d

dq1
uα,0,0 − 2

τk
λk

q21
(q1 − 1)2

uα,0,0 + 2φek
(0)Bk(q1, 0) = 0. (31)
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If φek
(0) 6= 0, then, by (31) we have Bk(0, 0) = 0. On the other hand, v :=

uα,0,0/(−2φek
(0)) satisfies

q21
d

dq1
v − 2

τk
λk

q21
(q1 − 1)2

v = Bk(q1, 0),

which contradicts (TC). So, φek
(0) = 0 and (31) reduces to

(q1 − 1)2
d

dq1
uα,0,0 − 2

τk
λk

uα,0,0 = 0.

Again we have uα,0,0 = 0.
Next, consider the equation of uα,0,1

(q21
d

dq1
− 2q1)uα,0,1 − 2

τk
λk

q21
(q1 − 1)2

uα,0,1 = −2φ′ek
(0)q21Bk(q1, 0). (32)

Observing uα,0,1(0) = 0, we put uα,0,1(q1) = cq1 + q21v. Substituting it into
(32), we have c = −2φ′ek

(0)Bk(0, 0) and v satisfies

−2φ′ek
(0)

{
Bk(q1, 0) +Bk(0, 0) +Bk(0, 0)

2τk
λk

q1
(q1 − 1)2

}

=

(
q21

d

dq1
−

2τk
λk

q1
(q1 − 1)2

)
v.

By use of (TC), we obtain φ′ek
(0) = 0 and uα,0,1 = 0.

In general, uα,0,ν (ν ≥ 2) satisfies

(q21
d

dq1
− 2νq1)uα,0,ν − 2

τk
λk

q21
(q1 − 1)2

uα,0,ν = −2
φ

(ν)
ek (0)

ν!
q2ν
1 Bk(q1, 0). (33)

Since we easily see uα,0,ν = O(q2ν−1), we put uα,0,ν = cq2ν−1
1 + q2ν

1 w. Then

we have c = −2φ
(ν)
ek

(0)Bk(0, 0)/ν! and w satisfies

−
2φ′ek

(0)

ν!

{
Bk(q1, 0) +Bk(0, 0) +Bk(0, 0)

2τk
λk

q1
(q1 − 1)2

}

=

(
q21

d

dq1
−

2τk
λk

q21
(q1 − 1)2

)
w.

By virtue of (TC), we obtain φ
(ν)
ek (0) = 0 and w = 0. Therefore, uα,0,ν = 0 for

all ν ∈ N∪{0}. Because of analyticity, we have uα,0 = 0 and φek
= 0 for every

k ∈ J . Consequently, φek
= 0 holds for all k ∈ J ′ ∪ J .

Case (iv): Because φek
= 0 for every k by what we have proved in the above,

the fourth and fifth terms of the left-hand side of (26) do not yield terms in
the recurrence relation. Hence, uα,α satisfies {q21p1, uα,α} = 0. It follows that
there exists a function of one variable φα(t) such that uα,α = φα(q21p1).

Therefore we have proved

u =
∑

|α|=2

φα(q21p1) q
αpα +O(|p|3).

Finally we will prove
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Lemma 1 Suppose

u =
∑

|α|=ν

φα(q21p1)q
αpα + O(|p|ν+1) (34)

for some ν ≥ 1. Then we have
(i) φα = 0 for all α satisfying |α| = ν.
(ii) for every α satisfying |α| = ν + 1, there exists a holomorphic function φα

of one variable such that

u =
∑

|α|=ν+1

φα(q21p1)q
αpα +O(|p|ν+2). (35)

We have already proved (34) for ν = 1, 2. Note that the lemma ends the proof
of Theorem 1 because we have u = 0 as an analytic function of q and p.

