
ANALYTIC CONTINUATION OF BOREL SUM OF FORMAL
SOLUTION OF SEMILINEAR PARTIAL DIFFERENTIAL

EQUATION

MASAFUMI YOSHINO

Abstract. We study the Borel summability and the analytic behavior of the Borel
sum of a formal solution of first order semilinear system with a singular perturbative
parameter. By virtue of the representation formula of the Borel sum of a formal
series solution expanded in terms of a parameter, we show that the analytic con-
tinuation of the Borel sum with respect to the parameter to a regular point in a
singular direction coincides with the solution of the initial value problem expanded
in the space variable. We also show that a similar phenomenon occurs outside the
origin of the independent variables.
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1. Introduction

In this paper we study analytic behaviors of the Borel sum of a formal solution
of a semilinear system with a singular perturbative parameter. As for the Borel
summability of formal solutions of partial differential equations we cite the results
by Lutz-Miyake-Schäfke and Balser et al for a heat operator (cf. [6], [2]) as well as
the recent papers by Michalik, Ichinobe. ([4] , [8]). Another class of Borel summable
operators which are perturbations of ordinary differential equations we refer [9] and
[10], while for a first order equation we refer [3]. On the other hand, the summability
of partial differential equations with a singular perturbative parameter was studied
by Malek et al., where asymptotic solutions were constructed. (cf. [5], [7] and [11]).
In general, the summability breaks down at a singular direction. The analytic con-
tinuation of a Borel sum to a point in a singular direction is not known well. In the
case of partial differential equations, the set of singular directions may contain an
open cone as we will see later. We shall study the behaviors of the Borel sum as the
paramteter with which we take a Borel sum approaches to a singular direction.

In order to study the analytic behaviors of the Borel sum in a singular direction we
introduce the countable set E0 of possible singular points of the Borel sum. Then we
give an alternative expression (2.12) of the Borel sum. Then we show that the ana-
lytic continuation of the Borel sum with respect to the parameter from the point in a
summable direction to the one in the complement of E0 coincides with a convergent
solution expanded by independent varibles. Because the convergent solution is natu-
rally related with an initial value problem, one sees that the solution constructed by
(2.4) and its Borel sum give a sufficiently general class of solutions having asymptotic
expansion with respect to a parameter. We also show a similar phenomenon at other
point x = a, a �= 0.

This paper is organized as follows. In section 2 we state our main results. In section
3 we construct the formal solution and prove some lemmas which are necessary in the
proof of the main theorem. In section 4 we prove our theorem.

2. Statement of results

Let x = (x(1), . . . , x(n)) ∈ Cn, n ≥ 1 be the variable in Cn. For λj ∈ C, λj �= 0
(j = 1, 2, . . . , n), define

L :=

n∑
j=1

λjx
(j) ∂

∂x(j)
.(2.1)

Let N ≥ 1 be an integer and let u = (u(1), . . . , u(N)) ∈ CN and f(x, u) = (f (1)(x, u),
. . . , f (N)(x, u)) be the holomorphic vector function in some neighborhood of the
origin of Cn×CN which is entire with respect to u in CN . We consider the semilinear
system of equations

η−1Lu(ν) = f (ν)(x, u), ν = 1, 2, . . . , N,(2.2)
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with u(0) = 0, where η ∈ C \ {0} is a complex parameter. We assume

f(0, 0) = 0, det(∇uf(0, 0)) �= 0(2.3)

where ∇uf(0, 0) denotes the Jacobi matrix of f(x, u) with respect to u at the point
x = 0, u = 0.

We construct the formal power series solution u = v(x, η) of (2.2) in the form

v(x, η) =
∞∑

ν=0

η−νvν(x) = v0(x) + η−1v1(x) + · · · ,(2.4)

where the series is a formal power series of η−1 with coefficients vν(x) being holomor-
phic vector functions of x in some open set independent of ν. We denote by Ω0 the
open connected set containing the origin on which every coefficient vν(x) is defined.
(cf. Proposition 1).

The formal Borel transform of v(x, η) is defined by

B(v)(x, ζ) :=
∞∑

ν=0

vν(x)
ζν

Γ(ν + 1)
,(2.5)

where Γ(z) is the Gamma function. For an opening θ > 0 and the bisecting direction
ξ, define the sector Sθ,ξ by

Sθ,ξ =

{
z ∈ C; |arg z − ξ| <

θ

2

}
.(2.6)

We say that v(x, η) is 1-Borel summable in the direction ξ with respect to η if
B(v)(x, ζ) converges in some neighborhood of the origin of (x, ζ), and there exist
a neighborhood U of the origin x = 0 and a θ > 0 such that B(v)(x, ζ) can be an-
alytically continued to (x, ζ) ∈ U × Sθ,ξ and of exponential growth of order 1 with
respect to ζ in Sθ,ξ. For the sake of simplicity we denote the analytic continuation
with the same notation B(v)(x, ζ). The Borel sum V (x, η) of v(x, η) is, then, given
by the Laplace transform

V (x, η) :=

∫
Lξ

ηe−ζηB(v)(x, ζ)dζ(2.7)

where the integral is taken on the ray starting from the origin to the infinity in the
direction ξ.

We assume that ∇uf(0, 0) is a diagonal matrix,

∇uf(0, 0) = diag (μ1, . . . , μN),(2.8)

and that, for every ν, 1 ≤ ν ≤ N , the Hessian matrix

∇2
uf

(ν)(0, 0) :=

(
∂2f (ν)

∂u(j)∂u(k)
(0, 0)

)
j↓1,... ,N ;k→1,... ,N

(2.9)

vanishes. Moreover, we assume

Re μk > 0, Reλj > 0, Re
λj

μk
> 0, (j = 1, . . . , n; k = 1, . . . , N).(2.10)
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Let C0 be the smallest convex closed cone with vertex at the origin containing λj

(j = 1, 2, . . . , n) and λj/μk (j = 1, . . . , n; k = 1, 2, . . . , N).
Write

C0 = {z ∈ C;−θ1 ≤ arg z ≤ θ2}(2.11)

for some nonnegative θ1 and θ2 such that −π/2 < −θ1 ≤ θ2 < π/2. We say that
u(x, η) is the power series solution of (2.2) if u(x, η) is a solution of (2.2) which can
be expanded in the convergent power series of x in some neighborhood of the origin

u(x, η) =
∑

α∈�n
+,|α|>0

uα(η)xα,(2.12)

where every component of uα(η) is a function of η and Zn
+ is the n-product of the set

of nonnegative integers Z+. Then we have

Theorem 1. Suppose (2.3), (2.8), (2.9) and (2.10). Then there exists a neighbor-
hood U of x = 0 such that v(x, η) with v0(0) = 0 is 1-Borel summable in the direction
ξ′ with |ξ′ − ξ| < θ/2, θ = π − θ1 − θ2 and ξ = π + θ2−θ1

2
when x ∈ U . The Borel

sum V (x, η) of v(x, η) is holomorphic and satisfies (2.2) when (x, η) ∈ U × Sπ+θ,ξ.
Moreover, V (x, η) coincides with u(x, η) in (x, η) ∈ U × Sπ+θ,ξ.

