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RESONANT NORMAL FORMS AND DIOPHANTINE
PHENOMENA
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ABSTRACT. This paper is about perturbations of smooth vector fields
on T" (constant if n > 3) with zero’th order C*° and Gevrey G°, o >
1 pseudodifferential operators. Simultaneous resonance is introduced
and simultaneous resonant normal forms are shown (via conjugation
with an elliptic pseudodifferential operator) under optimal simultaneous
Diophantine conditions outside the resonances. In the C* category the
results are complete while in the Gevrey category the effect of the loss of
the Gevrey regularity of the conjugating operators due to Diophantine
conditions is encountered. The normal forms are used to study the global
hypoellipticity in C* and Gevrey G°. Finally, the exceptional sets
associated with the simultaneous Diophantine conditions are studied.
Generalized Hausdorff dimension is used to give precise estimates of
the “size” of different exceptional sets, including some inhomogeneous
examples.

1. INTRODUCTION

The purpose of this paper is to study resonant normal forms and the Dio-
phantine phenomena of perturbations of commuting resonant vector fields
X}, on the n-dimensional torus T" = R"/(27Z)". Here

n
X, =< ¥, 0, >:Zw§c8mj, 1 <k <d,

i=1
where = (21,...,2,) € T" and w¥ = (WF,... ,wF) € R?, and 9, =
(Oxys- -+ +01,), Op; = 0/0xj. If n. = 2 we also allow the X} to be nonconstant

vector fields.
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The X} are perturbed with zero’th order classical pseudodifferential op-
erators so that the operators

(1.1) V(x,D) = —iXy +d"(z,D), 1<k<d,

are commuting, where D = (Dg,, ..., Dy, ), Dy, = —i0y;, j =1,... ,n and
a*(z, D) is a zero’'th order pseudodifferential operator defined by a*(x, D) f
= Deenn € (2,6) f(€), where f(§) = F(f)(§) = [pne ™ f(z)dx is the
Fourier transform defined on a discrete group and a*(z,¢) € SO(T" x R?) is
a classical symbol of pseudodifferential operators. As a special case of (1.1),
we also consider the following first order commuting differential operators

(1.2) L; =< w! Dy > +a;(z), a; €C®(T"), j=1,...,d.

We will actually consider perturbations with functions in the Gevrey class
G?(T™). Recall that G7(T™) is the set of all f € C°°(T™) such that there
exists C' > 0 satisfying

max 07 f ()] < CPHBYT,  B=(Br,.... 0) €27,

where 8! = 31!... 8,! and | 3| = By +- - -+ By. Clearly G'(T") coincides with
the set of all analytic functions on T".

For a single vector field (respectively, map) with an isolated singular (re-
spectively, fixed) point the formal reduction to its linear part requires a
nonresonance condition on the eigenvalues of the linear part, while in order
to show the convergence of formal transformations, arithmetic conditions are
imposed (see the surveys [27], [42] and the references therein). If commuting
vector fields or maps are considered it is not necessary for each vector field
or map to satisfy the aforementioned conditions. More precisely, simultane-
ous arithmetic conditions are required (see [10], [13], [24], [36], [41], [42]).
Certain exceptional sets will arise in connection with some of the parame-
ters in these simultaneous arithmetic conditions (cf. [18]) and these will be
discussed later.

This paper deals with four closely related problems. First, after intro-
ducing the concept of simultaneous (non)resonance for w',...,w? we are
interested in the simultaneous resonant normal forms of {b*(z, D)}{ and/or
{£;}4 via conjugation with an elliptic p.d.o. (which in the case of differential
operators reduces to a change of variables on T") in the framework of the
C° and the Gevrey spaces. Roughly speaking, resonant normal forms mean
that lower order terms depend only on resonant variables. For this purpose
the geometrical properties of a simultaneously resonant set associated with
w := {wF}¢ and defined by

g = {zGZ";<w1,z >=...<wlz >=0}.

will be considered. We say that w', ... ,w? are simultaneously nonresonant

(respectively resonant) if ') = {0} (respectively, I'y) # {0}). Using theorems
on finitely generated free abelian groups and exact sequences the existence of
suitable bases for I'y will be obtained and lead naturally to the introduction
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of resonant variables on the torus. These constructions are invariant under
the action of the group of linear automorphisms of the lattice Z™. A simul-
taneous resonant normal form will be exhibited for every perturbed system
under simultaneous Diophantine conditions for w',... ,w* on the set Z"\Tg
in the class C*° or Gevrey G?. In particular, if [y = {0} it is possible to
transform {b¥}¢ (respectively, {£;}¢) simultaneously into a constant p.d.o.
(respectively, differential operator). It will also be shown that in general the
Diophantine condition is necessary to transform the perturbed systems to
their normal forms - constant pseudodifferential operators on T". For results
on normal forms in dynamical systems by means of KAM type methods and
Diophantine phenomena we refer, for example, to [1], [6], [8], [12], [19], [31],
[37], [42] and the references therein.

We then consider the simultaneous reduction of nonconstant vector fields
to constant ones for the case n = 2. There are very few results regarding
normal forms of vector fields and differential operators on T™ except for those
vector fields on T? of the form 9, + A(z)dy,, where the rotation number
of the Poincaré map plays an essential role (cf. [1]). For n > 3, there is a
recent result of Chen Wenyi and M.Y. Chi [11] for the reduction of a smooth
vector field £ on T" to a constant one provided that the adjoint operator L£*
is globally C* hypoelliptic. We stress that the classical results of Arnold
and Moser in KAM theory are not applied to the original vector field, but
to a small perturbation of it (cf. [42] and the references therein).

In the second part of this paper we estimate the loss of the Gevrey regu-
larity of the conjugating p.d.o.’s if the lower order perturbations are Gevrey
G?. Although we are not able to prove that our Gevrey estimates are best
possible there is some evidence to suggest this from the sharp loss of Sobolev
regularity in each inductive step. This phenomenon resembles a similar one
in the effective stability (Nekhoroshev estimates) of normal forms in Dy-
namical systems and their applications (cf. [25], [34], [30], [21], [2]; see also
[23] for Nekhoroshev estimates for billiard ball maps in R", n > 3, by means
of Gevrey techniques).

