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Abstract

In an earlier paper, the first author showed that certain normalized
formal solutions of homogeneous linear partial differential equations with
constant coefficients are multisummable, with a multisummability type
that can be determined from a Newton polygon associated with the PDE.
In this article, some of the results obtained there are extended in several
directions: First of all, arbitrary formal solutions of inhomogeous PDE
are considered, and it is shown that, in some sense, they can be computed
completely explicitly. Secondly, the Gevrey order of these formal solutions
is determined. Finally, formal power series are discussed that, in general,
do not satisfy a PDE with constant coefficients, but instead may be con-
sidered as solutions of singularly perturbed ODE, or integro-differential
equations of a certain form.

Introduction

In [3, 6], the first author introduced and studied normalized formal solutions
of a Cauchy problem for general homogeneous linear partial differential equa-
tions in two variables having constant coefficients. Multisummability of these
formal power series was then investigated in [4]. In detail, it has been shown
that, under the assumption that the initial condition used is holomorphic near
the origin, one can determine a multisummability type corresponding naturally
to the PDE under consideration. The normalized formal solution then is mul-
tisummable in a given multidirection, provided that the initial condition can
be continued into finitely many (small) sectors, and in every such sector is at
most of a certain exponential growth that, in general, depends upon the sector.
The multisummability type, the location of the sectors, and the corresponding
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exponential growth orders can all be computed from a characteristic equation
corresponding to the PDE.

In this article, we shall mainly be interested in inhomogeneous partial differ-
ential equations in two complex variables of the form

p(∂t, ∂z)u = f̂(t, z) . (0.1)

Here and later, ∂t resp. ∂z always stand for partial derivation with respect to
t resp. z, and p(t, z) ∈ C[t, z] is a given polynomial in two complex variables
with coefficients in the complex number field C. The right hand side of (0.1)
will be an arbitrary formal power series in two variables, which in short-hand
notation will be expressed as f̂(t, z) ∈ C[[t, z]]. Our main goal is to study the set
of all formal power series û(t, z) ∈ C[[t, z]] that solve (0.1). While this problem
obviously is symmetric in the two variables t and z, our treatment will, in some
sense, prefer the one variable t over the other. For this reason, and to be able
to compare with results in earlier articles of the first autor’s, we shall expand
p(∂t, ∂z) and f̂(t, z) as

p(∂t, ∂z) = ∂κ
t p0(∂z) −

κ∑
ν=1

∂κ−ν
t pν(∂z) , f̂(t, z) =

∞∑
j=0

tj

j!
f̂j∗(z) (0.2)

where pν(z) ∈ C[z], and f̂j∗(z) =
∑∞

n=0 fjn zn/n! ∈ C[[z]]. A formal power
series û(t, z) =

∑∞
j=0 tj ûj∗(z)/j!, with ûj∗(z) =

∑∞
n=0 ujn zn/n! ∈ C[[z]], is a

formal solution of (0.1) if, and only if, the coefficients satisfy the inhomogeneous
ODE

p0(∂z) ûj∗(z) = f̂j−κ,∗(z) +
κ∑

ν=1

pν(∂z) ûj−ν,∗(z) ∀ j ≥ κ .

The first coefficients û0∗(z), . . . , ûκ−1,∗(z) may be chosen arbitrarily, while (if
d > 0 denotes the degree of p0(z)) for each j ≥ κ we may arbitrarily select
coefficients ujn for 0 ≤ n ≤ d − 1 and then compute the remaining ones from
this identity. So the entries û0∗(z), . . . , ûκ−1,∗(z) and ujn for 0 ≤ n ≤ d − 1
may be considered as the initial data1 of a formal solution. It is obvious that
the choice of these data influences the Gevrey order of û(t, z) (for the definition
used here, see p. 18), and in fact may cause this order to be infinite! However,
even if we choose all initial data to vanish, and the inhomogenuity f̂(t, z) to
converge, the formal solution still may be divergent, which in our terminology
corresponds to a Gevrey order s = (s1, s2) with at least one sj ≥ 1. So it
is the main concern of this article to analyse the Gevrey order s of û(t, z) in
dependence of the initial data and the inhomogenuity.

The homogeneous equation corresponding to (0.1) has been studied in [3, 6,
4], and Gevrey order resp. multisummability of a particular solution, referred
to as the normalized formal solution, has been investigated. The work done

1In fact, it may be more appropriate to refer to the values ujn for 0 ≤ n ≤ d − 1 as
boundary data, but for simplicity we choose not to do this here.
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here, even when specialized to the homogeneous situation, considerably improves
some of the results obtained in the articles quoted above: We show that the set
of all formal solutions of (0.1) can be explicitly parametrized in terms of another
formal power series in two variables, denoted as ψ̂(t, z). The coefficients of this
series can, in turn, be found in terms of the coefficients fjn of the right hand
side of (0.1) and the initial conditions that the formal solution satisfies. As
the most interesting situations, we shall study the two cases when all series
f̂j∗(z) =

∑∞
n=0 fjn zn/n! converge in a disc about the origin of a (finite) radius

that is independent of j, resp. are entire functions of an exponential growth
that does not depend upon j. For both cases, we shall find the Gevrey order of
the formal solution, generalizing corresponding results from [1, 8] for the heat
equation. To achieve the results described above, it is vital to use a general
approach and study formal series that involve two so-called moment functions.
In the special case when these two moment functions both are equal to factorials,
such series occur as formal solutions of (0.1). In another case, they are formal
solutions of an ordinary differential equation whose coefficients depend upon a
parameter, while in general they may be considered as formal solutions of a
moment-PDE that shall be described in Section 3.

Remark 1: As a standard example for our investigations, we shall consider the
PDE

(∂κ
t − a ∂µ

z )u = f̂(t, z) .

Here, a is a non-zero complex parameter, and κ and µ are (non-zero) natural
numbers. So in this case we have p(t, z) = tκ − a zµ, hence p0(z) ≡ 1,
pκ(z) = zµ, and the remaining pν(z) vanishing identically. For a = 1, the
corresponding homogeneous equation has been investigated by M. Miyake [19],
and the case of κ = 1, µ = 2, a = 1 shall frequently be referred to as the complex
heat equation. Note that for our investigations it suffices to treat the case of
a = 1, since an easy change of variable may be used to come to this situation.
However, it is important to observe the general situation to see that for this
article there is no difference between the heat equation and the Schrödinger
equation (in one spatial variable). 2

Acknowledgement. The authors wish to thank the unknown referee for
many hints and suggestions improving the readability of this manuscript!

1 Moment functions

In [2, 5], generalized integral operators resp. moment summability methods
have been introduced and studied. For convenience of the reader we shall briefly
review the definitions and results needed here.