Proof of Lemma 1. By comparing the coefficients of pα in χH+H1
u = 0 we

have

{q21p1, uα} +
∑

J′

τj
λj

(
qj

∂

∂qj
− αj

)
uα

+
q21

(q1 − 1)2

∑

J

τj
λj

(
qj

∂

∂qj
− αj

)
uα

+
2q1

(q1 − 1)3

(
∑

J

τj
λj

qjpj

)
∂

∂p1
uγ +

∑

j,γ

∂H1

∂pj

∂

∂qj
uγ = 0, (36)

where |γ| < |α| and α = γ + ej .
Let |α| = ν + 1. Substituting the expansion uα =

∑
β uα,β(q1, p1)q

β into
(36) and by using (34), we obtain the relation for uα,β

{q21p1, uα,β}+
∑

J′

τj
λj

(βj − αj)uα,β +
q21

(q1 − 1)2

∑

J

τj
λj

(βj − αj)uα,β (37)

+ 2
q1

(q1 − 1)3

∑

J

τj
λj

∂

∂p1
φα−ej

(q21p1)δα,β

+ 2
∑

j∈J ′∪J

δα−2ej ,βBj(q1, 0)φα−ej
(αj − 1) = 0.

Indeed, because it is easy to show the expressions up to the fourth term in
the left-hand side of (37), we consider the fifth term, which corresponds to
the fifth term in the left-hand side of (36). In view of (34) we may consider
2
∑

j pjBj(q1, 0) in ∂H1

∂pj
because other terms have no effect to (36). Hence

we may consider terms containing pα−ej in ∂
∂qj

uγ . By (34) the coefficient of

the term containing pα−ej is (αj − 1)qα−2ejBj(q1, 0)φα−ej
. Hence we have the

desired expression.
Set B′ :=

∑
∈J ′

τj

λj
(βj − αj) and B :=

∑
j∈J

τj

λj
(βj − αj). We consider 4

cases.
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Case (1). The case where α− 2ej 6= β for j = 2, ..., n and B′ 6= 0. Clearly
we have β 6= α. It follows that the fourth and the fifth terms in the left-hand
side of (37) vanish. Hence we have uα,β = 0 by considering (37) at q1 = 0.

Case (2). The case where α− 2ej 6= β for j = 2, ..., n, β 6= α and B′ = 0.
By (NRC) we have B 6= 0. Hence the fourth and the fifth terms in the left-hand
side of (37) vanish. We have uα,β = 0 by considering (37) at q1 = 1.

Case (3). The case where α− 2ek = β for some k. Clearly, we have β 6= α.
Assume k ∈ J . Then, for every j ∈ J ′ we have j 6= k, and hence αj = βj ,
which implies B′ = 0. Equation (37) is reduced to

{q21p1, uα,β} −
2τk
λk

q21
(q1 − 1)2

uα,β + 2(αk − 1)φα−ek
Bk(q1, 0) = 0.

Expand uα,β =

∞∑

ν=0

uα,β,ν(q1)p
ν
1 . We will show that φα−ek

vanishes.

Indeed, v := uα,β,0 satisfies

q21
dv

dq1
−

2τk
λk

q21
(q1 − 1)2

v = −2(αk − 1)φα−ek
(0)Bk(q1, 0).

Note that αk = 2+βk ≥ 2. If φα−ek
(0) 6= 0, then w := v/(−2(αk−1)φα−ek

(0))
is a holomorphic solution at q1 = 0 of the equation

q21
dw

dq1
−

2τk
λk

q21
(q1 − 1)2

w = Bk(q1, 0).

Because one can verify Bk(0, 0) = 0, we have a contradiction to (TC). Hence
we have φα−ek

(0) = 0 and uα,β,0 = 0.
Next, v = uα,β,1 satisfies

q21
dv

dq1
−

2τk
λk

q21
(q1 − 1)2

v − 2q1v = −2(αk − 1)φ′α−ek
(0)q21Bk(q1, 0).

By comparing the coefficients of q21 of both sides we see that v = O(q21).
Similarly to the above, w := vq−2

1 leads to a contradiction to (TC). Hence, we
have φ′α−ek

(0) = 0 and uα,β,1 = 0.
In general, v = uα,β,ν(ν ≥ 2) satisfies

q21
dv

dq1
−

2τk
λk

q21
(q1 − 1)2

v − 2q1νv = −
2(αk − 1)

ν!
φ

(ν)
α−ek

(0)q2ν
1 Bk(q1, 0).