In the third part an application of the resonant normal forms to the
study of the global hypoellipticity of commuting systems of pseudodiffer-
ential operators is presented. Indeed, assuming I'j = {0}, we show that
certain inhomogeneous Diophantine conditions completely characterize the
global properties in C® and in G? for large values of § by virtue of the
Nekhoroshev type estimates. The case I'J # {0} is more difficult. A nat-
ural extension of completely resonant systems is introduced and it will be
shown that the discrete condition is necessary and sufficient for the global
hypoellipticity of the perturbations of such systems. We will also consider
systems where no discrete phenomena appear.

The final question considered in this paper is that of the “size” of the
exceptional sets of w associated with G Siegel conditions, for which pertur-
bations of the vector fields X}, are not reducible to normal forms. The inho-
mogeneous Diophantine conditions also play an essential role when studying
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the global properties of the reduced operators on the torus. Here the prob-
lem is twofold: firstly, ordinary Hausdorff dimension gives little information
about the exceptional sets in the Gevrey category and so we use logarith-
mic Hausdorff dimension; secondly, the inhomogeneity of the Diophantine
conditions causes some difficulties.

The paper is organized in the following way. Section 2 deals with the
geometry of the resonant set and Section 3 is devoted to simultaneous normal
forms. The Nekhoroshev type estimates are shown in section 4 and global
hypoellipticty and solvability are discussed in section 5. Finally, estimates
for the exceptional sets using a generalized concept of Hausdorff dimension
are proved in section 6.

2. SIMULTANEOUS RESONANCE

The resonant set 'Y will now be investigated. We observe that if P €
SL(n;Z) where SL(n;Z) is the set of all n X n integer matrices with de-
terminant £1 (i.e., the group of linear automorphisms of the lattice Z"),
and y = " Pz then < w’,0, >—< Pw’,d, >, which implies the invariance
property P(T%) = I'L¥, Pw = {Pw!,... ,PwF}. Also note that if the R-

span of @', ..., &f € R" coincides with the R-span of w',... ,w* € R”, then
Iy =Ty
z= 1w
Theorem 2.1. Assume I'Y) # {0}. Then
i) there exist k',... k" € Z™\ {0} linearly independent over R such that

{K"},— form a basis of T'Y, i.e.

,
m={2€l" z= Zt]ﬁj, with t; € 7 uniquely determined}.
v=1
The number r = r(w) = dimg I'Y is invariant under the action of SL(n;Z)
i.e. r(w) =r(Pw) for every P € SL(n;Z). It is always possible to find K’
(after changes of indices x, — x,) to satisfy

(2.1) nj:(ﬁ{,ﬁ%...,l-i%), H;EN, K, =0,1<v<j—1.
Every other basis {k”}",_, is represented uniquely in the form (&', |&") =
(k' K")Q for some Q € SL(r;7Z).

i) Let k,... k" be a basis of T'y. Then there exists P € SL(n;Z) such
that its first r columns coincide with k',... k", i.e. the basis of Iy is

extended into a basis of Z". In particular, if y = (y',y") = " Px with
y' =i syr) and y" = (yrg1,.-. s yn), then
(2.2) Pu* =(0,6%), #*ecR T 1<k<d

with F% = {0}, i.e. B%,...,0% are nonresonant in R"~". In the y variables
the resonant set FIZD“’ coincides with Z;, where Z;, 18 the lattice mn 7" with

basis y'. The set of all matrices P from SL(n;Z) with such a property is
isomorphic to Mpy_pxr(Z) ® SL(n — r;7Z), where My_p«,(Z) denotes the
group of n —r X r integer matrices.
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In order to prove the theorem we recall the following well known assertion
(see [35] for more general statements).

Lemma 2.2. Let A C B := 7" be a subgroup. Set C = A = {¢ € 7™ :
& L A}, Then

(2.3) B=AaC
holds if and only if the sequence
(2.4) 0-A4BS 050

is exact (i.e. Kerm = id(A)) where m (respectively, id) stands for the or-
thogonal projection on C' (respectively, the identity map).

Proof of Theorem 2.1 The existence of a basis follows from the well known
fact that any subgroup A (in our case A = I'?) of a finitely generated abelian
group B (in our case B = Z") is also a finitely generated abelian group [35].
Define 7; : R* — R"® by m;(§) =< &,€j > € = {;éj, where €] is the j-
th unit vector. Without loss of generality we may assume that for each
j € {1,...,n} we have 7; (w*) # 0 for some k, otherwise we are reduced
to a space of dimension m — 1. Because I'¥ is a linear Z-submodule of
Z", m (I'y) is closed under summation, and therefore there exists p; € N
such that 71 (I'Y) = p1Zéj. Let = I'Y be such that 71 (k') = préi. Let
Ay C T be the Z-submodule such that m(As) = {0}. In fact, Ay is
uniquely determined: Ay = {(&1,...,&) € 'Y : & = 0} If Ay = {0}
the set I'Y is generated by ' and r = 1. If Ay # {0}, this procedure is
continued and sequences {k¥} C T% {p;} C N are constructed together
with a nested family of Z—submodules {A;}, Ay C Ag_1 such that mp(Ag) =
prZ€j, T (KF) = préj. Clearly, this procedure ends after a finite number of
steps. Let 7 < n — 1 be the smallest integer such that A, = {0}, then the
vectors k7 form a basis of ¥ and satisfy (2.1).

Let now {#’}; C I'¢¥ be another basis of I'Y. Then there exist two
r X r integer matrices Q and Q such that (k'---x")Q = (F'---&") and
(#'---&Q = (k'---K"). Hence Q@ = Q™' and detQdetQ = 1. Be-
cause det Q@ and detQ are integers it follows that det Q) = det Q = +1,
ie. Q,Q € SL(r;Z). Conversely, for any Q € SL(r;Z), (k' --- k")Q gives a
basis of I'y. This proves (i).

Set A=T% and C = Af = {{ € Z": £ L A}. Evidently A C Cy. If
we show the exactness of (2.4), namely p € Z" and p L C imply p € A,
then Lemma 2.2 yields the first assertion of ii) since by (2.3) we can always
extend a basis of A with a basis of C' and obtain a basis of Z".

Let p € Z™ p L C. Set Cg = {£ € R*; ¢ L C}. Fix a basis as in (2.1).
Since k! L C for j =1,...,r, and dimg Cﬁ = r we obtain that &',... , k"
is a basis of C’ﬁ and p is a linear combination of ', ... ,x" implying that
<wF p>=0forall 1 <k <d. Since p € Z", this implies p € A.