A pair of functions e(z) and E(z) shall be called kernel functions of order
k > 1/2, provided that they have the following properties:

1. The function e(z) is holomorphic in Sk,+ = {z ∈ C \ {0} : 2k | arg z| < π},
and z−1 e(z) is integrable at the origin, meaning that a function f(z) with

3



f ′(z) = z−1 e(z) is continuous at the origin in the sense that a value f0

exists so that for every proper subsector S of Sk,+ and every ε > 0 there
exists a δ > 0 with |f(z)−f0| < ε whenever z ∈ S and |z| < δ holds – also
compare [2, p. 61]. For positive real z = x, the values e(x) are assumed
to be positive real numbers. Moreover, we demand that for every R, ε > 0
there exist constants C,K > 0 such that

|e(z)| ≤ C exp[−(|z|/K)k] ∀ z with 2k| arg z| ≤ π−ε , |z| ≥ R . (1.1)

In the literature, this property of e(z) is referred to as being exponentially
flat of order k in Sk,+.

2. The function E(z) is entire and of exponential growth at most k, meaning
that for constants C,K > 0, not necessarily the same as above, we have

|E(z)| ≤ C exp[K |z|k] ∀ z ∈ C . (1.2)

Moreover, in Sk,− = {z ∈ C \ {0} : 2 |π − arg z| < π(2− 1/k)} = C \ Sk,+,
the function z−1 E(1/z) is required to be integrable at the origin.

3. The two functions e(z) and E(z) are linked as follows: In terms of the
kernel function e(z), we define the corresponding moment function m(u)
by

m(u) =
∫ ∞

0

xu−1 e(x) dx, Re u ≥ 0 .

Note that the integral converges absolutely and locally uniformly for these
u, so that m(u) is holomorphic for Re u > 0 and continuous up to the
imaginary axis, and the values m(x) are positive real numbers for x ≥ 0.
Using this function, we require that E(z) has the power series expansion

E(z) =
∞∑

n=0

zn

m(n)
∀ z ∈ C . (1.3)

Under these assumptions, it follows that the moments m(n) are of the same
order as Γ(1 + n/k) in the sense that constants C± > 0 exist for which we have

C− ≤
[

m(n)
Γ(1 + n/k)

]1/n

≤ C+ ∀ n ≥ 1 . (1.4)

In particular, this shows that the order of a pair of kernel functions is uniquely
defined, and that the entire function E(z) is exactly of exponential growth k,
or in other words, is of exponential order k and finite non-zero type.

As an example, let e(z) = k zk exp[−zk]. Then m(u) = Γ(1 + u/k), and
E(u) is the well-known Mittag-Leffler function E1/k(z) =

∑∞
0 zn/Γ(1+n/k) of

index s = 1/k [2, p. 233]. In some sense these functions are, in fact, the most
important pair of kernel functions of this order and shall therefore be referred
to as the standard ones of order k, but many more interesting examples can be
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derived from the general theory developped in [2, 5]. E. g., there exists a pair of
kernel functions of order k > 1/2 for which the corresponding moment function
equals

m(u) =
Γ(1 + s1u) · . . . · Γ(1 + sνu)
Γ(1 + σ1u) · . . . · Γ(1 + σµu)

,

with arbitrary positive real numbers sj , σj such that
∑

sj = 1/k +
∑

σj . All
questions asked here, say, about existence of solutions of moment-PDE, or
Gevrey order or even summability of formal solutions, are independent of the
particular choice of moment functions of fixed order. Therefore, we shall in
proofs later on restrict to the standard kernels.

With help of kernel functions e(z) and E(z), we define a pair of integral
operators as follows:

4. Let S = S(d, α) = {z ∈ C \ {0} : 2 |d − arg z| < α} be a sector of
infinite radius, bisecting direction d, and opening α. Moreover, let f be
holomorphic in S, integrable at the origin and of exponential growth of
order at most k in S, meaning that for every ε > 0 there exist constants
C,K > 0 with |f(z)| ≤ C exp[K|z|k] for 2 |d − arg z| ≤ (α − ε). Then for
2 |d − τ | < α, the integral

(Tmf)(z) =
∫ ∞(τ)

0

e(u/z) f(u)
du

u
(1.5)

converges absolutely and locally uniformly for z in a sectorial region with
bisecting direction τ and opening π/k and can, by variation of τ , be con-
tinued into a sectorial region G = G(d, α + π/k) of opening α + π/k and
bisecting direction arg z = d. In this region, the function Tmf is holomor-
phic and bounded at the origin.

5. If G is as in item 4, and f is holomorphic in G and bounded at the origin,
then we define

(T−
mf)(u) =

1
2πi

∫
γk(τ)

E(u/z) f(z)
dz

z
(1.6)

with 2 |τ − d| < α, and γk(τ) denoting the path from the origin along
arg z = τ − (ε + π)/(2k) to some z1 ∈ G of modulus r, then along the
circle |z| = r to the ray arg z = τ + (ε + π)/(2k), and back to the origin
along this ray, for ε, r > 0 so small that γk(τ) fits into G. In other words,
the path γk(τ) is the positively oriented boundary of a sector in G with
bisecting direction τ , finite radius, and opening slightly larger than π/(2k).
The dependence of the path on ε and r will be inessential and therefore
is not displayed. One can show that the function T−

mf , for S = S(d, α)
as in (1), is holomorphic in S, bounded at the origin, and of exponential
growth at most k.

In the case of e(z) = k zk exp[−zk], the two integral operators coincide with
the version of Laplace resp. Borel operators defined and studied in [2]. For
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kernels corresponding to the moment function m(u) = Γ(1 + s u)/Γ(1 + σ u)
for 1/k = s − σ > 1/2, the two operators are Jean Ecalle’s acceleration resp.
deceleration operators. Even in general, they have many properties in common
with those classical operators; for this, refer to [2, 5]. It is convenient to say that
the operators Tm, T−

m , as well as the moment function m(u), corresponding to
kernels of order k > 1/2, are also of this order. One can also introduce kernels,
resp. operators, of any order k ∈ (0, 1/2), but these shall not be needed here.

Remark 2: In [2, p. 88] it has been shown that the moment function m(u)
admits the following representation in terms of E(z):

1
m(u)

=
1

2πi

∫
γ

E(z) z−u−1 dz ∀ u with Re u ≥ 0 ,

with a path γ as in Hankel’s formula for the reciprocal Gamma function: From
infinity along the negative real axis to the point −1, then on the unit circle in
the mathematically positive direction, and then back to infinity, again following
the negative real axis. For u = n ∈ N0, the integrals along the two radial parts
of γ cancel one another, so that for arbitrary r > 0 and n ∈ N0

1
m(n)

=
1

2πi

∫
|z|=r

E(z) z−n−1 dz , (1.7)

which is, of course, nothing but the Cauchy formula for the coefficients of the
power series expansion of E(z). Note that the integral on the right vanishes,
due to Cauchy’s Theorem, when n is a negative integer. This is why it is natural
here to interprete 1/m(n) = 0 for −n ∈ N, since then we shall be able to use
(1.7) for all integers n. 2

Remark 3: Observe that a kernel function e(z) determines the corresponding
moment function m(u), and this one in turn determines the corresponding E(z)
by means of (1.3). Whether a given moment function m(u) determines the kernel
e(z) is by no means obvious and shall not be discussed here at all. Therefore,
whenever we shall later on speak of a given moment function, we implicitly
mean to say that e(z) is given, too. 2

It has been shown in [2] that for every pair of integral operators as defined
above, one can define a so-called moment summability method, and using this,
one can introduce what is called a theory of multisummability in the sense of
Jean Ecalle [10, 11, 15, 16, 14, 13] – this, however, shall not be used here.