Similarly to the above, we have φ
(ν)
α−ek

(0) = 0 and uα,β,ν = 0. Therefore,
φα−ek

= 0 and uα,β = 0 for k ∈ J .
Let k ∈ J ′. Equation (37) is reduced to

{q21p1, uα,β} −
2τk
λk

uα,β + 2(αk − 1)φα−ek
Bk(q1, 0) = 0.
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The holomorphicity of uα,β at q1 = 0 and (TC) implies φα−ek
(0) = 0 and

uα,β = 0 for k ∈ J ′. Therefore, φα = 0 for k ∈ J ′. Because φα = 0 for k ∈ J ,
we have φα = 0 for all α with |α| = ν.

Case (4). The case β = α. We have {q21p1, uα,α} = 0, since we have proved
φγ = 0 for |γ| = ν. Hence, there exists φα such that uα,α = φα(q21p1).

Consequently, we have proved the lemma.

3 Confluence of singularities

In this section we deduce (3) from the hypergeometric system

(z − C)
dv

dz
= Av, (38)

where C = diag(Λ1,
tΛ1), Λ1 being (n − 1)× (n− 1) matrix with eigenvalues

λ2, ..., λn such that λj 6= 0 for all j (cf. [1]). For the sake of simplicity, we
assume Λ1 = diag(λ2, ..., λn). We assume A = diag(A1,

tA1), where A1 is an
(n− 1)× (n− 1) constant matrix satisfying Λ1A1 = A1Λ1. For simplicity, we
further assume A1 = diag(τ2, ..., τn).

Let v = t(q, p) ∈ C2(n−1). Define

H = 〈(z − Λ1)
−1p, A1q〉, (39)

where 〈(x2, ..., xn), t(y2, ..., yn)〉 :=
∑

2≤k≤n xkyk. Then, (38) is written in the
Hamiltonian system

dq

dz
= Hp(z, q, p),

dp

dz
= −Hq(z, q, p). (40)

Now we operate the confluence of regular singularities. Let vν and (Av)ν

denote the ν-th entry of v and Av, respectively. Then we can write (40) in the
form

(z − λν)
dvν

dz
= (Av)ν .

Substituting z = 1/ζ, we have

−ζ2 dvν

dζ
= (ζ−1 − λν)−1(Av)ν . (41)

In the following, a 7→ b denotes the replacement of a by b.
Let ζ 7→ ε−1η; and λν 7→ ελν for ν ∈ J , λν 7→ λν for ν ∈ J ′. Multiply the

ν-th row of A in (41) by ε−1 if ν ∈ J ′ and take the limit ε → 0. Then (40) is
reduced to the Hamiltonian system

−η2 dq

dη
= AA1q, −η

2 dp

dη
= −tA1Ap, (42)
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where A = diag(A2, ...,An) and

Aν :=

{
−λ−1

ν (ν ∈ J ′),

(η−1 − λν)−1 (ν ∈ J).
(43)

Note that (42) is irregular singular at η = 0.
In order to introduce another singular point, choose any a 6= 0 such that

a 6= λ−1
j for all j and put ζ = η − a. Let ζ 7→ ε−1ζ and (A)ν 7→ ε−1(A)ν .

Make substitution a 7→ ε−1a for j ∈ J ′ and a 7→ a for j ∈ J and take the limit
ε→ 0. Then (40) is reduced to a Hamiltonian system with irregular points at
0 and −a. Set a = −1. Finally, by transforming to the autonomous system,
we obtain (3).

4 Integrability at singular point

Let H and H1 be given by (3) and (47), respectively. We will show the inte-
grability about a singular point of χH+H1

. Note that the Hamiltonian system
corresponding to H +H1 has irregular singularity at q1 = 0 and q1 = 1. First
we show

Lemma 2 If k ∈ J , then χH has first integrals

qk exp

(
τk
λk

1

q1 − 1

)
, pk exp

(
−
τk
λk

1

q1 − 1

)
, (44)

while, for k ∈ J ′ it has

qk exp

(
τk
λk

1

q1

)
, pk exp

(
−
τk
λk

1

q1

)
. (45)

Note that χH is analytically integrable at q1 = 0 or q1 = 1, because qkpk is an
analytic first integral about the singular point q1 = 0 or q1 = 1.