Next, note that s!,...x" become the first r unit vectors in Ry . Thus
the invariance of the resonant set implies that Fg“’ ={CeZ": (1=
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<o+ = (, = 0} and (2.2) is therefore true. If §',...0"~" are resonant in Ry
there will exist a vector (° € Z"~¢\ {0} orthogonal to 6',...,0"", so that
(0/,¢%) € IP¥ which is impossible by ¢° # 0”.

The proof is concluded by observing that P € SL(n;Z) preserves the

basis €i,...¢. of TE¥ = 7Z" x 0 if and only if P = ( Ly On—rr ) with

M PII
P" e SL(n—r;Z) and M € My_pxr(Z).
The basis &!,...,x" is called a canonical basis of I'Y, and r is a (Z —
)dimension of I'¥) over Z so that we write dimz Iy = r. We stress that
7™\ T is not a linear Z submodule of Z". 0

Remark 2.3. Take A = {(2t,-2t);t € Z}, C = AF = {(t,t);t € Z}.
Then although A, B = 7Z? and C are finitely generated abelian groups, the
decomposition (2.3) is not true (the sequence (2.4) is not exact because

CH+A)

The vectors w* € R?, (1 < k < d) are said to satisfy the simultaneous
resonant o-Siegel condition if, for every £ > 0

lim inf (es|§|1/o max | < o £ > |> -0, (si),
€| —00,6EZ™\T's; 1<k<d
for 1 <o < oo, and
lim inf " max [ <wF &> 1) >0, Si
|§]—00,6€Z™M\T'y <|§| 1§k§d| ¢ |> (57)c0

when o = oo for some 7 € R.

Remark 2.4. Observe that (Si), and (Si)eo are invariant under the action
of SL(n;Z). In particular, extending to a basis of Z™ and in view of (2.2),
we get that (Si), (respectively (Si)so) becomes

o lim inf <e€5”|”" max | < 0, ¢" > |> >0, VYe>0  (Si),
" *)OO, NE n—r <k<

(respectively,

lim inf "I” max [ < 6*,&" > ) >0, Si)!
€| —>00,&" €Z T ('é | 1§k§d| ¢ | (51)5)

for the nonresonant vectors 0',... 0% in RZ,T’“).

Ifd=1 and w' € R" is nonresonant, i.e. T% = {0}, then (Si)so (respec-
tively, (Si)y, 1 < 0 < 00) is the well known small divisor condition for w'
and the number T in (Si)s is necessarily not less than n — 1 [40] (respec-
tively, coincides with the Gevrey type Siegel condition used in [22]. See also
[39], [4] for 0 = 1). Furthermore, if n > 3 and d = n — 1, (Si)so in the
nonresonance case is the same as the simultaneous Diophantine condition
used in [5].
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We exhibit examples related to the above notions. In the completely
resonant case (i.e., 7 = n — 1), according to Theorem 2.1, after a linear
automorphism of the torus T" we can reduce the original system to the one
consisting of vector fields proportional to d,,. Next, consider two vector
fields

L, = (9;,31 + alam, Ly = (9;,31 + ag(?m
on T?, where a; and «y are irrational. Then the resonant set of L; has
dimension 1, j = 1,2, and L; satisfies (S1), if and only if «; is not Liouville,
for 0 = oo, and «; is not o-Liouville, i.e., for every ¢ > 0 there exists C. > 0
such that
|aj — gl > C.exp(—e¢'?),  peZ,geN

Furthermore, the system y = {Li, Lo} is simultaneously nonresonant if and
only if ay/ay is irrational. Finally, if a3 and «ay are rationally indepen-
dent o-Liuoville numbers, then the simultaneous o—Siegel condition (S7),
is satisfied if and only if for 0 = oo a3 and a9 satisfy the simultaneous
Diophantine condition in [36] (see also [5], [28]), while for 1 < ¢ < oo for
every € > 0 we can find C; > 0 such that

max{la; — 2|} > Coexp(~eq'/?),  peZ.geN

Jj=1,2 q

(cf. [4] for o = 1, see also [24] for other simultaneous Gevrey arithmetic
conditions).

Let C52(R?) be the space of all 2r periodic C*° functions (i.e. the lift
on R of all functions from C°°(T")) where R? is the lattice in R" with
basis z. It is readily verified that this space is invariant under the action of
SL(n;Z), namely f(y) € C57(R}) if and only if P* f(z) := f(Pz) € C57(R})
for some P € SL(n;Z). We will identify C°°(T") and G (T™) with C52(R™)
and G9_(T"), respectively.

3. GLOBAL CANONICAL FORM OF A RESONANT SYSTEM

First we recall the basic properties of G° pseudodifferential operators
(see [38], [15]). In the C'*° case, the constants in the estimates below may
depend on the multi-indices o, 3 € Z'} and the index of homogeneity j. Let
FSt = FSF(T" x R") be the set of all formal sums » 22 an—j(z,§) such
that a,,—; € G7(T" x (R* \ {0})), ord¢apm—; = m —j (i.e apm—j is (positively)
homogeneous of order m — j) and that there exists A > 0 satisfying

(31)  sup 0508 g j(, €)| < ATTIHIIHL (gL 7yt =3 =D
‘/L- n

forall 3 € Z%, vy € Z, j € Z4, § € R". By Cauchy’s integral formula and
the homogeneity of a,,—; (3.1) is equivalent to the existence of a neighbour-
hood S in C* of S™ ! such that

sup |00 am—j(z,&)| < ATTPHL(BINT, VB e, j € L.
zeTnEesS
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A function a(z,£) € G7(T" x R") is said to be a G realization of
disoam—j(z,&) € FSP, written a(v,£) ~ 3720 am—j(,§), if for every
v € Z* one can find C' = Cy > 0 such that

N
070 (a(w,€) = 3 am—(@,€))| < CVHIHIHL GINT)7 g mm=hi=
j=0

for all 3 € Z", N € Zy, = € T" and € € R" with |¢] > 1. The set
of G7 realizations of order m is denoted by S*(T" x R") and the set of
pseudodifferential operators with symbol in S7*(T" x R™) by OS*(T™). We
also recall that for each a € FS" there exists a realization a € S7 such
that a ~ a. If b(x,£) is another G7 realization of a, then R(z,&) = a(x,§) —
b(x,&) € S;°(T" x R"), i.e. Ris a G? smoothing symbol, so that for some
c>0