2 Some notation, and a basic result

In what follows, we shall use the following notation that is different from that of
the first author’s previous articles [6, 4, 7], but more suitable for our purposes
here:
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1. Throughout, we shall consider a fixed polynomial q(t, z) ∈ C[t, z] in two
complex variables. As shall be made clear in (3.1) this polynomial is
linked to p(t, z) occuring in (0.1) by q(t, z) = tκ zµ p(t−1, z−1). Hence in
the example described in Remark 1, we have q(t, z) = zµ − a tκ = p(z, t),
and as was said there it suffices to understand the situation of a = 1, to
which we shall restrict from now on.

2. We shall always expand q(t, z) as

q(t, z) =
κ∑

j=0

tj qj∗(z) =
µ∑

n=0

q∗n(t) zn =
κ∑

j=0

µ∑
n=0

tj qjn zn , (2.1)

with polynomials qj∗(z) ∈ C[z], q∗n(t) ∈ C[t], resp. constants qjn ∈ C. In
addition, we shall restrict ourselves to the case of µ, κ ≥ 1, and assume
that q0∗(z) and qκ∗(z), as well as q∗µ(t), do not vanish identically. These
assumptions are motivated by the main application of our results to the
PDE (0.1).

3. While q0∗(z), by assumption, does not vanish identically, it may have a
root at the origin, whose order shall be denoted by a0 ≥ 0. The cases
when a0 is larger than the order of the root of at least one of the other
qj∗(z) will be of particular interest, and this is so for q(t, z) = zµ−tκ, since
here a0 = µ while qκ∗(z) does not vanish at the origin. We do, however,
not make any assumption on the orders of roots right now!

4. As we shall see later, it is important to introduce expansions of r(t, z) :=
q0∗(z)/q(t, z) in the following region in C2: Let R0 > 0 be such that the
polynomial q0∗(z) does not vanish in the ring 0 < |z| < R0. For every pair
of radii Ri, Ra with 0 < Ri < Ra < R0, let

m0 = min
Ri≤|z|≤Ra

|q0∗(z)| , Mν = max
Ri≤|z|≤Ra

|qν∗(z)| ,

hence m0 > 0. Also note that Mκ > 0, since by assumption qκ∗(z) does not
vanish identically. Accordingly, there exists a unique R1 > 0, depending
upon Ri and Ra and determined by

∑κ
ν=1 Rν

1 Mν = m0. As a result,

|q(t, z)| ≥ m0 −
κ∑

ν=1

|t|ν Mν > 0

for all (t, z) ∈ G(Ri, Ra) := {|t| < R1}× {Ri < |z| < Ra}. Hence r(t, z) is
holomorphic in G(Ri, Ra) and can be expanded as

r(t, z) =
∞∑

j=0

tj rj∗(z) =
∞∑

n=−∞
r∗n(t) zn =

∞∑
j=0

∞∑
n=−nj

tj rjn zn (2.2)

with the series converging absolutely in the region described above, and
integer numbers nj that are upper bounds for the pole order of rj∗(z) and
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shall, for simplicity of notation, be assumed to be non-negative and weakly
increasing. For our standard example q(t, z) = zµ − tκ = p(z, t), expan-
sion (2.1) is nothing but the geometric series r(t, z) = (1 − tκ/zµ)−1 =∑∞

j=0 tjκ z−jµ, hence rj∗(z) = z−jµ/κ whenever j is divisible by κ, and
zero otherwise.

5. The functions rj∗(z) that were introduced above are rational and recur-
sively determined by the identities

r0∗(z) ≡ 1 ,
κ∑

ν=0

qν∗(z) rj−ν,∗(z) = 0 ∀ j ≥ 1 , (2.3)

interpreting rj∗(z) ≡ 0 for j ≤ −1. To obtain a good estimate for the
numbers nj in (2.2), let aν ≥ 0 denote the order of the zero of the
polynomial qν∗(z) at the origin, interpreting aν = ∞ if qν∗(z) vanishes
identically. Solving (2.3) for rj∗(z), one can see that n0 = 0, while
nj ≤ max {0 , nj−ν +a0−aν , 1 ≤ ν ≤ κ}, setting nj−ν = −∞ whenever
ν > j. By induction, this may be seen to imply

nj ≤ j d ∀ j ≥ 0 , (2.4)

with a (non-negative rational) number d that is given by

d = max {0 , ν−1 (a0 − aν) , 1 ≤ ν ≤ κ} ≥ 0 , (2.5)

and clearly d ≤ a0. This estimate shall play a prominent role in Section 5.
Observe for later that in our main example described in Remark 1 we find
d = µ/κ, so in particular d = 2 for the complex heat equation.

6. The functions r∗n(t) satisfy the inhomogeneous difference equation

∀ n ∈ Z :
µ∑

m=0

q∗m(t) r∗,n−m(t) =

{
q0n (0 ≤ n ≤ µ)

0 (otherwise)

but this identity cannot be used to compute the r∗n(t) recursively. Instead,
one can use the standard formula for the coefficients of a Laurent series
to obtain an integral representation for r∗n(t); this, however, will not be
needed here.

7. In what follows, we shall frequently consider formal Laurent series ψ̂(t, z)
of the following special form

ψ̂(t, z) =
∞∑

j=0

tj ψ̂j∗(z) =
∞∑

n=−∞
ψ̂∗n(t) zn =

∞∑
j=0

∑
n≥−d j

tj ψjn zn (2.6)

with d as in (2.5). Hence such series are formal power series in t with
coefficients ψ̂j∗(z) that are formal Laurent series in z, whose (formal)
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pole orders are at most d j. The set of such series shall be denoted as
Cd[[t, z]], and it is easily seen that this set forms an algebra with respect
to the standard operations for formal series. Note, however, that Cd[[t, z]],
except for d = 0, is not closed with respect to formal differentiation.
For simplicity of notation, we shall set ψjn = 0 for n < −d j and write
ψ̂j∗(z) =

∑
n ψjn zn. As is natural, we shall refer to the series

ψ̂pp(t, z) =
∞∑

j=0

∑
n < 0

tj ψjn zn

as the principal part of ψ̂(t, z).