Note that Sπ+θ,ξ is equal to C \ C0. By Theorem 1 we see that the Borel sum
V (x, η) is analytic in η when η ∈ Sπ+θ,ξ = C \ C0 and x ∈ U . We will study the
behaviors of V (x, η) when x ∈ U and η ∈ C0. Let E0 be given by

E0 :=
{
z ∈ C; det

(
z−1〈λ, α〉Id−∇uf(0, 0)

)
= 0, α ∈ Zn

+, |α| ≥ 1
}

.(2.13)

Then we have

Corollary 2. Suppose (2.3), (2.8), (2.9) and (2.10). Let K ⊂ C \ E0 be a compact
set. Then there exist a neighborhood W of the origin of Cn and a neighborhood K̃ of
K such that K̃ ∩ Sπ+θ,ξ �= ∅ for which V (x, η) is analytic with respect to η and x in

(x, η) ∈ W ×K̃. For every x ∈ W , V (x, η) is analytically continued as a single-valued
holomorphic function of η from Sπ+θ,ξ to K̃ ∪ Sπ+θ,ξ. The analytic continuation of
V (x, η) coincides with u(x, η) in (2.12).

Remark 1. We can show that if the condition Reλj > 0 (j = 1, . . . , n) is satisfied,
then E0 is a discrete infinite set in the right half-plane Re z > 0, while E0 accumulates
to z = ∞. Hence, V (x, η) has essential singularity at η = ∞ in general.

Remark 2. We will give a brief explanation of the case when x is not necessarily in
a neighborhood of the origin a = 0. The situation is quite different between the cases
a = 0 and a �= 0. For simplicity, assume that f(x, u) is an entire function of x and
u. Instead of (2.3), we suppose that there exists b ∈ CN such that f(a, b) = 0 and
det(∇uf(a, b)) �= 0. Then there exists a formal series solution v(x, η) of (2.2) with
the form (2.4) defined at x = a such that v0(a) = b. In order to show the summability
of the series, assume that ∇uf(x, v0(x)) is a diagonal matrix in some neighborhood
of x = a.
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Under these assumptions we can prove that v(x, η) is 1-Borel summable with respect
to η in the direction arg ξ, π/2 < arg ξ < 3π/2. Clearly, the set π/2 < arg ξ < 3π/2
is equal to Sπ,π, which is the set corresponding to the case where C0 is a positive real
line. As for the proof of this statement we refer to [11, Theorem 3]. If V (x, η) is the
1-Borel sum of v(x, η) defined in some neighborhood of a and η ∈ S2π,π, then V (x, η)
is characterized as the solution of (2.2) having an asymptotic expansion with respect
to η when η ∈ Sθ,π, η → ∞ and x is in some neighborhood of a for some θ > π.

3. Construction of formal solution

Construction of formal solution. By substituting the expansion (2.4) into (2.2)
with u = v(x, η), we obtain

Lv =

∞∑
ν=0

Lvν(x)η−ν ,(3.1)

f(x, v) = f(x, v0 + v1η
−1 + v2η

−2 + · · · )(3.2)

= f(x, v0) + η−1v1(∇uf)(x, v0) + O(η−2).

By comparing the coefficients of η, we obtain, for η0 = 1,

f(x, v0(x)) = 0(3.3)

and for η−1

Lv0 = v1(∇uf)(x, v0).(3.4)

In order to determine vν(x) (ν ≥ 2) we compare the coefficients of η−ν of both sides
of (2.2). Differentiate (3.2) (ν − 1)-times with respect to ε = η−1 and put ε = 0.
Then we obtain

Lvν−1 = vν(∇uf)(x, v0) + (terms consisting of v
(j)
	 , 1 ≤ j ≤ N , � < ν),(3.5)

where v	(x) = (v
(1)
	 , . . . , v

(N)
	 ).

First, note that there exists an analytic solution v0(x), v0(0) = 0 of (3.3) in some
domain containing the origin x = 0 by (2.3). The next theorem gives the existence
of a formal solution.

Proposition 1. Assume (2.3) and v0(0) = 0. Then every coefficient of (2.4) is
uniquely determined as a holomorphic function in some neighborhood of x = 0 inde-
pendent of ν.

Proof. By (2.3) and the implicit function theorem, v0(x) is uniquely determined
as the holomorhic function at the origin such that v0(x) = O(|x|). Suppose that
vk(x) is determined up to some � − 1 in some neighborhood of the origin. Because
vk(x) are determined recursively by differentiations and algebraic manupulations, the
recurrence formula for v	(x) implies that v	(x) is holomorphic in some neighborhood
of the origin independent of ν. �
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Remark 3. Let Ω0 ⊂ Cn be the domain containing the origin on which every coeffi-
cient of v(x, η) is defined. We define

Σ0 := {x; det ((∇uf)(x, v0(x))) = 0, f(x, v0(x)) = 0, v0(0) = 0} .(3.6)

Let Ω̃0 \ Σ0 be the universal covering space of Ω0\Σ0. Then every coefficient of v(x, η)

is analytically continued from the origin to Ω̃0 \ Σ0, provided that f(x, u) is an entire
function of x ∈ Cn and u ∈ CN .

Function space For T > 0 we denote the polydisk DT by DT = {|x1| < T} × · · · ×
{|xn| < T}. We define the set of functions H(T ) holomorphic in DT and continuous
up to the boundary by

H(T ) =

⎧⎨
⎩u(x) =

∑
α∈�n

+

uαxα; ‖u‖T :=
∑

α

|uα|T |α| < ∞
⎫⎬
⎭ .(3.7)

Note that ‖ · ‖T is a norm on H(T ). The n- product of H(T ) is denoted by (H(T ))n

with a standard norm of the product space. For the sake of simplicity we denote
the norm in (H(T ))n by the same letter ‖ · ‖T . We can easily show that, for every
u, v ∈ (H(T ))n we have ‖uv‖T ≤ ‖u‖T‖v‖T .