Proof of Lemma 2. The assertion is easily verified in view of the definition
of first integrals.

Next we consider χH+H1
. In view of the definition of χH1

, the following
functions are annihilated by χH1

.

pk exp

(
−
τk
λk

1

q1 − 1

)
, (k ∈ J) pk exp

(
−
τk
λk

1

q1

)
, (k ∈ J ′). (46)

Hence they are also first integrals of χH+H1
. Note that we have |J | analytic

first integrals near the origin. We will construct other first integrals which
areanalytic near the origin. Let H1 be given by

H1 :=
∑

j∈J

p2
jBj(q1, q). (47)

Then we have
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Proposition 1 Suppose that there exists an analytic function H̃1(q1, p) at
q1 = 0, p = 0 which is independent of pν for every ν ∈ J ′ such that H1(q1, p) =
q21H̃1(q1, p). Then, for every k ∈ J , χH+H1

has the first integral of the form
qkuk(q1) +Wk(q1, p), where Wk(q1, p) is analytic at q1 = 0, p = 0, and

uk(q1) = exp

(
τk
λk

1

q1 − 1

)
. (48)

If 2|J |+ 1 ≥ n, then χH+H1
is analytically integrable in some neighborhood of

the origin.

Proof. By definition we have

χH1
=

n∑

j=2

(
2pjBj

∂

∂qj
+ p2

j

n∑

ν=2

∂pν
Bj

∂

∂qν
− p2

j(∂q1
Bj)

∂

∂p1

)
. (49)

Let k ∈ J . We will determine uk and Wk by the equation

(χH + χH1
)(qkuk +Wk) = 0. (50)

First we note that χH1
Wk = 0 by definition. χH1

(qkuk) and χHWk do not
contain q. Therefore, the terms containing powers of q with degree 1 in the
left-hand side of (50) come from χH(qkuk). By (50) we have χH(qkuk) = 0.
This is an ordinary differential equation for uk studied in Lemma 2. The
solution is given by (48).

Next, by comparing terms of degree 0 in q of (50) we have

χHWk + χH1
(qkuk) = 0. (51)

Note

χH1
(qkuk) = uk


2pkBk +

∑

j∈J

p2
j(∂pk

Bj)


 . (52)

Expand

Wk(q1, p) =
∑

`

W
(`)
k (q1)p

`, Bj(q1, p) =
∑

`

B
(`)
j (q1)p

`, (53)

and insert (52) and (53) into (51). Then, by comparing the powers like p` we
obtain

q21

d

dq1
−
∑

j∈J ′

τj`j
λj

−
q21

(q1 − 1)2

∑

j∈J

τj`j
λj


W

(`)
k (q1) = R(`)(q1)uk(q1), (54)

where

R(`)(q1) :=


−2B

(`−ek)
k (q1)−

∑

j∈J

(`+ ek − 2ej)B
(`+ek−2ej)
j (q1)


 . (55)
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One easily verifies that
∏n

j=2 u
`j

j is a solution of the homogeneous equation of

(54), where uj is given by (48). Therefore we take the solution W
(`)
k of (54) as

follows.

W
(`)
k =




n∏

j=2

u
`j

j



∫ q1

a

t−2uk(t)R(`)(t)

n∏

j=2

u
−`j

j (t)dt (56)

where a 6= 0 is a constant sufficiently close to the origin.
We note that, if j ∈ J , then uj(q1) is holomorphic at q1 = 0. Moreover, by

assumption on H1 we see that R(`) vanish if `ν 6= 0 for ν ∈ J ′. It follows from

(56) that W
(`)
k (q1) is analytic at q1 = 0. The convergence of the sum W :=∑

`W
(`)
k p` is almost clear from the recurrence formula because t−2R(`)(t) is

holomorphic at t = 0 by assumption. Hence we have an analytic first integral
at the origin. The last statement is clear from the definition of integrability.
This ends the proof.