8. Since r(t, z), when expanded as in (2.2), may be regarded as an element
of Cd[[t, z]], we obtain a mapping ψ̂(t, z) 7→ û(t, z) := r(t, z) ψ̂(t, z) from
Cd[[t, z]] into itself, and since 1/r(t, z) = 1 +

∑κ
1 tj qj∗(z)/q0∗(z) can be

verified to be in Cd[[t, z]] as well, this mapping is, in fact, bijective. We
shall write

û(t, z) = r(t, z) ψ̂(t, z) =
∞∑

j=0

tj ûj∗(z)

=
∞∑

n=−∞
û∗n(t) zn =

∞∑
j=0

tj
∑

n

ujn zn

ujn =
j∑

ν=0

∑
m

rνm ψj−ν,n−m


(2.7)

bearing in mind that in the last line the inner sum extends over such
m with −ν d ≤ m ≤ n + (j − ν) d only, since for other m the term in
the sum vanishes. Therefore, the sum always is finite and is, in fact,
equal to 0 whenever n < −d j. We may rewrite the first line of (2.7)
as q(t, z) û(t, z) = q0∗(z) ψ̂(t, z) and compare coefficients to obtain the
formula

κ∑
ν=0

qν∗(z) ûj−ν,∗(z) = q0∗(z) ψ̂j∗(z) ∀ j ≥ 0 (2.8)

interpreting û−ν∗(z) ≡ 0 for ν ≥ 1. This identity may be solved for ûj∗(z),
thus providing a recursion relation for the formal Laurent series ûj∗(z).
Expanding with respect to z, we conclude from (2.8) for j ≥ 0 and n ∈ Z,
with a0 as defined above, that the numbers ujn and ψjn are related by
the following infinitely many linear equations:

κ∑
ν=0

∑
m

qνm uj−ν,n−m =
∑
m

q0m ψj,n−m (2.9)
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interpreting uj−ν,n−m = 0 as well as ψj,n−m = 0 whenever n < −d j + m,
or when j − ν resp. j is negative. For our standard example q(t, z) =
zµ − tκ = p(z, t), this mapping resp. its inverse is given by the relations

ujn =
∑

0≤ν≤j/κ

ψj−νκ,n+νµ , ψjn = ujn − uj−κ,n+µ

for all integers j, n, interpreting ujn = ψjn = 0 for n < −j d.

9. Let two moment functions m1, m2 in the sense of Section 1 be given. For
an arbitrary series of the form

f̂(t, z) =
∞∑

j=0

∑
n

tj fjn zn ∈ Cd[[t, z]]

we define a formal power series in two variables by

f̂(t, z; m1,m2) =
∞∑

j=0

tj

m1(j)

∞∑
n=0

fjn
zn

m2(n)

=
∞∑

j=0

tj

m1(j)
f̂j∗(z; m2) =

∞∑
n=0

f̂∗n(t; m1)
zn

m2(n)
.


(2.10)

Observe that in view of (1.7) we interprete 1/m2(n) = 0 for negative
integers n; therefore, in the definition of f̂(t, z;m1,m2) the summation
with respect to n, unlike for f̂(t, z), is restricted to n ≥ 0. In this manner,
we obtain a surjective linear map from Cd[[t, z]] onto C[[t, z]], which we
shall call the moment transformation.

10. The moment transformation f̂(t, z) 7→ f̂(t, z; m1,m2) introduced in the
previous item is nothing but a formal, i. e. termwise, application of the
operator T−

m1
, associated with the moment function m1, to f̂(t, z) when

regarded as a power series in t whose coefficients are formal Laurent series
in z, followed by a formal application of T−

m2
, associated with m2, to its

coefficients. It shall sometimes be convenient to denote this operation as

f̂(t, z) 7−→ f̂(t, z; m1,m2) = T̂−
m1,t ◦ T̂−

m2,z f̂(t, z) . (2.11)

It shall be natural to extend this map to cases when the moments m1(n)
and/or m2(n) are identically equal to 1 for n ≥ 0. While for m1(n) ≡ 1
the corresponding T̂−

m1,t is the identity operator on the set of formal power
series in t, note that for m2(n) ≡ 1 the operator T̂−

m2,z acts on formal
Laurent series in z and is, in fact, the truncation operator removing the
principal part; this operator shall be denoted by T̂−

z for simplicity. In
particular, if m1(n) ≡ m2(n) ≡ 1, then the series f̂(t, z; m1,m2) equals
the power series part T̂−

z f̂(t, z) of f̂(t, z), and therefore is, in general,
different from the series f̂(t, z).

10



11. For functions m1,m2, we define formal moment-differential operators ∂m1,t

and ∂m2,z, acting termwise on formal power series, denoted as in (2.10),
by setting

∂m1,t
tj

m1(j)
f̂j∗(z; m2) =

tj−1

m1(j − 1)
f̂j∗(z; m2) ,

∂m2,z f̂∗n(t; m1)
zn

m2(n)
= f̂∗n(t; m1)

zn−1

m2(n − 1)
,

with the understanding that the right hand sides vanish when j = 0
resp. n = 0. Observe that for m1(u) = Γ(1 + u), the operator ∂m1,t

coincides with (termwise) partial differentiation ∂t. More generally, if
m1(u) = Γ(1 + s u) for some fixed s > 0, then ∂m1,t is intimately related
with, although not equal to, fractional derivation with respect to t. For
m1(n) ≡ 1, the corresponding operator is equal to division of a power
series by t, after elimination of terms that are independent of this variable.
Analogous statements hold true for the other operator.

Except for the case of j = 0, resp. n = 0, the operator ∂m1,t, resp. ∂m2,z,
introduced above can be inverted, and we can therefore define integer pow-
ers of them in the usual fashion. Altogether, we obtain for ν, µ ∈ N0 and
f̂(t, z; m1, m2) as in (2.10)

∂ν
m1,t ∂µ

m2,z f̂(t, z;m1,m2) =
∞∑

j=0

tj

m1(j)

∞∑
n=0

fj+ν,n+µ
zn

m2(n)
, (2.12)

while on the other hand

∂−ν
m1,t ∂−µ

m2,z f̂(t, z;m1,m2) =
∞∑

j=0

tj+ν

m1(j + ν)

∞∑
n=0

fjn
zn+µ

m2(n + µ)
, (2.13)

and similarly for ∂ν
m1,t ∂−µ

m2,z etc. However, observe that ∂−ν
m1,t is a right-inverse

of ∂ν
m1,t, but in general is not a left-inverse.