4 09 R(z, )] < ¢ PIHB)Te T ce R Bezn.
xeln

Note that the composition rule for p.d.o.s on T" is valid as in the lo-
cal case, that is if a(z,€) ~ 3 72ga,; € Sg(T" x R?) and b(z,§) ~
Yo bu—j(x,€) € Sy(T" x R*) then c(z,D) := a(z,D) o b(z,D) is in
OS5 () with symbol e(a,€) = a(e,€) 0b(@,€) ~ 334 oy, €) given
by (see [15])

1 .
C/_L+V,j(l‘,§) = Z ED?GN*P(maf)agbeq(xag)a J € Z+'
pra+IBl=5

Furthermore, if a(z,§) is elliptic, i.e. a,(z,&) # 0 for (z,£) € T x (R*\
0), then a(x, D) admits a (formal) inverse a !(z,D) € OS * satisfying
aoa !t —id € OS;*® and a ! oa —id € OS,;*. Recall that for a given
P € SL(n;Z), the change of variables y = Pz induces the linear (symplectic)
change (z,¢) — (y,1), z = P 'y and ¢ = " Pn. We have (P*a)(y,n) =
a(P~'y," Pn) for y € T", n € R*. Thus the composition is invariant, i.e.
for two p.d.o.-s a = a(z, D) and b = b(x, D) we have

(3.2) P*(aob) = P*a o P*D.

Moreover, if a is a p.d.o. having a symbol depending in x only on resonant
variables, the same is true for P*a.

We denote by C*°(R"\{0}; ¢? (T%)) as the set of functions a(z, ) smooth
in £ € R*"\{0} and valued in G?(T?). Now we state the first main result on
simultaneous normal forms.

Theorem 3.1. Let 1 < o < oo and suppose that (Si), holds for w. If r =
dimzl'¥ > 1 fiz a resonant (canonical) basis {7} . Assume that if o < 0o
then a’ij(m,f) is C°(R™ \ {0}; G7(T2)) for k = 1,...,d, j € Zy. Then
there exists an elliptic symbol q(x,&) ~ Z;io q—j(x, &) € FSO(T" x R") and
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symbols o (y, &) ~ Z?io aljj(y,f) € FSO(T" x R™) such that for 1 <k <d

(3.3)
(—iX), + a"(z; D)) o q(w; D) = g(w; D) o (=i X}, + o (kx; D) + Ry (z, D)),

where Ry(z,£) € S™°(T" x R*) and kz := (< kY2 >,... , <K',z >).

Proof. Let P € SL(n;Z) be as in Theorem 2.1, with the first » rows being
k',... k", and define y = Pz. In view of (3.2), we will consider the new
variables (y,7n), with k/ = ¢€;. The resonant set is the lattice Zy, in Ry,
where y = (v/,y") and v = (y1,... ,y,). For brevity a(y,n) is used instead
of P*a(y,n) = a(P~ 'y, Pn) for the symbol a(z,&). We write terms of the
same order of homogeneity on both sides of (3.3) in the new variables y. The

first system of d equations involves both go(y,n) and o (y',n) (1 < k < d)

(3.4) <08, Dy > qo + af(y,m)q0 = af(y',n)q0, 1 € R™\0.

The advantage of the expression (3.4) is that we can regard the resonant
variables ¢ as parameters if » > 1. A nonzero solution of (3.4) can be found
if for every k € {1,... ,d}, alg is chosen to satisfy

65 [ dtnd =/, €T e\ (o)

i.e. the Fourier coefficients F,_,¢(a*(y,n) — af(y’,n)) vanish on the resonant
set, which in the canonical variables is defined by (41 = -+ = ¢, = 0.
By the commutativity we have < 67, Dy > af(y,n) =< 0¥, Dyn > aj for
1<jk<d As<#, Dy > af = 0, it follows from Frobenius theorem and
some simple calculations that the general solution of (3.4) is given by

W (y,n) = Ly )DLy n) € GT(T™ x (R* \ 0)), ord,l =0,

where ¥ (y,n) is the unique solution of the following system of equations
with Fourier coefficients vanishing on the resonant set Fg“’,

(3.6) <60, >4 = fily,n) = —agy,n) + a5y, 1<k <d.
In fact, 1) is defined by

Fyrser(f5 s y"sm)
i< 0k C" >
if < 0% ¢" >+ 0 for some 1 < k < d, and is 0 otherwise. In view of (Si),

and the results in [22], ¥(y,n) (and therefore ¢o(y,n)) is G in x. The
composition rule for p.d.o.s yields

fy”—)(” (77[)(?/,7 yll’ 77)) =

(qal ] bk o qg)(y,ﬂ) =< ok,n” > +01]5(y,a77) + (O(|77|_1))7 |77| — 00

for all 1 < k < d, where b* stands for P*(iX} + a*). We proceed by
induction: suppose that there exist o/ij(y',n) € C®([R" \ {0}; G(T})),
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ord,o¥ ;(y/,n) = =j, 0 < j < N —1,1 <k < d, such that
N-1
~ ol y77+Za,]y, ) 1<k <d.
Jj=0
Now we look for an elliptic symbol q(y, n) ~1+q-n(y,n), ordyg_n = —N,
and o (y',n) € C°(R™ \ {0}; G7(T")) such that

(qilobkoq)(y, n) <0k,17 >+Za y n) +O(n|™ V= 1)
7=0

when |p| — oo for all 1 < k < d. For k =1,... ,d this gives the system of
equations,

(B.7)  —i <89y >q nly.n) = Eylyn) = fxy ) —d y(yn).
for ¢_n(y,n) and of (3, 7). In view of (3.5) and (3.6) define o* by

!/

(3.8) Fyoeldn ') = Fyocld n (6" m)le=cr0
By the Frobenius theorem, (3 8) and (S7),, (3.7) admits a unique solution
q-n(y,8), it Fye(g-n(y',y",m)) = 0 for (' € Z". Moreover, in view of
(59, q-n(y,€) is CF(R™ \ {0}; G7(T")).