5 Properties of (TC)

We will show that (TC) holds for almost all Bk(q1, 0). Set q1 = t, Bk(t, 0) =:
a(t) and c := τk/λk, and write (8) in the form

t2
d

dt
v − 2cv = a(t). (57)

Clearly, if a(t) is a constant function, then (TC) does not hold since (57) has
a constant solution v = −a(0)/(2c). We first prove

Proposition 2 Suppose that a(t) is a polynomial of degree ` ≥ 1. Then (57)
has an analytic solution at t = 0 if and only if (57) has a polynomial solution
v of degree ` − 1. The set of a(t) for which (57) has a polynomial solution is
contained in the set of codimension one of the set of polynomials of degree `.

Remark. For a given polynomial v of degree `−1, define a(t) by (57). Clearly
the set of a’s such that (57) has a polynomial solution is an infinite set.

Proof of Proposition 2 . Let a(t) =
∑`

j=0 ajt
j (a` 6= 0) and let v(t) =∑∞

j=0 vjt
j be the analytic solution of (57). By inserting the expansions into

(57) and by comparing the powers of t we obtain

v0 = −a0/(2c), vn = (n− 1)vn−1/(2c)− an/(2c), n = 1, 2, . . . (58)

If n > `, then we have vn = (n − 1)vn−1/(2c). Therefore, if v` = 0, then
vn = 0 for n > `. Hence v is a polynomial. On the other hand, if v` 6= 0, then
vn = (2c)`−n(n − 1)(n − 2) · · · `v`. It follows that v(t) is not analytic in any
neighborhood of the origin, which contradicts to the assumption. Hence v is a
polynomial of degree `− 1. The converse statement is trivial.

We will show the latter half. By the recurrence formula (58), one easily sees
that v` is a nontrivial linear function of a0, . . . , a`. Hence the condition v` = 0
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is satisfied for a polynomial a(t) on the set of codimension 1. This completes
the proof.

Next we study (TC) when a(t) is an analytic function. By replacing v(t)
and a(t) with v(t) − v(0) and a(t) − a(0), (2cv(0) = −a(0)), respectively, we
may assume that v(0) = 0 and a(0) = 0 in (57). Then we have

Proposition 3 The set of analytic functions a(t)’s at the origin such that
(57) has an analytic solution v is contained in the set of codimension 1 of the
set of germs of analytic functions at t = 0.

Proof. Let v be the analytic solution of (57) at t = 0. Set v(t) = tṽ(t) and
a(t) = tã(t). Then

t2
d

dt
ṽ + tṽ − 2cṽ = ã(t). (59)

We make the (formal) Borel transform B(ṽ) to (59)

B(ṽ)(z) ≡ ̂̃v(z) :=

∞∑

n=1

vn

zn−1

(n− 1)!
. (60)

Because ṽ(t) and ã(t) are analytic at t = 0, it follows that B(ṽ)(z) and
B(ã)(z) are entire functions of exponential type of order 1. Recalling that
B
(
(t2 d

dt
+ t)ṽ

)
(z) = zB(ṽ)(z) we have

(z − 2c)B(ṽ) = B(ã)(z). (61)

It follows that

B(ã)(2c) = 0. (62)

This shows that the germ {an}∞n=1 of a(t) at t = 0 is contained in the hyper-
plane. This ends the proof.

Next we consider (9) in (TC). We set t = q1 − 1, a(t+ 1) := Bk(t + 1, 0),
c = τk/λk and a(0) = Bk(0, 0). Then (9) can be written in

(
t2
d

dt
− 2c

)
w =

t2

(t+ 1)2
a(t+ 1) +

a(0)

(t+ 1)2
(t2 + c(t+ 1)) =: b(t). (63)

This equation has the same form as (57). We determine w(0) by −2cw(0) =
b(0). If we make the appropriate change of unknown functions w and b as
before, one may assume that w(0) = 0 and b(0) = 0. In view of the definition
of b(t) we have ca(0) = 0. Hence we have a(0) = 0. It follows that b(t) =
t2a(t + 1)/(t + 1)2. In the following we assume w(0) = 0 and a(0) = 0. Then
we have