In the terms introduced above, we now define a linear map from the set
Cd[[t, z]] into the set C[[t, z]] of formal power series in two variables by

ψ̂(t, z) 7−→ û(t, z) 7−→ û(t, z;m1,m2) = T̂−
m1,t ◦ T̂−

m2,zû(t, z) , (2.14)

with û(t, z) given by (2.7). As we shall show now, this map is surjective, and
we shall also find the kernel of this map:

Proposition 1 Let any formal power series ϕ̂(t, z) =
∑

j,n≥0 tj ϕjn zn in two
variables be given. Then there exists a formal series ψ̂(t, z) ∈ Cd[[t, z]], such
that for the corresponding û(t, z) given by (2.7) we have

ϕ̂(t, z) = T̂−
m1,t ◦ T̂−

m2,zû(t, z) .

11



More precisely, the principal part of ψ̂(t, z) may be arbitrarily prescribed, and
after doing so, the series ψ̂(t, z) is uniquely determined. In particular, we can
always choose the principal part to vanish, so that ψ̂(t, z) ∈ C[[t, z]]. Alterna-
tively, we may also choose the principal part of ψ̂(t, z) in such a way that û(t, z)
is in C[[t, z]], i. e., has vanishing principal part.

Proof: Obviously, it is necessary to set ujn = ϕjn m1(j) m2(n) for j, n ≥ 0,
since then by definition

û(t, z;m1,m2) :=
∞∑

j=0

tj

m1(j)

∞∑
n=0

ujn
zn

m2(n)
= ϕ̂(t, z) .

This leaves to discuss whether it is possible to select coefficients ujn with j ≥ 0
and −d j ≤ n ≤ −1, as well as ψjn, for j ≥ 0 and n ≥ −d j, such that the
identities (2.9) hold. This may be done by induction with respect to j: For
fixed j ≥ 0, we rewrite (2.9) as saying that

ψ̂j∗(z) − ûj∗(z) =
κ∑

ν=1

qν∗(z)
q0∗(z)

ûj−ν,∗(z) , (2.15)

with the right hand side vanishing for j = 0, resp. being known by induction
hypothesis for j ≥ 1. According to the definition of the number d, the right
hand side of this identity is a formal series in Cjd[[z]]. Since the power series
part of ûj∗(z) is known, this formula determines the power series part of ψ̂j∗(z),
as well as the principal part of ψ̂j∗(z)− ûj∗(z). This observation is sufficient to
complete the proof. 2

Remark 4: Observe that the proof of the above proposition can also be for-
mulated more explicitly: Given û(t, z; m1,m2), we conclude for each j ≥ 0 that
the power series part of ûj∗(z) is known, while its principal part, together with
the series ψ̂(t, z), can be found as follows: Set

ρν∗(z) =
qν∗(z)
q0∗(z)

=
∞∑

n=aν−a0

ρνn zn , 0 < |z| < R0 ,

and write (2.15) in the form

ψjn − ujn =
κ∑

ν=1

n+nj−ν∑
m=aν−a0

ρνm uj−ν,n−m ∀ j ≥ 0 , n ∈ Z , (2.16)

interpreting ψjn = ujn = 0 whenever n < −nj . This formula indeed determines
either ujn or ψjn, after an arbitrary choice of the other quantity, for −j d ≤ n <
0, as well as ψjn for n ≥ 0, since then ujn is known. 2
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3 Formal solutions of moment-PDEs

In what follows, we shall consider a given pair of moment functions m1,m2 and
wish to investigate formal solutions of an operator equation of the following
form:

• With µ, κ, and q(t, z) as in (2.1), we define new polynomials in one, resp.
two, variables by setting p0(z) = zµ q0∗(z−1) and pν(z) = −zµ qν∗(z−1)
for 1 ≤ ν ≤ κ, respectively

p(t, z) = tκ p0(z) −
κ∑

ν=1

tκ−ν pν(z) = tκ zµ q(t−1, z−1) . (3.1)

For a given series f̂(t, z;m1,m2) as in (2.10), we shall investigate the set
of formal power series solutions of the equation

p
(
∂m1,t, ∂m2,z

)
û(t, z; m1,m2) = f̂(t, z; m1,m2) . (3.2)

Regarding ∂m1,t, ∂m2,z as moment-differential operators, this identity may
be viewed as an inhomogeneous moment-PDE with constant coefficients.

Remark 5: As the most interesting situation, assume that m1(u) = m2(u) =
Γ(1 + u): As was observed before, the moment-differentials ∂m1,t, ∂m2,z then
become equal to partial derivation, and therefore (3.2) coincides with the inho-
mogeneous PDE (0.1). 2

For the operator equation (3.2), it is natural to ask the following questions:

• How many formal solutions does (3.2) have? More precisely, given any
formal power series in two variables, written in the form û(t, z; m1, m2),
can we identify those of its coefficients ujn that may be chosen arbitrarily,
while the remaining ones can be uniquely determined, such that the series
formally solves (3.2)? As shall be shown below, the ones that are arbitrary
are those ujn with (j, n) ∈ I ⊂ N2

0, where

I = { (j, n) : 0 ≤ j < κ } ∪ { (j, n) : 0 ≤ n < µ − a0 } . (3.3)

Note that the set I has two components, the second of which is empty for
a0 = µ, and this is so in our standard example p(t, z) = tκ − zµ. This
shall play a role below.

• In view of the map (2.14), can we identify those ψ̂(t, z) for which the
corresponding û(t, z; m1,m2) is a formal solution of (3.2)? In this case,
we can think of these series ψ̂(t, z) as a parametrization of the set of formal
solutions. As shall also be shown below, the answer to this question is that
we may choose those coefficients ψjn with (j, n) ∈ I arbitrarily, while the
remaining ones are determined by the right hand side of (3.2).
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To illustrate this concept, we again consider the case p(t, z) = tκ − zµ, in
which case we have(

∂κ
m1,t − ∂µ

m2,z

)
û(t, z; m1,m2) =

∞∑
j,n=0

tj

m1(j)
(uj+κ,n − uj,n+µ)

zn

m2(n)
.

Hence, to obtain a formal solution of (3.2), we may choose ujn with 0 ≤ j < κ
and n ≥ 0 arbitrarily, while the remaining ones are determined by the identities

uj+κ,n = uj,n+µ + fjn , ∀ j, n ≥ 0 .