For the proof of the main theorem we prepare a lemma. Let g(x, u) =
(g(1)(x, u), g(2)(x, u), . . . , g(N)(x, u)) be such that g(j)(x, u) is holomorphic in some
neighborhood of the origin x = 0 and an entire function of u. Let ∇ug(x, 0) =

(∇ug
(1)(x, 0),∇ug

(2)(x, 0), . . . ,∇ug
(N)(x, 0)) and, for 1 ≤ ν, j ≤ N let g

(ν)
j (x, 0)=

(∂g(ν)/∂u(j))(x, 0) be the j-th component of ∇ug
(ν)(x, 0). Next, let ∇2

ug(x, 0) be
the tensor whose ν-th component is given by the Hessian matrix ∇2

ug
(ν)(x, 0) =

(g
(ν)
i,j (x, 0))i,j, where g

(ν)
i,j (x, 0) = (∂2g(ν)/∂u(i)∂u(j))(x, 0). We denote by (w∇2

ug(x, 0), w̃)

the vector whose ν-th component is the bilinear form given by (w∇2
ug

(ν)(x, 0), w̃).
Then we have

Lemma 1. For every w, w̃ ∈ H(T )N we have

‖w∇ug(·, 0)‖T ≤ ‖w‖T

N∑
j,ν=1

‖g(ν)
j (·, 0)‖T ,(3.8)

‖(w∇2
ug(·, 0), w̃)‖T ≤ ‖w‖T‖w̃‖T

N∑
i,j,ν=1

‖g(ν)
i,j (·, 0)‖T .(3.9)

Proof. For w = (w(1), . . . , w(N)) ∈ H(T )N we have

‖w∇ug(·, 0)‖T ≤
N∑

ν=1

‖
N∑

j=1

w(j)g
(ν)
j ‖T ≤

N∑
ν=1

N∑
j=1

‖w(j)‖T‖g(ν)
j ‖T(3.10)

≤ ‖w‖T

N∑
ν=1

N∑
j=1

‖g(ν)
j ‖T .
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Similarly, for w, w̃ ∈ H(T )N we have

‖(w∇2
ug(·, 0), w̃)‖T ≤

N∑
ν=1

‖
N∑

i,j=1

w(i)g
(ν)
i,j w̃(j)‖T(3.11)

≤
N∑

ν=1

N∑
i,j=1

‖w(i)‖T‖g(ν)
i,j ‖T‖w̃(j)‖T ≤ ‖w‖T‖w̃‖T

N∑
ν=1

N∑
i,j=1

‖g(ν)
i,j ‖T .

This ends the proof.

4. Proof of Theorem 1 and Corollary 2

For the proof of Theorem 1 we prepare propositions and lemmas. If we set ηe−iθ = η̃
with θ = (θ2 − θ1)/2, then λj and η are replaced by λje

−iθ and η̃, respectively, and
C0 is transformed to Sθ1+θ2,0. In the following, we rewrite η̃ with η, and we assume
that C0 = Sθ1+θ2,0 for the sake of simplicity. For ε1 > 0 sufficiently small, let E0,ε1 be
the ε1- neighborhood of E0, and, for r > 0, define the set S by

S = S(ε1) := ({η ∈ C; |η| ≤ r} \ E0,ε1) ∪ S2π−θ1−θ2,π.(4.1)

Then we have

Proposition 2. There exist an ε1 > 0 and a neighborhood U of the origin x = 0
such that if η ∈ S = S(ε1) and x ∈ U , then the series (2.12) converges.

Proof of Proposition 2. We will construct the solution v ≡ u = (u(1), . . . , u(N)) of
(2.2) in (2.12) assuming that η �∈ E0. We rewrite (2.2) in the following form

η−1Lu − u∇uf(0, 0) = f(x, u) − u∇uf(0, 0) =: R(x, u).(4.2)

By substituting (2.12) into (4.2), we obtain the recurrence relation for uα(η)

uα(η)(η−1〈λ, α〉Id −∇uf(0, 0)) =
∂α

∂xα
f(x, 0)|x=0 (|α| = 1),(4.3)

uα(η)(η−1〈λ, α〉Id −∇uf(0, 0)) = · · · ,(4.4)

where the dots denotes the terms uβ(η), (|β| < |α|) which are calculated inductively.
Indeed, the operator η−1L − ∇uf(0, 0) preserves every monomial xα. On the other
hand, by the assumption f(0, 0) = 0 and u(0) = 0 there appear terms uβ(η) (|β| <
|α|) from f(x, u) in the right-hand side of (4.4). By the assumptions η �∈ E0 and
(2.8), every uα(η) is determined successively by (4.4) multiplied by (η−1〈λ, α〉Id −
∇uf(0, 0))−1.

Let α ∈ Zn
+, |α| ≥ 1, 1 ≤ j ≤ N be given. Because λk/μj ∈ C0, μj �= 0 and C0

is a convex cone, we have 〈λ/μj, α〉 ∈ C0. Therefore, if η ∈ S2π−θ1−θ2,π, η �= 0, then
η−1〈λ/μj, α〉 is not on the positive real axis. It follows that there exists c1 > 0 such
that

|η−1〈λ, α〉 − μj | = |μj||η−1〈λ/μj, α〉 − 1| ≥ c1,(4.5)

∀η ∈ S2π−θ1−θ2,π, j = 1, . . . , N, ∀α ∈ Zn
+, |α| ≥ 1.

This also proves that S2π−θ1−θ2,π ∩ E0 = ∅.
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We remark that (4.5) holds not only for η ∈ S2π−θ1−θ2,π but also for η ∈ S. Indeed,
if η ∈ S2π−θ1−θ2,π, then the assertion follows from (4.5). Noting that the function of η,
|η−1〈λ, α〉 − μj| is continuous and does not vanish on the compact set {η ∈ C; |η| ≤
r}\E0,ε1 we have the assertion. In the following we assume that (4.5) holds for η ∈ S.

Let η �= 0. Define P := η−1L − ∇uf(0, 0). We take T > 0 so small that R(x, 0) ∈
(H(2T ))n. We define uk(x) ≡ uk(x, η) ∈ (H(T ))N (k = 0, 1, 2, . . . ), uk(x, η) =

(u
(1)
k (x, η), . . . , u

(N)
k (x, η)) by

u0 = 0, Pu1 = R(x, 0),(4.6)

Puk = R(x, u0 + · · ·+ uk−1) − R(x, u0 + · · ·+ uk−2), k = 2, 3, . . .(4.7)

We admit that uk(x) ∈ (H(T ))N (k = 0, 1, 2, . . . ), and that the series
∑∞

k=1 uk =: u
converges in (H(T ))N uniformly. By (4.7) we have

P
	∑

k=1

uk = R(x, u1 + · · ·+ u	−1).

Hence, by letting � → ∞, we see that u satisfies Pu = R(x, u). Because the Taylor
expansion at x = 0 of an analytic solution is uniquely determined by virtue of (4.5),
it follows that u coincides with (2.12) and the series (2.12) converges.

In order to show that uk(x) ∈ (H(T ))N we will show that there exists ε < 1/2 such
that

‖uk‖T ≤ εk, k = 1, 2, . . .(4.8)

By (2.3) we have R(x, 0) = O(|x|). Hence there exists K > 0 independent of T > 0
such that ‖f(·, 0)‖T ≤ KT . By (4.5), (4.6) and simple computations we see that

‖u1‖T = c−1
1 ‖R‖T ≤ c−1

1 KT =
ε

2
,

where ε := 2c−1
1 TK.