Proposition 4 Suppose that a(t) is holomorphic in a connected domain con-
taining t = 0 and t = 1. Then the set of a(t) for which (63) has an analytic
solution is contained in the set of codimension one of the set of germs of
analytic functions at t = 0.
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Proof. Let w(t) be an analytic solution of (63) at t = 0. We set α := a′(0)
and a(z) = αz+A(z)z2 for some analytic function A(z). Then, by the general
formula w is given by

w = exp

(
−

2c

t

)(
K +

∫ t

τ

exp

(
2c

s

)(
α

s+ 1
+A(s+ 1)

)
ds

)
, (64)

where K and τ 6= 0 are some constants. We take a smooth curve γ which
connects τ and the origin such that it stays in the half space, < (c/t) < 0 near
the origin. Then the limit

∫ 0

τ

exp

(
2c

s

)(
α

s+ 1
+A(s+ 1)

)
ds

:= lim
t∈γ,t→0

∫ t

τ

exp

(
2c

s

)(
α

s+ 1
+A(s+ 1)

)
ds (65)

exists and it is a non-constant analytic function of τ . If the condition

K +

∫ 0

τ

exp

(
2c

s

)(
α

s+ 1
+A(s+ 1)

)
ds 6= 0 (66)

holds, then, by taking the limit t → 0, < (c/t) < 0 in (64) we see that w(t)
tends to infinity, which contradicts to the analyticity of w at the origin. Hence
we have

K =

∫ τ

0

exp

(
2c

s

)(
α

s+ 1
+A(s+ 1)

)
ds. (67)

By substituting (67) to (64) we have

w(t) = exp

(
−

2c

t

)∫ t

0

(
2c

s

)(
α

s+ 1
+A(s+ 1)

)
ds. (68)

We take t sufficiently close to the origin such that the Taylor expansion A(s+
1) =

∑∞
n=0 ans

n converges for |s| ≤ |t|. Because w(te2πi) = w(t) holds by the
analyticity of w, it follows that

∫ te2πi

t

exp

(
2c

s

)(
α

s+ 1
+A(s+ 1)

)
ds = 0. (69)

By calculating the residue we have
∫ te2πi

t
exp

(
2c
s

)
α

s+1ds = 2πiα(1 − e−2c).

The non-resonance condition implies c = τk/λk 6= 0, and hence 1 − e−2c 6= 0.
Hence, by (69) the germ of A(z)/α at z = 1( in case α 6= 0) or that of A(z)
at z = 1( in case α = 0) is contained in some hyperplane of the set of germs
of analytic functions.

We recall that A(z) is analytic in some domain containing z = 0 and z = 1.
We will show that by the analytic continuation from z = 1 to z = 0 the germ
of A(z) at z = 1 is transformed to that of A(z) at z = 0 by an infinite matrix.
If we can prove this, then the germ of A(z) or A(z)/α at z = 0 is contained
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in some hyperplane. In view of a(z) = αz +A(z)z2, the germ of a(z) at z = 0
is contained in some hyperplane.

We take a rectifiable curve which connects z = 1 and z = 0. First we
consider the analytic continuation from z = 1 to z = z0, where z0 is contained
in the disk centered at z = 1 in which A(z) is analytic. Let A(z) =

∑∞
n=0 an(z−

1)n be the expansion at z = 1. Then the Taylor expansion of A(z) at z = z0
is given by

∞∑

k=0

(z − z0)
k

k!

∞∑

n=k

an(z0 − 1)n−k n!

(n− k)!
. (70)

It follows that the germ at z = z0 is given by
(

∞∑

n=k

an

(
n

k

)
(z0 − 1)n−k

)∞

k=0

. (71)

Hence the germ at z = 1 is transformed to the one in (70) by the infinite
matrix

A :=

(
(z0 − 1)n−k

(
n

k

))

k↓0,1,... ;n→0,1,...

, (72)

where we set the (k, n)-component (k > n) to be zero. Note that if |z0 − 1| is
sufficiently small, then A defines a continuous linear operator on the space of
sequences with an appropriate norm. Therefore, if the germ of A(z) at z = 1
is contained in the hyperplane, then the germ of A(z) at z = z0 is contained
in some hyperplane. By finite times of analytic continuation we see that the
germ of A(z) at z = 0 is contained in some hyperplane. This completes the
proof.
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