Finally, construct an elliptic p.d.o. ¢ by

(3.9) q(y,m) =...o(L+q-n(y,n)o...o(1+qg-1(y,m) °qo(y,n)-

The right-hand side in (3.9) defines a formal symbol in FS(T" x (R" \ 0)).
Taking any realization of this formal symbol, the above calculations yield
(3.3) and the estimates on the remainders. O

Remark 3.2. Let w € R" be nonresonant and assume that w does not sat-
isfy (Si)s for some 1 < o < oo. Then we can find f(z) € G°(T™) such that
the pseudo—differential operator with symbol < w,& > +f(x)€[€|~1 cannot
be transformed via conjugation (3.3) into a constant p.d.o.

Indeed, in view of the assumption on w there exists a positive constant
§ >0 and a sequence p* € Z"\ 0 (k =1,2,...) such that

—20[p*|M/°

lim e | <w,p®> |1 =o.

k—o00
We choose a function f(z) = 3, f(n)em‘” € G°(T") such that f(n) =

e ifn = pk, f(n) = 0 for n # pk. The solution qo(z,€) of the
equation < w, Dy > qo = f(x)/[€] satisfies |Fpsn(qo(x,&))] > Ce o[t/ for
n = pF, k € N, which contradicts the fact that qo € G° in z. Thus, our
Diophantine conditions are optimal.

Remark 3.3. In Theorem 3.1 perturbations of constant vector fields Xy
are considered. If X is a variable coefficient vector field, the problem is
essentially a global nonlinear one. There follows two examples of a system of
overdetermined vector fields being simultaneously transformed into constant
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vector fields. First, any nonsingular hypoelliptic real vector field on T? is
diffeomorphic to a nonzero multiple of 0y + p0, with p being an irrational
non Liouville number (cf. [29]). The second exzample is an overdetermined
system of vector fields, L = d; + w(t) N Oy, ©x € T', t = (t1,... ,t,) € T",
w(t) =7 wi(t)dt; being a real-valued smooth closed one form on T". The
corresponding family of n commuting vector fields associated with L (cf. [5])
is given by Lj = 0 + wj(t)0r, 1 < j < n. Straightforward calculations
show the existence of a real-valued function h(t) on T" such that 0y h(t) =
w;(t) — ¢j, with c¢;j being the mean value [w;()], of wj, 1 < 7 < n. Then
the family {L;}7 is transformed into {0s; + ¢;0,}7 via the diffeomorphism
of T"tL: y =2 — h(t), s=t.

We now study the simultaneous reduction of a family of commuting vector
fields with variable coefficients on T?

ijat—i-hj(t,l’)am, j=1,...,d.
The commutativity relations are given by
(3.10) Oi(hy, — hj) = hyOxhj — h;Ophy, g k=1,...,d.

Let 1/;;- : T' — T' be the time map of X7, defined by 1[135- (&) = z;(t; €), where
xj(t;€) is a solution of 2; = h;(t, ), ;(0) = £. Clearly (3.10) is equivalent
to 1[;;-01[1,@ :1/;,@01/;;-, s,teR g, k=1,....,d.

Recall that the Poincaré map of Xj, given by P; := 1/;32-” : TV = T is
a diffeomorphism of T' and assume the orientation preserving property of
P;. The rotation number of P; is denoted by p; € R (p; is also called the
rotation number of the vector field X;). Moreover, suppose that there exists
a smooth diffeomorphism u simultaneously conjugating the maps P, ... , Py
to the rotations R, ,...,R,, where R, (z) = 2+ p;, z€ T (j =1,... ,d),
so that

(3.11) woPjou=R,, j=1,...,d.

Theorem 3.4. Let 1 < 0 < 4o0. If d > 2 assume that the Poincaré
maps Pi,..., Py are orientation preserving and that there exists an index
j €{1,...,d} such that (2m)1p; is irrational. Then if a G° diffeomorphism
u on T satisfying (3.11) can be found, the map ®: t = s, v = ¢(s,y), where
B(s,y) = 21(5, u(y—s(2m)~p1)) if d = 1 and o5, ) = ;3 (5, uly—s(27) p;)
if d > 2, is a G diffeomorphism of T? transforming 0y + hy(t,x)0, to
s + (271')_1pk8y forall1 <k <d.

Proof. We want to reduce the vector fields X; to 0; + p;0, by the change of
variables on T2, (t,z) = ®(s,y) with t = s and z = ¢(s,y) simultaneously.
By simple computations it can be seen that d; + (27)~'p;0, = 0 + (¢ +
pj®y)0x. Hence it is necessary to solve the equation

¢S+pj¢y:hj(sa¢(say))a ]:13 ad'
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By the definition of z;(¢; ), we obtain for £ = u(y — s(2m)"'pj), t = s

D5+ (2m) ' pj0yd = a(t,€) — (2m) " piOex;(t; ) (y — s(2m) "' pj)
+ (2m) 0wt Ou (y — s(2m) " pj) = @(t;€)
= hj(t,zj(t;€)) = hj(s, ¢(s,9)).

Hence ¢ transforms 9; + h;(t, )0, into 9 + (2m) 1p;0,. If d > 2 for i # j,
Or+ hi(t,z)0y is transformed to ds + g;i(s,y)d, for some g; € G7(T?; R). The
commutativity implies that

(05 + (2m) "' p;0y)gi(s,y) =0,  i=1,...,d, i #].

Since (27)~!p; is irrational it is readily verified from the Fourier expansion
that the g; are constants. Because the rotation number is invariantly defined
for vector fields on T2, we have g;(s,y) = (27) ! p;.

In order to prove that the map ® is a G diffeomorphism on T? note
that the Jacobian of ® does not vanish as it is equal to Jdy¢. For & =
u(y — s(2m) "1 pj) we have 9y¢(s,y) = Oex;j(t; €)u'(y — s(2m) 1p;), and since
u is a G diffeomorphism u'(y) # 0 for every y € R. On the other hand,
6(t; z) := 0,x(t; z) satisfies

0 = Oph;(t,z(t;2))0, Ol =1

which implies that 6(t;&) = Ocx;(t;€) # 0 for all t € R, £ € R Thus
Oy¢(s,y) # 0 for all s € R, y € R and the map @ is a G diffeomorphism.
In order to complete the proof, we will show that ¢(s + 2m,y) = é(s,y)
and ¢(s,y + 2m) = ¢(s,y). The latter relation is easy; for the former one
recall that x;(2m,u(y)) = u(y + p;) by the definition of u. The function
xj(t + 2m,u(y — pj — spj/2m)) solves &; = hj(t,x;) with initial value £ =
xj(2m,u(y — pj — sp;j/2m)) = u(y — spj/2mw). By uniqueness it is therefore
equal to x;(t,u(y — spj/2m)). O

Remark 3.5. a) Let d = 1 and suppose either that o0 = 1 and p/(27) =
p1/(2m) satisfies the Bruno condition [9] or that o = oo and p/(27) satisfies
the usual Siegel condition. Then by the global reduction theorems due to M.
Herman and A. Bruno, the circle map P = Py is conjugated to a rotation
by a G' or C*® diffeomorphism.

b) Let d =1 and 1 < o0 < +00. We are not aware of any result on global
reduction in G° Gevrey classes.