From (2.9) we conclude that uj,n−µ − uj−κ,n = ψj,n−µ for j ≥ 0, n ≥ µ. This
implies that ψjn = ujn can be chosen arbitrarily for all 0 ≤ j < κ and n ≥ 0,
while the remaining ones are given by the equations ψjn = fj−κ,n for j ≥ κ,
n ≥ 0. So in this simple situation, we see that the set of formal solutions of
(3.2) can be parametrized by the series ψ̂(t, z) with arbitrary coefficients ψjn for
all 0 ≤ j < κ and n ≥ 0, while the remaining ones are explicitly given by the
inhomogenuity f̂(t, z; m1,m2). In this case we have that a0 ∈ N0, denoting the
order of the zero of q0∗(z) at the origin, satisfies a0 = µ, and therefore the set
of pairs (j, n) with 0 ≤ j < κ and n ≥ 0 is equal to I defined in (3.3). For an
analogous result in the general case, we prove the following proposition:

Proposition 2 (Formal solutions) For any formal series f̂(t, z; m1,m2) as
in (2.10), the following statements hold:

(a) For every formal power series ψ̂(t, z), the series û(t, z; m1,m2), given by
the formal map (2.14), is a formal solution of (3.2) if, and only if,

µ∑
m=a0

q0m ψj,n−m = fj−κ,n−µ ∀ j ≥ κ , n ≥ µ . (3.4)

This condition can be equivalently phrased as saying that

∂κ
m1,t p0(∂m2,z) ψ̂(t, z; m1,m2) = f̂(t, z; m1, m2) .

In particular, in order that û(t, z; m1, m2) is a formal solution, the coeffi-
cients ψjn of ψ̂(t, z) with (j, n) ∈ I can be arbitrarily prescribed, while the
remaining ones are uniquely determined by (3.4).

(b) Let complex numbers ϕjn for (j, n) ∈ I be given. Then there is precisely
one formal solution û(t, z; m1,m2) of (3.2) that satisfies

ujn = m1(0)m2(0) ∂j
m1,t ∂n

m2,z û(t, z; m1,m2)|t=z=0 = ϕjn

for these j, n. The remaining coefficients of û(t, z; m1,m2) can be recur-
sively computed from the identities

µ∑
m=a0

q0m uj,n−m +
κ∑

ν=1

µ∑
m=0

qνm uj−ν,n−m = fj−κ,n−µ (3.5)

which hold for all j ≥ κ and n ≥ µ and determine uj,n−a0 uniquely, owing
to q0a0 ̸= 0.
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Proof: Insert û(t, z; m1,m2) into (3.2), use (2.12), and compare coefficients
to show that û(t, z; m1,m2) is a formal solution if, and only if, (3.5) holds. In
view of (2.9), this shows (a). Since by definition of a0 we have q0a0 ̸= 0, one
can compute uj,n−a0 from (3.5), for every j ≥ κ and n ≥ µ, hence (b) follows,
too. 2

Remark 6: Observe that in (3.4) the two moment functions m1, m2 do not
occur. Hence the above proposition shows that the set of formal solutions of
(3.2) does not depend upon the choice of the moment functions, in the sense
that there is an obvious bijection between the sets corresponding to different
pairs of moment functions. 2

Remark 7: According to the above proposition, the set of formal solutions of
(3.2) may be described in the following two different ways:

(a) For a formal power series ψ̂(t, z), the corresponding û(t, z;m1,m2) is a
formal solution if, and only if (3.4) holds. Hence, given ψjn, for (j, n) ∈ I,
we can uniquely determine the remaining ψjn such that (3.4) is satisfied.
Consequently, the set

Pψ = {ψjn : (j, n) ∈ I}

is one kind of natural parameter set for the formal solutions. As was
pointed out before, in the case of p(t, z) = tκ − zµ the set I consists of the
pairs (j, n) with 0 ≤ j < κ and n ≥ 0.

(b) A formal solution û(t, z; m1, m2) is uniquely determined by an arbitrary
selection of ujn, for (j, n) ∈ I. Consequently, the set

Pu = {ujn : (j, n) ∈ I}

is another natural parameter set, which shall be referred to as the set of
initial conditions.

For our purposes, it is necessary to observe that the above two parameter sets for
the formal solutions are related by the equations (2.9). These relations allow to
switch from one system of parameters to the other one in an explicit fashion. To
see this, assume that either Pψ or Pu is given, and proceed by induction with
respect to j to compute the other parameter set, similarly to the procedure
described in Remark 4:

• For j = 0, equations (2.9) imply that
∑µ

m=a0
q0m (u0,n−m − ψ0,n−m) = 0

for every n ≥ a0. Since u0,n−m = ψ0,n−m = 0 whenever m > n, we see
that u0n = ψ0n for every n ≥ 0.

• For j = 1, equations (2.9), for n ≤ a0 − 1, may be used to recursively
compute “auxiliary values” u1n for n ≤ −1. After that, the same equations
may be used for n ≥ a0 to find the values of either u1n or ψ1n for n ≥ 0
(if κ ≥ 2), resp. for 0 ≤ n ≤ µ − a0 − 1 (if κ = 1).
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• For j ≥ 2, we proceed very much as for the previous case: First, we
compute ujn for n ≤ −1, then either ujn or ψjn for n ≥ 0 (if κ ≥ j + 1),
resp. for 0 ≤ n ≤ µ − a0 − 1 (if κ ≤ j).

In our standard example case of p(t, z) = tκ − zµ, one can verify that (2.9)
simplifies to the equations

ψjn − ujn = −uj−κ,n+µ ∀ j ≥ 0 , n ≥ −dj .

Since in this case the set I consists of pairs (j, n) with 0 ≤ j ≤ κ−1, we conclude
that for these uj−κ,n+µ = 0, and therefore

ψjn = ujn ∀ (j, n) ∈ I .

So here there is no difference in parametrizing formal solution by either ujn or
ψjn, and the same occurs whenever we have a0 = µ. In general, however, the
relations between the two parametersets are non-trivial! Note that a similar
parametrization problem occurs in studying the Goursat problem. For details,
we refer to an article by J. Leray [12]. 2

While the notion of formal solutions for moment-PDEs (3.2) gives good
sense, it is not clear whether we can also consider functions u(t, z; m1,m2) that
are holomorphic, say, in a polysector and satisfy (3.2) with the right hand side
replaced by a function f(t, z; m1,m2) that is holomorphic in the same polysector.
In the next section, however, we shall define how the two operators ∂m1,t, ∂m2,z

can be applied to holomorphic functions, and doing so we show that it is possible
to discuss solutions of (3.2) that are functions.

4 Toeplitz operators

In this section we shall indicate how the notion of Toeplitz operators may be
used in the calculation of formal solutions: Consider the equation (3.2) with the
initial data ujn = 0 for all (j, n) ∈ I. Then a formal solution may be written as

û(t, z; m1,m2) = ∂−κ
t,m1

∂a0−µ
z,m2

v̂(t, z; m1, m2) , (4.1)

with a uniquely determined formal power series v̂(t, z; m1,m2). For an arbitrary
formal Laurent power series ŵ(t, z), we define the projection Pr ŵ(t, z) by cut-
ting off all terms containing negative powers of t and/or z. Using the notation
of Sections 2 and 3, it follows that û(t, z; m1,m2) is a formal solution of (3.2)
if, and only if, we have

Pr
(
p(t−1, z−1)û(t, z)

)
= f̂(t, z) . (4.2)

Because (4.1) implies that û = tκzµ−a0 v̂, this may be rewritten as

Pr
(
p(t−1, z−1)tκzµ−a0 v̂(t, z)

)
= f̂(t, z). (4.3)
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The operator v̂ 7→ Pr
(
p(t−1, z−1)tκzµ−a0 v̂

)
shall be named a Toeplitz operator,

acting on the space of formal power series, and p(t−1, z−1)tκzµ−a0 shall be called
its Toeplitz symbol. Operators of this form, acting on spaces of holomorphic
functions, have been introduced and studied in [9, 20, 21].