Next we have

u2 = (R(x, u1) − R(x, 0))P−1 =

(∫ 1

0

u1∇uR(x, u1θ)dθ

)
P−1.(4.9)

By definition we have

R(x, u) = f(x, 0) + u(∇uf(x, 0) −∇uf(0, 0)) +
1

2
(u∇2

uf(x, 0), u) + R̃(x, u)(4.10)

where ∇2
uf(·, 0) is the vector whose ν-th component is given by the Hessian matrix

∇2
uf

(ν)(·, 0) for 1 ≤ ν ≤ N and R̃(x, u) = O(|u|3).
We will estimate u1∇uR(x, u1θ). In view of (4.10) we first consider

u1∇u(u(∇uf(x, 0) −∇uf(0, 0))) = u1(∇uf(x, 0) −∇uf(0, 0)).

By Lemma 1 we have

‖u1(∇uf(·, 0) −∇uf(0, 0))‖T ≤ KT‖u1‖T(4.11)
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for some K > 0. Next we consider

u1∇u((u∇2
uf(x, 0), u))|u=u1θ = 2θ(u1∇2

uf(x, 0), u1).

By assumption (2.9) and Lemma 1 we have

‖(u1∇2
uf(·, 0), u1)‖T ≤ KT‖u1‖2

T .(4.12)

As for the estimate of u1∇uR̃(x, u)|u=u1θ, one may consider every component of
u1∇uR̃(x, u)|u=u1θ. Because R̃(x, u) = O(|u|3), we have u1∇uR̃(x, u)|u=u1θ = O(|u1|3).
Hence, we have

‖u1∇uR̃(x, u1θ)‖T ≤ Kε3θ(4.13)

for possibly different constant K > 0.
Hence we get, from (4.11), (4.12), (4.13) and (4.9),

‖u2‖T ≤ c−1
1

∫ 1

0

‖u1∇uR(x, u1θ)‖T dθ(4.14)

≤ c−1
1 ε(KT + 2KTε) + c−1

1

∫ 1

0

‖u1∇uR̃(x, u1θ)‖T dθ

≤ c−1
1 ε(KT + 2KTε) + c−1

1

∫ 1

0

Kε3θdθ.

By setting ε = 2c−1
1 KT , the right-hand side of (4.14) is bounded by ε2(1

2
+ ε +

Kc−1
1 ε/2). We take ε sufficiently small such that 1

2
+ ε+Kc−1

1 ε/2 ≤ 1. Then we have
(4.8) for k ≤ 2. By the same argument we can show that uk satisfies the estimate

(4.8). Hence the sum
∑	

k=1 uk is uniformly bounded in � and converges in (H(T ))N .
We note that the convergence is uniform with respect to η ∈ S if |η| ≥ η0 > 0 for
every η0 > 0 because the constants K, T and ε can be chosen uniformly η ∈ S with
|η| ≥ η0 > 0. Especially the limit function is holomorphic in η ∈ S. This completes
the proof.

Let vν(x) (ν = 0, 1, 2, . . . , N) be given by Proposition 1. Then we have

Proposition 3. For every N , N = 0, 1, 2, . . . , there exists RN(x, η) being holomor-
phic when x is in some neighborhood of the origin and η ∈ S2π−θ1−θ2,π such that

u(x, η) =
N∑

ν=0

vν(x)η−ν + RN(x, η)η−N−1, η ∈ S2π−θ1−θ2,π.(4.15)

First we will show (4.15) for N = 0.

Lemma 2. (4.15) holds for N = 0.

Proof. In view of the proof of Proposition 2 we have u =
∑∞

k=1 uk(x, η) uniformly
in η ∈ S2π−θ1−θ2,π, |η| ≥ η0 for every η0 > 0. In view of (4.6) and (4.7), we see that
the degree of u1 with respect to x is greater than or equal to 1 because P preserves
every monomials xα. It follows from (4.9) that the degree of u2 is greater than or
equal to 2. Similarly, we can show that the degree of uj with respect to x is greater
than or equal to j. We note that when solving (4.7), every coefficient of xα in uj is
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obtained by multiplying the corresponding coefficient in the right-hand side of (4.7)
by (η−1〈λ, α〉Id−∇uf(0, 0))−1. In view of the definition of uj(x, η), every component
of uα(η) in the expansion (2.12) is a polynomial of (η−1〈λ, β〉 − μk)

−1 for some k,
1 ≤ k ≤ n and β ∈ Zn

+, |β| ≤ |α|. Because u =
∑∞

j=1 uj(x, η) converges uniformly in

η ∈ S2π−θ1−θ2,π, |η| ≥ η0 we have

lim
η∈S2π−θ1−θ2,π,η→∞

u(x, η) = lim
η

∞∑
j=1

uj(x, η) =
∑

lim
η

uj(x, η).(4.16)

By virtue of (4.6) and (4.7), the limit limη uj(x, η) is computed if one replaces
(η−1〈λ, β〉 − μk)

−1 in the coefficients of the expansion of uj(x, η) with −μ−1
k . There-

fore we have limη→∞ uj(x, η) = uj(x,∞). We denote the right-hand side of (4.16) by
w for the sake of simplicity. By the definition of R we see that (3.3) is written as
−v0∇uf(0, 0) = R(x, v0). On the other hand, by letting η → ∞ in (4.6) and (4.7)
and summing up the relations we see that w satisfies −w∇uf(0, 0) = R(x,w). By
the uniqueness of the solution of (3.3) such that w(0) = 0 we see that the right-hand
side of (4.16) is equal to v0(x).

Next we set

Q(x, η) = u(x, η) − v0(x) =
∑

α

(uα(η) − uα(∞))xα,(4.17)

where v0(x) =
∑

uα(∞)xα is the expansion of v0(x). We recall the following formula

(μk − η−1〈λ, β〉)−1 = μ−1
k

N∑
j=0

(〈λ, β〉
μkη

)j

+

(〈λ, β〉
μkη

)N+1

(μk − η−1〈λ, β〉)−1,(4.18)

where N = 0, 1, 2, . . . , and η ∈ S2π−θ1−θ2,π. Because every component of uα(η) is a
polynomial of (η−1〈λ, β〉 − μk)

−1, we get, from (4.18) that

uα(η) − uα(∞) = η−1ũα(η)

for some ũα(η) = (ũ
(1)
α (η), . . . , ũ

(N)
α (η)). It follows that

Q(x, η) = η−1Q̃(x, η), Q̃(x, η) =
∑

α

ũα(η)xα, η ∈ S2π−θ1−θ2,π, |η| > η0,(4.19)

where the equality is understood as a formal power series of x.
We will look for the equation of Q̃(x, η). In view of (4.17) and (4.19), put u = v0 +

η−1Q̃. Substitute u into (4.2). Then we have the equation for Q̃ with Λ := ∇uf(0, 0)

η−1Lv0 + η−2LQ̃ = (v0 + η−1Q̃)Λ + R(x, v0 + η−1Q̃)(4.20)

= η−1Q̃Λ + R(x, v0 + η−1Q̃) − R(x, v0)

= η−1Q̃Λ + η−1

∫ 1

0

Q̃ · ∇uR(x, v0 + θη−1Q̃)dθ.