¢) Let d > 2. If 0 = 400 or o = 1, there is a local simultaneous reduc-
tion theorem due to J. Moser [36], under a simultaneous Siegel condition.
A global C'*° simultaneous reduction theorem is shown by Y. Katznelson, B.
Kra and D. Ornstein [32].

d)Ifd>1and 1 < o < 400, T. Gramchev and M. Yoshino [24] proved
local simultaneous reductions of commuting G° circle maps under weak ex-
ponential arithmetic conditions.
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4. NEKHOROSHEV TYPE ESTIMATES FOR GY P.D.O.

The next result shows that perturbations with G° p.d.o.s are conjugated
with G? elliptic p.d.o.s for some § > o if simultaneous small divisor con-
ditions in the nonresonant case are satisfied. This shows a sharp contrast
with the case of commuting diffeomorphisms, where even weaker arithmetic
conditions are sufficient.

Theorem 4.1. Let ') = {0} and let (Si)oo in §2 hold for some T < —1. Let
0 = max{1,1+7}. Asssume that a*(x, D) (1 <k < d) is a G p.d.o. Then
there exist symbols q_;(x,&) of the conjugating p.d.o. with the following
properties: there exists a neighbourhood Scc of the unit sphere S™!
such that for every s > n/2, ¢ >0 we can find M > 0, N > 0 satisfying

(@) swpllofg (. Olm < MINVU@+ P, 7eBE, jEN
£es
(4.2) sup|a®;(€)] < eMI((05))7,  k=1,....d,j €N,
¢es

where ||-|| s denotes the usual Sobolev norm. It follows that 3222, q—j(x,€) €
FSp, and Y325 aj(¢) € FSO(R* \ {0}). Set 0/ =0 if o > 1 or 7 >0, and
0 =1+p,0<p<1ifd=1 (i.e. 0 =1and 7 <0). Then there exist GO
realizations q(z, &), (&), 1 < k < d and positive constants C, § such that

sup (007 Ry (,€)] < €5 ) (8)°” Jel Pl exp(~al¢] /%),

zel™

for all B,y € Z7, £ € R* and 1 < k < d. Thus Ri(xz,D) € OS_j°(T"),
1 < k < d. Finally, if the symbols aj(x,&) depend on one base variable,
the system can be transformed into a simultaneous normal form without any
restrictions on T in the Diophantine condition for w',... ,w®. In this case

there is no loss of regularity in the remainders; more precisely if ai(z, D),
1<k <dare G? p.d.o. then Rg(z,D) are G smoothing p.d.o.s.

First we need a technical assertion, where C§°(T") denotes the set of
smooth functions with mean value zero.

Lemma 4.2. Suppose that (Si)s holds. Then for every fip(z) € C§°(T™)
such that Xy fr = Xy fr, 1 < r,k < d there exists a unique solution q(z) €
C°(T™) of the system < w* 0, > q(x) = fr(x), 1 < k < d, satisfying
qg(&) = 0, & € T'Y. Furthermore, for some Cr > 0 this unique solution
satisfies the estimate

. < e > 0.
lgllms < Cr lrgggdllfkllg +r s>0

Proof. By Fourier transform we obtain < w,n > ¢(n) = fAk(n) It follows
that ﬁ(n) = 0 when < w*, n >= 0. The compatibility condition and the
definition of I'y implies that we can decompose Z" \ Iy = U;in:1 Z'(m),
Z'm)NZ'(j) =0, 1 < j < m < d with the property < wF,n ># 0 for
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n € Z'(k), 1 <k <d. Hence for 1 < k < d the inverse Fourier transform
gives,

1/2
2 é |n|** ) 2 :
lgllz- < @m) 2> | Y )
| <whin >
k=1 \neZz'(k)
1/2
< 2(s+7) 2 _ o
< Crmax | Y <> | fr(n)) Cr max [|fillgetr,
- neEZ™\0 - =
where < >= (1 + |n|?)"/2. O

Proof of Theorem 4.1. Suppose that 7 is an integer (the proof is the same
for 7 € Z, but there are some technical complications). Clearly, after con-
jugation with the symbol ¢¥(#%) we may suppose that af(x,€) = ag(€) for
1 < k < d and hence that ¥ = 0, go = 1 and the conjugating p.d.o. is of
the form ¢(z,&) ~ 1 + Z;; q—j(z,£). Then, by the composition rule, ¢_;
satisfies the following equations

(43)  <wk Dy >qy=FFi(2,6) + GEj(w,6) — ab (2, €) + ak()
for 1 <k <d, where
j—1
1
Ff](xaé-) = _Z Z ED?CL&(]_T_WD(Q%g)a:fq*?“(mafx

r=1|8|<jr
7j—1

G]i](xaf) = ZQ—T(waf)aﬁ(]fr)(f)
r=1

Clearly in order to solve (4.3) we must choose
(44) (&) = —[FE,(, Ol — [GE(, O + [a2 (.80, 1<k <d.

Because a*(x,¢) € S2(T"), 1 < k < d there exists a complex neighbour-
hood S in C* of the unit sphere S"~! in R” so that for fixed s > n/2 and 7
there exists a positive constant A such that

(45)  supl|9faF (-, &)l gerr < ATHPILGIBYT ez, BeT.
£es

By the Schauder lemma for multiplication in Sobolev spaces, if s +7 > n/2
there exists w > 0 such that

(4.6) 1fgllzrsr < wllfllerrlgllzssr, — frg € Hg™T(T").