Remark 8: When specializing to the case of q0∗(z) = 1, the above Toeplitz
operator also appeared in (2.7): In view of the relation q(t, z) = tκzµp(t−1, z−1)
we can write the first relation of (2.7) in the form (4.3), with v̂(t, z) and f̂(t, z)
replaced by û(t, z) and ˆψ(t, z), respectively. 2

Example 1 In case of our standard example of p(t, z) = tκ − zµ, the corre-
sponding Toeplitz symbol is equal to 1 − tκz−µ. In particular, recall that in this
case a0 = 0, according to its definition in Section 2.

Let k > 0, d ∈ R be given, let E be a complex Banach space, and let E{t}k,d

denote the set of all formal power series f̂(t) with coefficients in E, that are
k-summable in the direction d. This is equivalent to the existence of an E-
valued function f(t) which is holomorphic in a sectorial region G = G(d, α) of
bisecting direction d and an opening α > π/k, and has f̂(t) as its asymptotic
expansion of Gevrey order 1/k, as t → 0 in G. From Watson’s Lemma we obtain
that f(t) is uniquely defined by f̂(t) and we shall therefore write f = S f̂ . For
such k-summable series, we define a Toeplitz operator of a slightly more general
form than above: Let σ̂(t) denote a formal Laurent series with coefficients in
C, which is also k-summable in the direction d – by definition this means that
the principal part of σ̂(t) terminates, while its power series part is in C{t}k,d.
Accordingly, the product σ̂(t) f̂(t) is again a formal Laurent series, to which
we can apply the projection operator Pr, removing its principal part. In this
fashion we obtain a formal Toeplitz operator f̂ 7→ Pr (σ̂ f̂). On the other hand,
we can also form the product of the functions σ = Sσ̂ and f = Sf̂ , giving a
holomorphic function on the intersection of the two sectorial regions on which
the two factors are holomorphic, and then we can define the projection operator
Pr (σ f), subtracting the principal part of the asymptotic expansion, that is to
say, of σ̂(t) f̂(t). In this fashion, we obtain a Toeplitz operator mapping f to
Pr (σ f), acting on a space of functions. For these operators we prove

Proposition 3 Under the assumptions made above, the formal Toeplitz opera-
tor Pr σ̂ maps E{z}k,d into itself, and we have

S (Pr (σ̂ f̂)) = Pr (S(σ̂)S(f̂)), ∀ f̂ ∈ E{z}k,d. (4.4)

Proof: The proof is a direct consequence of results in [2]: Let p denote the
(formal) pole order of σ̂. Then tp σ̂(t) ∈ C{t}k,d follows, and thus we have
(tp σ̂(t)) f̂(t) ∈ E{t}k,d for every f̂(t) ∈ E{t}k,d. It is clear right from the
definition of k-summability that we then can subtract any partial sum from
(tp σ̂(t)) f̂(t) without affecting its summability, and then an exercise on p.104
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of [2] implies that Pr (σ̂ f̂) is in E{t}k,d. Moreover, (4.4) follows from the
properties of the summation operator S. 2

The previous result shows that Toeplitz operators have very natural proper-
ties on the space of k-summable series, so they should be very useful tools when
proving summability of formal solutions of PDE. Furthermore, since a multi-
summable series can always be decomposed into a finite sum of kj-summable
series, it is possible to extend the above proposition to multisummable series.
These investigations, however, are left for future research!

5 Gevrey estimates of formal solutions

In this section we shall find necessary and/or sufficient conditions under which
a formal solution û(t, z; m1,m2) of a moment-differential equation (3.2) has a
given Gevrey order. In view of Proposition 2, it makes good sense to formulate
such conditions in terms of the corresponding series ψ̂(t, z), or alternatively
using the initial data ujn for 0 ≤ j < κ and n ≥ 0, as well as for j ≥ κ and
0 ≤ n < µ − a0. We shall here use the following definition of Gevrey order:

Given s1, s2 ≥ 0, we say that the series (2.7) has Gevrey order at most
s = (s1, s2), provided that the series

û(t, z; s) =
∞∑

j=0

∞∑
n=0

tj

Γ(1 + s1j)
ujn

zn

Γ(1 + s2n)
(5.1)

converges on some non-empty polydisc about the origin of C2. Owing to Stir-
ling’s formula, or (simpler) upper and lower estimates of the Gamma function,
convergence of (5.1) is equivalent to the existence of constants C,K > 0 for
which

|ujn| ≤ C Kj+n Γ(2 + s1j + s2n) ∀ j, n ≥ 0 . (5.2)

Observe that here we choose to estimate ujn in this unusual form, since this
shall be convenient in later estimates. In particular, the monotonicity of the
Gamma-Function for (real) arguments ≥ 2, together with the fact that, owing
to some assumption on s1, s2 made in Theorem 1, s1j + s2n ≥ 0 for all j ≥ 0
and n ≥ −nj , will be of importance.

Assume for the moment that both values s1, s2 are positive, and let m1,
m2 be moment functions of respective orders k1 = 1/s1, k2 = 1/s2. Then a
series (2.7) is of Gevrey order at most s if, and only if, the series T̂−

m1,m2
û(t, z)

converges on some non-empty polydisc (which, however, need not be the same
as that on which û(t, z; s) converges). An analogous statement holds for the
cases where s1 = 0 and/or s2 = 0, provided that we then set m1(j) ≡ 1 and/or
m2(n) ≡ 1.

To find the Gevrey order of the series (2.7), we recall the estimate of the
pole orders nj obtained in (2.4). Using this, we shall now prove the following
result on the Gevrey order of û(t, z;m1,m2). Note that related results may be
also found in two articles by M. Miyake [17, 18].
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Theorem 1 Given a moment-PDE (3.2), let ψ̂(t, z) be such that the corre-
sponding û(t, z; m1,m2) = T̂−

m1,m2
r(t, z) ψ̂(t, z) is a formal solution. Then, for

d ≥ 0 as defined in (2.5), and every s = (s1, s2) with s1 ≥ d s2 ≥ 0, the following
statements are equivalent:

(a) The series ψ̂(t, z) is of Gevrey order at most s.

(b) The series f̂(t, z) in (3.2) is of Gevrey order at most s, and (5.2) holds
for all (j, n) ∈ I.