It follows that

η−1LQ̃ − Q̃∇uf(0, 0) = −Lv0 +

∫ 1

0

Q̃ · ∇uR(x, v0 + θη−1Q̃)dθ.(4.21)
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This equation has a similar form as the equation for u(x, η). Indeed, the linear part
has the same form as (4.2). The nonlinear term in the right-hand side is bounded
in η when η → ∞, η ∈ S2π−θ1−θ2,π because the nonlinear term in the right-hand side
of (4.21) contains η−1 as a function of η and R(x, u) is a vector whose components
are entire functions of u. By the same argument as in the proof of the convergence
of u(x, η) we see that Q̃(x, η) is holomorphic when x is in some neighborhood of the
origin x = 0 and η ∈ S. We also note that the convergence is uniform with respect
to η ∈ S. Moreover, Q̃(x, η) is bounded when η ∈ S2π−θ1−θ2,π, η → ∞. This proves
(4.15) for N = 0.

Lemma 3. (4.15) holds for N = 1.

Proof. We will show (4.15) for N = 1. Define R0(x, η) := Q̃(x, η). We want to
show

lim
η→∞,η∈S2π−θ1−θ2,π

Q̃(x, η) = U1(x).(4.22)

In order to show that the limit in (4.22) converges uniformly in some neighborhood
of x = 0 we will construct the approximate sequence Q̃n(x, η) of the equation (4.21)
as in Proposition 2. Suppose that there exists c0 > 0 such that the convergence of the
approximate sequence {Q̃n}, Q̃ = lim Q̃n is uniform with respect to η ∈ S2π−θ1−θ2,π,
|η| ≥ c0. Then one can show (4.22) as follows.

By assumption, for a given ε > 0 there exist N0 > 0 and a neighborhood W0 of
x = 0 such that, for any m ≥ N0, n ≥ N0, x ∈ W0, and η ∈ S2π−θ1−θ2,π with |η| ≥ c0

we have ∣∣∣Q̃n(x, η) − Q̃m(x, η)
∣∣∣ < ε.(4.23)

Hence we see that limm→∞ Q̃m(x, η) =: Q̃(x, η) exists. On the other hand, by the

definition of the sequence, {Q̃n(x, η)} we have, for each n the limit

lim
η→∞,η∈S2π−θ1−θ2,π

Q̃n(x, η) =: Q̃n(x,∞)(4.24)

exists. By letting η → ∞ in η ∈ S2π−θ1−θ2,π in (4.23), we have, for every m,n ≥ N0

and x ∈ W0 ∣∣∣Q̃n(x,∞) − Q̃m(x,∞)
∣∣∣ ≤ ε.(4.25)

It follows that the limit limn→∞ Q̃n(x,∞) =: U1(x) exists uniformly for x ∈ W0. By
putting n = N0 in (4.25) and letting m → ∞ we have, for every x ∈ W0∣∣∣Q̃N0(x,∞) − U1(x)

∣∣∣ ≤ ε.(4.26)

On the other hand, by setting n = N0 in (4.23) and letting m → ∞ we have, for any
η ∈ S2π−θ1−θ2,π with |η| ≥ c0 and every x ∈ W0∣∣∣Q̃N0(x, η) − Q̃(x, η)

∣∣∣ ≤ ε.(4.27)
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By (4.24) there exists c1 > 0 such that, for every η ∈ S2π−θ1−θ2,π with |η| ≥ c1 and
every x ∈ W0 ∣∣∣Q̃N0(x, η) − Q̃N0(x,∞)

∣∣∣ < ε.(4.28)

Therefore for η ∈ S2π−θ1−θ2,π with |η| ≥ max{c0, c1} and every x ∈ W0 we have∣∣∣Q̃(x, η) − U1(x)
∣∣∣ ≤ ∣∣∣Q̃(x, η) − Q̃N0(x, η)

∣∣∣(4.29)

+
∣∣∣Q̃N0(x, η) − Q̃N0(x,∞)

∣∣∣+ ∣∣∣Q̃N0(x,∞) − U1(x)
∣∣∣ < 3ε.

Hence we have (4.22).
Finally, in order to show the uniform convergence of the approximate sequence it

is sufficient to verify that (4.8) holds uniformly in η ∈ S2π−θ1−θ2,π with |η| ≥ c0 for
some c0 > 0. Indeed, we apply the arugument of the proof of Proposition 2 to (4.21).
Set w = Q̃ and denote the right-hand side of (4.21) by F (x,w, 1/η).

In order to have the estimate (4.8) for k = 1, we need the estimate ‖F (·, 0, η−1)‖T ≤
KT . This follows from the relations F (x, 0, η−1) = −Lv0 and v0(0) = 0. Next we
consider ∇wF (x, 0, η−1) −∇wF (0, 0, η−1). In view of (4.10) we have

∇wF (x, 0, η−1) −∇wF (0, 0, η−1)

=

∫ 1

0

∇uR(x, v0(x))dθ −
∫ 1

0

∇uR(0, v0(0))dθ

=

∫ 1

0

∇uR(x, v0(x))dθ = ∇uR(x, v0(x)).

Because ∇uR(0, v0(0)) = 0, we obtain a similar estimate like (4.11).
Finally we estimate (w1∇2

wF (x, 0, η−1), w1). For this purpose we may consider the
next terms, for 1 ≤ ν ≤ N(

w1∇2
w

∫ 1

0

w · (∇uR
(ν)(x, v0 + θη−1w)

)
dθ
∣∣
w=0

, w1

)

= 2

∫ 1

0

w1 · w1∇w

(∇uR
(ν)(x, v0 + θη−1w)

)
dθ

∣∣∣∣
w=0

= 2

∫ 1

0

(w1θη
−1∇2

uR
(ν)(x, v0), w1)dθ =

1

η
(w1∇2

uR
(ν)(x, v0), w1).

By assumption we have ∇2
uR

(ν)(0, v0(0)) = 0. Hence we have the estimate like (4.12).
Similarly one can estimate the third order term. By these estimates one can see that
the constant K > 0 in the proof of (4.8) is uniform in η, η ∈ S2π−θ1−θ2,π with |η| ≥ c0,
which implies the desired estimate.