Estimates (4.1) and (4.2) will be proved by induction. They both hold for
J = 0. Suppose that they are true for 0 < j < i — 1. By (4.6) we obtain for
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¢ € S that

(4.7) |07 F*,(-,¢ HHs+T<WZ > Z( )

r=1|g|<i—r~'<y

x ’|37_7,Dﬂak(i v (O e 1077 g (-, 6]

Hs+7

Y Y Z( )Al (G = = )y = )M

r=1|g|<i—r ' <y

VAN

x  NBFTHY1(Or + 8] + || + 7)) < eMINV((8i + 7)) wANTK

with
i—1
(48) K =) (AN/M)"" Y Z( )
r=1 |B|<i—r ' <7y
=yt (=7 = 1By =) Or + 18]+ 7+ [/ DN°
% (A/N)=l ( e )
i—1 ,
< Yavmi Y% ([ +1) (Ivl;rlvl o).
r=1 18| <i—r "<y (v =)

=1 (o = 7)! )
X (A/N)TER ((|7/|+1)...(|7’|+|7|—|V'|)>

" ((i —r =B+ 1) (Y| + [y = Y D(Or +18] + || +T)!>U
(@i + |v])!
1—1
< S AN/MYT YT N (A/N)PERer ey
r=1 |B|<i—r "<y
_ —)! :
where C) = gy (i < 1 while
Cy = (== 1D +1) . (Y[ + I =1 DOr + 6]+ Y]+ 7)!

(0 + [v])!

< =7 = [BDYOr + 6] + |7 + 7)!
- (00 + [v])!

< (0i + |y| — (t?—l)(z—r)+7)! <1
< 0i ) <
for all v,7,8 € Z", v/ < v, ri € N, i —r > 1. We used the inequality
@—-1)(i—r)>60—12>r7if i —r > 1. Choosing first N > A and then
M > 2AN large enough so that AN/M(1 — A/N)™Y > 27" (v +2)" <
(6C,wANT)"!, and using the estimates on C; and Cs, we get from (4.8)
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that

K < iiAN/M ST SNy

|BI<i—r ' <y
i—1
< Y (AN/M)TT N (1—A/N)T"
r=1 |B|<i—r
i—1
< “J‘évu—A/N) "N (AN/M)TT N —r 4 1)"
r=1

< AN/M(1— A/N)~ 22 (v+2)" < (6C,wANT) !

Hence, by the choice of M and N,

(4.9)  sup|07F*,(-,&) | gs+r < (3C) LeMINI((0i + |y)))?, yezn.
£es

Next, for any £ € S

103 GE, (-9

IN

lem

£ MZNMJ’T((OZ + )L

Hs+7 H5+"'|a z r)(£)|

IN

i1 _
. Or + |y] +7)1OGE — )7
10 L_§;< (6i + [])! )

)T & (T4+2) ... (T+1+0r+ ]y —1) i
B <0i+|v|> 7gl((19(71—7“)4—1)...(19(7j—7“)+97“+|7|—1)) '

Sincei—r>1,r>1and § > (1+7)

i (T+2)...(T+1+60r+]y] 1)
O@—r)+1)...00G—r)+0r+|y|—1)
O...0+60r+y|—1)
(4-11) S WG+ 0G=r) 1ot =1) ="

It is readily verified from (4.10) that, for all v € Z7}

0'7, 1
I < ((T+1)> )
- 0i + ||

r=1

DN (D)
(6rpr) 6= < G ppes < (00




PERTURBATIONS OF VECTOR FIELDS ON TORI 17

Hence, by choosing ¢ > 0 and N > 0 so that eN"((7+1)!)? < 1/3 we obtain,
from (4.1) and (4.2) with 1 <j <i—1

(4.12)  sup[|0JG*; (-, &)l e < 37 LeMINII(0i 4 |4)))7, v €2
£es
Finally, observe that (4.5) leads to
(4.13)

sup |97 (-, )|
£es

provided that M > 34/e and N > A. By Lemma 4.2, (4.4), (4.12) and
(4.13) we have, for any £ € S

JE3] GOl + 116 (L )lal + [a® ()l
IFE, )l + G 62 + lla® (- )
IEE G o + 1GE () etr + a2, €))
e(CH)TIME((0)!)T < eMU((0i))°.
Thus (4.1) and (4.2) for 1 < j < i — 1 imply (4.2) for j = i, while (4.1)
for j = i follows from Lemma 4.2 applied to fy = F¥ (z,&) + G*,(z,¢) —

af (z,6) + ok, (¢), 1 <k < d, and the fact that the H**7(T") norm of fy,

does not depend on ok i O

gote <37LeMINDI((05+ |47, jEN, yezZ?

Hs+7

IANIN INCIA

Remark 4.3. As the proof of Theorem 4.1 shows, our approach resembles
methods used for obtaining effective stability (Nekhoroshev type) estimates
(cf. [2], [21], [25], [23], [31], [34]). However, we stress that the study of
the Gevrey regularity of the conjugating p.d.o. q(x, D) presents new features
and difficulties in comparison to the aforementioned results in dynamical
systems. This is due to the presence of compositions of p.d.o.s and the
global regularity in € € R". In fact, the composition rule of p.d.o.s is a
magor technical obstacle for getting Gevrey estimates in the presence of res-
onances. Finally, we point out that our iterative approach shows that the
dominating term in q;(x,§), |{] =1, is given by CIHYDI% 1 (z,€)| ~ (§1)?
which suggests that the Gevrey index o is sharp.

5. GLOBAL PROPERTIES OF PERTURBATIONS OF RESONANT VECTOR
FIELDS

In this section we study the global hypoellipticity of first order overdeter-
mined systems by use of global normal forms.

Let £; be defined by (1.2) with a; € G7(T"). We say that £; is G
globally hypoelliptic (1 < o < c0) if every distribution u such that £L;u € G”
(j=1,...,d) isin G?. Set r = dimz Iy and for r > 1, take a canonical
basis n',... ,n" of I'Y. Suppose that it is possible to find «;(y) € G°(T")
(j =1,...,d) for which the system

(5.1) <wl 0y > =aj() —aj(<n',z>,..., <",z >), 1<j<d
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admits a unique solution ¢ with 1/3(5) =0 for £ € I'Y. Note that (5.1) is
weaker than the simultaneous o-Siegel type condition on Z" \ I'Y since if
that holds we can solve (5.1) by Fourier series expansion.