(c) The series û(t, z) = r(t, z) ψ̂(t, z) has Gevrey order at most s.

Proof: First, assume (a), i. e., let constants C,K exist such that (5.2) holds
for ψjn in place of ujn. According to Cauchy’s formula for the coefficients of a
Laurent series, we conclude existence of constants C1,K1,K2 ≥ 0 such that

|rjn| ≤ C1 Kj
1 Kn

2 ∀ j ≥ 0 , n ≥ −nj .

Estimating (2.7), we see that this implies for j, n ≥ 0

|ujn| ≤ C C1

j∑
ν=0

n+nj−ν∑
m=0

Kj−ν
1 Kn−m

2 Kν+mΓ(2 + s1ν + s2m) .

Observing the monotonicity of Γ(x) for x ≥ 2, as well as the definition of d, we
see that Γ(2 + s1ν + s2m) ≤ Γ(2 + s1ν + s2(n + d(j − ν))) ≤ Γ(2 + s1j + s2n),
which implies (c). In addition, we can use (3.4) and conclude that (a) also
implies (b). Next, if (c) holds, we may equivalently assume (5.2). Then (3.5)
implies that (b) holds as well. In order to prove (a), we intend to estimate
(2.16): Owing to Cauchy’s formula for the coefficients of a Laurent series, we
conclude existence of C1, K1 > 0, not necessarily the same as above, for which
|ρjn| ≤ C1 Kn

1 for j = 1, . . . , κ and all n ≥ 0. For some j ≥ 0, assume that we
have shown existence of C,K2,K3 > 0, such that

|uνn| ≤ C Kν
2 Kn

3 Γ(2 + s1ν + s2n) ∀ ν < j , n ≥ −nν . (5.3)

Observe that this assumption is certainly correct for j, n ≥ 0, due to condition
(c), and is trivially satisfied for j = 0 and all n ≥ −n0 = 0. Using this
assumption, we may estimate (2.16) for this value of j and all n ≥ −nj to
obtain

|ψjn − ujn| ≤ C C1

κ∑
ν=1

n+nj−ν∑
m=aν−a0

Km
1 Kj−ν

2 Kn−m
3 Γ(2+s1(j−ν)+s2(n−m)) .

Since s1 ν − s2(a0 − aν) ≥ s2(d ν + aν − a0) ≥ 0, owing to (2.5), we may use the
monotonicity of the Gamma function to conclude

|ψjn − ujn| ≤ C C1 Γ(2 + s1j + s2n) Kj
2 Kn

3 C2(n) ,
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C2(n) =
κ∑

ν=1

K−ν
2

n+nj−ν∑
m=aν−a0

Km
1 K−m

3 .

Without loss of generality, we may assume that K1 < K3 and that K2 is very
large relative to K1 and K3, in which case C2(n) ≤ 1 follows for all n ≥ −nj .
Since ψjn = 0 for n < 0, we conclude that (5.3) remains true for ν = j and
−nj ≤ n < 0, hence in fact for all n ≥ −nj . Moreover, we conclude that

|ψjn| ≤ 2C Kj
2 Kn

3 Γ(2 + s1j + s2n) ∀ n ≥ −nj .

In this fashion we find that (c) implies (a). Finally, assume (b). The same proof
as above also shows that then (5.2), with ψjn in place of ujn, follows for all
(j, n) ∈ I. Moreover, (3.4) can be used to show the same estimate for ψjn with
(j, n) ̸∈ I. Thus, the proof is completed. 2

6 Application to PDE with constant coefficients

In this section we shall only be concerned with the special moment functions
mj(u) = Γ(1 + sju), for two non-negative real numbers s1, s2. To simplify
notation we shall, in agreement with (5.1), write s = (s1, s2), and instead of
û(t, z; m1,m2) we shall write

û(t, z; s) = û(t, z; s1, s2) =
∞∑

j=0

tj

Γ(1 + s1j)

∞∑
n=0

ujn
zn

Γ(1 + s2n)

=
∞∑

j=0

tj

Γ(1 + s1j)
ûj∗(z; s2) =

∞∑
n=0

û∗n(t; s1)
zn

Γ(1 + s2n)
.

Using the analogous notation for f̂(t, z; s), we observe that for this particular
choice of the moment functions, and specializing to s1 = s2 = 1, the moment-
PDE (3.2) coincides with (0.1), but with the series f̂(t, z) on the right replaced
by f̂(t, z; 1, 1).

In this special case, the following assumptions on the inhomogenuity resp.
initial data of (0.1) shall naturally occur in applications:

(A) Assume that the series f̂(t, z; 0, 0) is of Gevrey order s = (s1, 1), with
some value s1 ≥ d. Then all series f̂j∗(z; 1) =

∑
n fjn zn/n! converge

for |z| < ρ, with a positive and finite value ρ that is independent of j.
Moreover, assume that the initial data ujn satisfy (5.2), for (j, n) ∈ I.
This obviously is equivalent to the convergence of the series ûj∗(z; 1),
0 ≤ j ≤ κ − 1, together with the assumption that the series û∗n(t; 1),
0 ≤ n < µ − a0, are of the Gevrey order s1 − 1 (as defined in [2], a power
series f̂(z) in one variable is said to be of Gevrey order s, provided that its
coefficients fn can be estimated by C Kn Γ(1+s n), with suitable constants
C,K). In this case, Theorem 1 applies and shows that the formal solution
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also is of Gevrey order s. This means that when we interprete the formal
solution as a power series in t, with coefficients that are holomorphic in a
disc about the origin, then this series is of Gevrey order s1−1 in the sense
of [1]. In case of the heat equation, this agrees with the fact that, even in
the homogeneous case, the formal solution in general diverges. Note that
examples show that, if the above assumptions are satisfied for some value
s1 < d, the formal solution, in general, shall be of order (d, 1), so that one
cannot hope to remove the condition s1 ≥ d s2 from Theorem 1.

(B) Assume that the series f̂(t, z) is of Gevrey order s = (s1, s2), with some
value s1 ≥ d s2, but for some s2 that is smaller than 1. Then all series
f̂j∗(z; 1) have infinite radius of convergence and represent entire functions
of exponential order at most (1−s2)−1. Moreover, assume that the initial
data ujn satisfy (5.2), for (j, n) ∈ I. Then the series ûj∗(z; 1), 0 ≤ j ≤
κ − 1, also represent entire functions with the same restriction of their
order, while the series û∗n(t; 1), 0 ≤ d < µ − a0, are of the Gevrey order
s1−1, or converge if s1 ≤ 1. In this case, Theorem 1 applies and shows that
the formal solution, regarded as a power series in t whose coefficients are
entire functions, is of order s1−1 if this quantity is positive, resp. converges
for s1 ≤ 1, which can occur for sufficiently small s2. In particular, for the
heat equation such cases have been investigated in [1].
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