By virtue of (4.22) we have the following expression

R0(x, η) = U1(x) + η−1R1(x, η).(4.30)

We substitute

u(x, η) = v0(x) + η−1R0(x, η) = v0(x) + η−1U1(x) + η−2R1(x, η)(4.31)
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into the equation (4.2) and we compare the coefficients of η−1. Then we obtain

Lv0 = U1Λ + U1∇uR(x, v0).(4.32)

This is the same equation as (3.4) with v1 replaced by U1 because (∇uf)(x, v0) =
Λ + ∇uR(x, v0). By the uniqueness of v1(x) in the formal solution, we see that
U1(x) = v1(x).

We look for the equation of R1(x, η). Set u = v0 + v1η
−1 + R1η

−2, or equivalently,
Q̃ = v1(x) + η−1R1(x, η). By substituting Q̃ into (4.21) we obtain

η−1L(v1 + η−1R1)(4.33)

= −Lv0 + (v1 + η−1R1)Λ +

∫ 1

0

(v1 + η−1R1) · ∇uR(x, v0 + θη−1(v1 + η−1R1))dθ.

Using the relation

−Lv0 + v1Λ + v1∇uR(x, v0) = 0,(4.34)

the right-hand side of (4.33) is equal to

η−1R1Λ +

∫ 1

0

v1 ·
(∇uR(x, v0 + θη−1(v1 + η−1R1)) −∇uR(x, v0)

)
dθ(4.35)

+ η−1

∫ 1

0

R1 · ∇uR(x, v0 + θη−1(v1 + η−1R1))dθ.

If we substitute the relation

∇uR(x, v0 + θη−1(v1 + η−1R1)) −∇uR(x, v0)

= θη−1(v1 + η−1R1) ·
∫ 1

0

∇2
uR(x, v0 + tθη−1(v1 + η−1R1))dt

in (4.35), then we see that R1(x, η) satisfies the following equation

η−1LR1 − R1Λ = −Lv1(4.36)

+

∫ 1

0

∫ 1

0

v1 · ∇2
uR(x, v0 + tθη−1(v1 + η−1R1)) · θ(v1 + η−1R1)dtdθ

+

∫ 1

0

R1 · ∇uR(x, v0 + θη−1(v1 + η−1R1))dθ.

This equation has a similar form as the equation (4.2) for u(x, η). The nonlinear term
in the right-hand side together with the derivative with respect to η−1 are bounded
in η when η → ∞, η ∈ S2π−θ1−θ2,π because the nonlinear term contains η−1 as a
function of η and R(x, u) is a vector whose components are entire functions of u.
Therefore we see that there exists the solution R1(x, η) being holomorphic in x in
some neighborhood of the origin and η ∈ S2π−θ1−θ2,π. Therefore we have (4.15) for
N = 1.

Proof of Proposition 3. We prove by induction. By Lemmas 2 and 3 we have
(4.15) for N = 0, 1. Assume that (4.15) holds for N = 0, 1, 2, . . . , ν. We look for the
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equation of Rν by substituting (4.15) with N = ν into (4.2). First we note

Lu(x, η) =

ν∑
k=0

Lvkη
−k + η−ν−1LRν .(4.37)

We use the following formula for R(x, u)

R(x, u) = R(x, v0) + R(x, u) − R(x, v0)(4.38)

= R(x, v0) + (u − v0) · ∇uR(x, v0) + g(x, u),

where

g(x, u) =

∫ 1

0

(1 − θ)(u − v0) · ∇2
uR(x, v0 + θ(u − v0)) · (u − v0)dθ.(4.39)

Set t = η−1 and write

u =
ν∑

k=0

vk(x)η−k + Rνη
−ν−1 =

ν∑
k=0

vk(x)tk + Rνt
ν+1.(4.40)

We substitute (4.40) into (4.2) and compare terms with the power tν+1. We recall
that the terms with the power tk for k ≤ ν vanish by the definition of vk’s in (3.4)
and (3.5). In view of (4.37) and (4.38), the terms with the power tν+1 appearing from
the left-hand side of (4.2) are given by η−1LRν −RνΛ +Lvν. On the other hand, the
term which appears from (u − v0) · ∇uR(x, v0) is Rν∇uR(x, v0). Hence we consider
terms which appear from g(x, u). We use Taylor’s formula for a smooth function h(t)

h(t) =

ν∑
	=0

t	

�!

(
d

dt

)	

h(0) +
tν+1

ν!

∫ 1

0

(1 − θ)ν

(
d

dt

)ν+1

h(θt)dθ.

Applying Taylor’s formula for h(t) := g(x, u), with u given by (4.40), we see that
Rν satisfies

η−1LRν − RνΛ = −Lvν + Rν∇uR(x, v0) + Qν ,(4.41)

where the nonlinear term Qν is given by

Qν =
1

ν!

∫ 1

0

(1 − s)ν

(
∂

∂τ

)ν+1

g

(
x,
∑

k

vkτ
k + Rντ

ν+1

)∣∣∣∣∣
τ=st

ds.(4.42)

We note that the linear part of (4.41) has the same form as in (4.36) by the
similar computations as for R1. The nonlinear term Qν is bounded by some constant
depending on ν when η ∈ S2π−θ1−θ2,π and η → ∞ because it is analytic in t = η−1 at
t = 0 and R(x, u) is entire in u. Therefore, by the same argument as in the above,
we see that Rν(x, η) is the solution of (4.41) when η ∈ S2π−θ1−θ2,π and x is in some
neighborhood of the origin x = 0 possibly depending on ν. Moreover, by the uniform
convergence in η of the approximate sequence the limit

lim
η→∞,η∈S2π−θ1−θ2,π

Rν(x, η) = Uν+1(x)(4.43)
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exists in some neighborhood of the origin x = 0 possibly depending on ν. Because
the coefficients of the Taylor expansion in x of Rν(x, η) are polynomials of η−1 and
(μk−η−1〈λ, β〉)−1, by expanding (μk−η−1〈λ, β〉)−1 in the power series of η−1 we have
the expression for Rν(x, η)

Rν(x, η) = Uν+1(x) + η−1Rν+1(x, η).(4.44)

By substituting (4.15) with N = ν and (4.44) into (4.2), we see, from the uniqueness
of vν+1, that Uν+1(x) = vν+1(x) in some neighborhood of the origin depending on ν.
Because vν+1(x) is defined in some neighborhood of the origin independent of ν by the
definition of vν+1, Uν+1 is analytically continued to some neighborhood of the origin,
x = 0 independent of ν. Similarly, Rν+1(x, η) is defined in some neighborhood of the
origin, x = 0 independent of ν and η ∈ S2π−θ1−θ2,π in view of (4.44) because Rν(x, η)
has the property by the induction on ν. Therefore we have (4.15) with N = ν + 1.
This ends the proof.

Let vν(x) be given by (2.4). By Proposition 1 vν(x) is analytic at the origin
x = 0. Let vν(x) =

∑
α vν,αxα be its Taylor expansion at the origin. Let uα(η) =

(u
(1)
α , . . . , u

(N)
α ) be given by (2.12). Then we have

Proposition 4. For every α in (2.12), uα(η) is analytic at η = ∞. Let uα(η) =∑∞
ν=0 ṽν,αη−ν be its expansion at η = ∞. Then we have

ṽν,α = vν,α, for every ν.(4.45)

Proof. First we look for the alternative expression of uα(η). By substituting the
expansions (2.12) and R(x, z) =

∑
γ,δ Rγ,δz

γxδ into (4.2), we obtain the following
relation ∑

α

uα(η−1〈λ, α〉Id− Λ)xα =
∑
γ,δ

Rγ,δ(
∑

α

uαxα)γxδ.(4.46)

It follows that

uα(η−1〈λ, α〉Id − Λ) =
∑ ′ Rγ,δ

N∏
j=1

γ(j)∏
i=1

u
(j)
α(j,i),(4.47)

where γ = (γ(1), γ(2), . . . , γ(N)), and the summation
∑′ is taken over all combina-

tions

N∑
j=1

γ(j)∑
i=1

α(j, i) = α − δ, α(j, i) ∈ Zn
+, δ ∈ Zn

+, |α(j, i)| ≥ 1.(4.48)

These relations imply that there appear no unknown quantities u
(k)
α in the right-

hand side of (4.47). Indeed, we obtain

u(k)
α = (η−1〈λ, α〉 − μk)

−1R
(k)
0,α (|α| = 1, 0 = (0, 0, . . . , 0) ∈ Cn).(4.49)
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When |α| ≥ 1, we use (4.47) recurrently, and we obtain, for k = 1, 2, . . . , N

u(k)
α =

∑ ′′(η−1〈λ, α〉 − μk)
−1R

(k)

γ(1),δ(1)

(
	∏

ν=1

R
(j(ν))

γ(ν+1) ,δ(ν+1)

)
(4.50)

×
⎛
⎝ 	∏

ν=1

N∏
jν=1

γ(ν)(jν)∏
iν=1

(η−1〈λ, α(jν , iν , ν)〉 − μjν)
−1

⎞
⎠

where γ(ν) = (γ(ν)(1), γ(ν)(2), . . . , γ(ν)(N)), and R
(j(ν))

γ(ν+1),δ(ν+1) is the j(ν)-th component

of the vector Rγ(ν+1),δ(ν+1) . The summation
∑ ′′ is taken over combinations

(4.51)

N∑
j1=1

γ(1)(j1)∑
i1=1

α(j1, i1, 1) = α − δ(1), |γ(1)| + |δ(1)| ≤ |α|,

N∑
j2=1

γ(2)(j2)∑
i2=1

α(j2, i2, 2) = α(j1, i1, 1) − δ(2), |γ(2)| + |δ(2)| ≤ |α(j1, i1, 1)|,

· · ·
N∑

j�=1

γ(�)(j�)∑
i�=1

α(j	, i	, �) = α(j	−1, i	−1, � − 1) − δ(	), |γ(	)| + |δ(	)| ≤ |α(j	−1, i	−1, � − 1)|,

0 = α(j	, i	, �) − δ(	+1), γ(	+1) = 0,

especially,
∑	+1

ν=1 δ(ν) = α and � ≤ |α|. Note that the integer � in (4.50) is the number
of times the substitutions made by (4.47).

By (4.49) and (4.50) we see that uα(η) is analytic at η = ∞ with the expansion
uα(η) =

∑∞
ν=0 ṽν,αη−ν . Then we have

u(x, η) =
∑

α

∞∑
ν=0

ṽν,αη−νxα.(4.52)

Note that the series (4.52) is a formal series, because the radius of convergence of
uα(η) at η = ∞ is not uniform in α. On the other hand, by inserting the expansion
of vν(x) into the right-hand side of (4.15) we see that the coefficient of xαη−ν is equal
to vν,α. Hence we have (4.45). This ends the proof.

We define the path Γ as follows. Let 0 < τ < π/2 − θ1 and R > 0 be the number
chosen later. The path Γ starts from η = ∞ and goes on the ray from ∞ to the origin
in the domain Im η > 0, Re η > 0 up to some point Reiπ/2−iτ , then goes along the
circle with center at the origin and radius R counterclockwise to the point Rei3π/2+iτ ,
and goes to η = ∞ on the ray from the origin to ∞ in the domain Im η < 0, Re η > 0.
We take τ > 0 so small and R > 0 so large such that Γ encircles the pole of uα. Then
we have
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Lemma 4. There exists ρ1 > 0 such that

|uα(η)| ≤ ρ
|α|+1
1 , ∀α ∈ Zn

+, η ∈ Γ.(4.53)

Proof. We may estimate the right-hand side of (4.50). First we consider

R
(k)

γ(1),δ(1)

∏	
ν=1 R

(j(ν))

γ(ν+1),δ(ν+1) . By (4.10) and the assumption f(0, 0) = 0 and the con-

dition u(0) = 0 we see that R(x, u(x)) vanishes at x = 0. Therefore, by the scale
change of variables x = εy, for every given 0 < ε1 < 1 there exists K0 > 0 such that,
for every 1 ≤ ν ≤ �, 1 ≤ j(ν) ≤ N , γ(ν+1) ∈ ZN

+ and δ(ν+1) ∈ Zn
+ we have

|R(j(ν))

γ(ν+1),δ(ν+1) | ≤ K0ε
|γ(ν+1)|+|δ(ν+1)|
1 ,(4.54)

and for every γ(1) ∈ ZN
+ and δ(1) ∈ Zn

+ we have

|R(k)

γ(1),δ(1) | ≤ K0 ε
|γ(1)|+|δ(1)|
1 .

Therefore we have

|R(k)

γ(1),δ(1)

	∏
ν=1

R
(j(ν))

γ(ν+1),δ(ν+1) | ≤ K	+1
0

	+1∏
ν=1

ε
|γ(ν)|+|δ(ν)|
1 = K	+1

0 ε
1+
��

ν=1 |γ(ν)|+|δ(ν)|
1 .(4.55)

It follows from (4.50) and (4.5) that∣∣∣∣∣∣(η−1〈λ, α〉 − μk)
−1

⎛
⎝ 	∏

ν=1

N∏
jν=1

γ(ν)(jν)∏
iν=1

(η−1〈λ, α(jν , iν , ν)〉 − μjν)
−1

⎞
⎠
∣∣∣∣∣∣(4.56)

≤ c−1
1

	∏
ν=1

N∏
jν=1

γ(ν)(jν)∏
iν=1

c−1
1

≤ c−1
1

	∏
ν=1

N∏
jν=1

c
−γ(ν)(jν)
1 = c−1

1

	∏
ν=1

c
−|γ(ν)|
1 = c

−1−�ν |γ(ν)|
1 .

In order to estimate the modulus of the right-hand side of (4.50) we consider the
number of combinations {α(jν , iν , ν)}	

ν=1 in (4.51) for every �. Because the number
of combinations is multiplied at most by N when jν runs through 1 to N , we may fix
some jν , 1 ≤ jν ≤ N and count the number of combinations. Abbreviating the index
jν and rearranging {α(·, iν, ν)}, we define

α(1) := α(·, i	−1, � − 1), α(2) := α(·, i	−2, � − 2) − α(·, i	−1, � − 1),

α(3) := α(·, i	−3, � − 3) − α(·, i	−2, � − 2), · · · ,

α(	−1) := α(·, i1, 1) − α(·, i2, 2), α(	) := α − α(·, i1, 1).

If we set

β(1) = α, β(2) =
	−1∑
m=1

α(m), · · · , β(	−1) = α(2) + α(1), β(	) = α(1),(4.57)
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then the number of sequences {α(·, iν, ν)}ν are bounded by the number of paths on
Zn

+ which starts from α and arrives at some point in Zn
+ with length greater than or

equal to 1 under the condition that on every point γ on the path, the length |γ| is
strictly decreasing. Clearly, such number can be bounded by

n|α|−|β(2)|n|β(2)|−|β(3)| × · · · × n|β(�−1)|−|β(�)|n|β(�)|−1 = n|α|−1 ≤ n|α|.(4.58)

If we recall that jν runs through 1 to N , then the number of combinations of
{α(jν , iν , ν)}	

ν=1 is bounded by nN |α|.
By (4.55), (4.56) and the condition ε1 < 1 the modulus of the left-hand side of

(4.50) is bounded by∑ ′′K	+1
0 ε

1+
��

ν=1 |γ(ν)|+|δ(ν)|
1 c

−1−�ν |γ(ν)|
1(4.59)

≤ nN |α|K0ε1

c1

∞∑
	=1

∞∑
n1,... ,n�=1

∑
|γ(ν)|=nν

K	
0(ε1/c1)

��
ν=1 nν

≤ nN |α|K0ε1

c1

∞∑
	=1

∞∑
n1,... ,n�=1

K	
0(ε1/c1)

��
ν=1 nνN

��
ν=1 nν

≤ nN |α|K0ε1

c1

∞∑
	=1

∞∑
n1,... ,n�=1

K	
0(Nε1/c1)

��
ν=1 nν

≤ nN |α|K0ε1

c1

∞∑
	=1

(
K0Nε1

c1 − Nε1

)	

,

provided (Nε1)/c1 < 1. Because the right-hand side converges if
(

K0Nε1

c1−Nε1

)
< 1, we

obtain (4.53) by taking ε1 sufficiently small. This ends the proof.
Proof of Theorem 1. We shall prove the absolute convergence of the formal Borel

transform (2.5). Consider the sum

∑
α

∞∑
ν=0

vν,α
ζν

ν!
xα =

∑
α

∞∑
ν=0

ṽν,α
ζν

ν!
xα.(4.60)

Because uα(η) is holomorhic at η = ∞, the formal Borel transform of uα(η) appearing
in the right-hand side of (4.60) is equal to the Borel transform of the Hankel type for
every α, namely

ûα(ζ) =
1

2πi

∫
Γ

η−1uα(η)eζηdη,(4.61)

where Re ζ < 0, and the path Γ is given in Lemma 4.
Because uα(η) is the polynomial of η−1 and (μk−η−1〈λ, β〉)−1 for some β, it follows

that ûα(ζ) is an entire function of ζ . We will estimate the growth of (4.61) when ζ
tends to infinity in some small sector in the direction π. We restrict ζ on a small
sector containing negative real axis. Clearly, if η lies on the ray of Γ we see that eζη

is bounded because Re (ζη) < 0. Therefore, in terms of (4.53) there exist constants
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K2 > 0, C3 > 0 and C4 > 0 and a sector Σ0 with vertex at the origin containing
negative real axis independent of α so that

|ûα(ζ)| ≤ K2 exp (C3|α| + C4|ζ |) for all ζ ∈ Σ0.(4.62)

We shall study Σ0. We recall that C0 = Sθ1+θ2,0 and E0 ⊂ C0. Because the path Γ is
taken so that it encircles E0 inside, one can take the rays of Γ arbtrarily close to the
boundary of C0. Because every ζ ∈ Σ0 should satisfy Re (ζη) < 0 for any η on the
ray of Γ, we see that Σ0 contains the sector Sπ−θ1−θ2,π.

By using the Cauchy estimate we can easily show that

|ṽν,α| ≤ K3ν! exp (C3|α| + C4ν) , ν = 1, 2, . . . ,(4.63)

for, possibly another constants C3 > 0, C4 > 0 and K3 > 0. By (4.63), we see that
the right-hand side of (4.60) absolutely converges in some neighborhood of the origin
x = 0, ζ = 0. By (4.60) the formal Borel transform of (2.5) absolutely converges in
some neighborhood of the origin x = 0, ζ = 0.

In view of the definition of the Borel transform of uα(η), the right-hand side of (4.60)
is equal to

∑
α ûα(ζ)xα. Because ûα(ζ) is holomorphic in Σ0 and satisfies (4.62) we

see that
∑

α ûα(ζ)xα is holomorphic in (x, ζ) when x is in some neighborhood of the
origin and ζ ∈ Σ0. Moreover, by (4.62) it is of exponential growth when ζ ∈ Σ0,
ζ → ∞. Because ûα(ζ) is of exponential growth of order 1 in Σ0 by (4.62), the
Laplace transform of the right-hand side of (4.60) is equal to uα(η). Hence the Borel
sum V (x, η) of v(x, η) is equal to u(x, η) when η ∈ S2π−θ1−θ2,π. Because Σ0 contains
Sπ−θ1−θ2,π, we have the 1-Borel summability of v(x, η) in Sπ−θ1−θ2,π.

Finally, we show our theorem in the general case θ1 �= θ2. In view of the proof of
Proposition 2, we have ηe−iθ = η̃ with θ = (θ2 − θ1)/2. Hence we have the 1-Borel
summability when η̃ ∈ Sπ−θ1−θ2,π. By returning to η we have the 1-Borel summability
when η ∈ eiθSπ−θ1−θ2,π = Sπ−θ1−θ2,π+θ. This ends the proof of Theorem 1.

Proof of Corollary 2. Let V (x, η) be the Borel sum of the formal solution given
in Theorem 1. V (x, η) coincides with u(x, η) =

∑
α∈�n

+,|α|≥1 uα(η)xα when x ∈
S2π−θ1−θ2,π. In the proof of Proposition 2 we proved that u(x, η) is analytic in
(x, η) ∈ W × S, where S is given by (4.1). This implies the assertion. This ends
the proof.
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