If the multiplication operator ¢ is defined by qu(z) = e?¥@)y(x), the proof
of Theorem 3.1 and (5.1) imply that for every j € {1,... ,d} we have

q_1 oLjoq=Lj:=< wj,Dm > +01j(< nl,x >, <nx>)

Indeed, in (3.7) a* y(z,€) = 0 for N > 1. Therefore the system Liju = fj,
(1 <j <d) is equivalent to the system
(5.2) Liv=g;, 1<j<d

where g; = e“p(’")fj(m), 1< <d.
We define the change of variables r = T'%, ¥ = (y,2) withy = (y1,... ,yr)

and z = (21,... ,zn—y) by y; =<1,z >, (1 < j <), and z; =< K’,z >,
(1 <j<mn-—r). Then the system (5.2) becomes
(5'3) < 0]7‘DZ > w —"_ a](y)w = h](y7 Z)? ] = ]'7 tet 7d7

where the #7 € R*™" are given by (0,6) = "Tw/, 1 < j < d. The partial
Fourier transform z — ¢ reduces (5.3) to

(54) (< 0]7C > +O[J(y))UA)(y,C) = };J(yag)a C € Zn—r, ,7 = ]-7 tee 7d'

Define ®(y,() = Z?Zl | < 07, > +a;(y)] and let dy < n —r be the rank of
6',...,0% Then we have

Theorem 5.1. Suppose I'y # {0} and let n',...,n" be a canonical basis of
I'Y. Assume that (5.1) has a unique solution and that alij(m,f) € C%(RY \
{0}; G7(T?)) if 0 < 0o. Then

(i) The system (5.3) is G globally hypoelliptic if there exists ¢ > 0 such
that ®(y,C) > ¢ for all ( € Z" " and y € T". If dy = n — r the preceeding
condition is replaced by a discrete condition ®(y,() # 0 for all { € Z™ "
and oll y € T™. Note that the completely resonant case r = n — 1 satisfies
do=n—r.

(11) Suppose dy = n — r. Then the system (5.3) is G7 globally hypoelliptic
for 1 <o < oo if and only if the discrete condition is satisfied.

Proof. By the representation (5.4), w satisfies w(y;() = h}(y;()(< 07,¢ >
+a;(y))~" for some 1 < j < d. Hence w € G°. If dy = n — r, then
Z?:1| <09, >]—00as |¢| = oo, ( €Z"". Hence the condition ® > ¢
can be replaced by the discrete condition proving (i).

As to (ii) we define the distribution w(y, z) by w(y,¢) = 0 if ¢ # ¢°, and
w(y, %) = 6(y —y"), with y° € T and ¢° € Z" " satisfying ¢ + ax(y°) =0
for 1 < k < d. Here §(y—y") stands for the Dirac measure massed at y = 3°.
The distribution w(y, z) gives a nonsmooth zero solution of (5.3). O

Remark 5.2. If dy < n — r the condition ®(y,{) > c is not a discrete
condition because the vectors (< 0',¢ >,...,< 0% ¢ >) (¢ € Z"™) fill a
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dense subset of a dy-dimensional subspace of R and if dy < d this actually
occurs. Next, if the simultaneous G Siegel condition holds, the solvability of
(5.1) is superfluous; that is instead of the Diophantine conditions on w’, the
solvability of (5.1) for special aj(x) is enough. This allows us to characterize
larger classes of first order operators on T? with nonresonant w = w' than
those in Proposition 3.2 of [3] (o0 = 00) and to generalize some of the results
for a class of overdetermined systems of vector fields on T" in Theorem 3.3
of [4] (0 = 1). Note that the Gevrey spaces G°(T™) are not metrisable if
1 < 0 < oo and therefore Baire’s theorem is not applicable.

Now we study the global properties of {b¥(x, D)} in the nonresonant case
I = {0}. Let a corresponding normal form {w* - ¢ + a®(£)}¢ be as in
Theorem 3.1 and 1 < 6 < co. We say that {wF¢ + a¥(€)}¢ satisfies the
simultaneous inhomogeneous #-Siegel condition if

. ig’lgingi\o exp(e]¢[/?) max WF-E4+ak(€)] >0, for everye >0 (T'Si)y

for 1 <60 < oo, and

lim inf N k. k 0 TSi
|£Hg@r}£1élm\0|€| lrgggdlw £+ a”(§)] >0, (T'Si)oo

for some NV € R when 6 = oo.

If 0 = oo, (TSi)s is well defined in the sense that it does not depend on
realizations of > > ja_,(§). However, if 1 < 6 < oo, the condition (7'St)g
is independent of realizations if ¢ is a GY p.d.o. In this case, a/(D) and the
remainders R¥(x, D) are GY p.d.o. as well.

Theorem 5.3. Assume that w’, j = 1,... ,d, are simultaneously nonreso-
nant and satisfy (Si), for some 1 < o < oo. Let the hypotheses of Theorem
3.1 be true. Then (T'Si)oo holds for one simultaneous canonical form of
{bj}‘li if and only if it holds for every simultaneous canonical form of {b7}4.
Moreover, {b7}‘1i 15 globally hypoelliptic on T™ if and only if a normal form
of {b'}{ satisfies (T'Si)oo. If (Si)eo holds and a’(x,D), 7 = 1,... ,d, are
G? p.d.o. then the operator {b7}‘1i is GY globally hypoelliptic if and only if a
normal form of {b'}¢ satisfies (T'Si)g for 6 > po, where p = max{1,1+ 7}.

Proof. The proof follows from Theorem 3.1 (respectively, the Nekhoroshev
type estimates) if # = oo (respectively, § > po), and the following proper-
ties: Since g(x, D) is elliptic in G?? either both or neither systems {w’ D, +
a’(z, D)} and {w/ D, + o/ (D) + R’(z,D)} are globally hypoelliptic. The
estimates for ¢(z, D) and the remainders R’(z, &) imply the global GY hy-
poellipticity for 0 > po if (T'Si)y is true. O
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6. LOGARITHMIC HAUSDORFF DIMENSION
For B = (B1,...,04) € R¢and 1 < 0 < oo we define
NG°(B;d) = {w=(w'...,w") e R {<wi &> +5;}¢
does not satisfy (7'Si), },
NG°(d) = NG°(0;d).
Clearly NG7(d) with I'y = {0} is the exceptional set for which (S7), (fails,
and therefore no reduction to normal forms is possible. Similarly, if 8 # 0,
NG (B;d) is related to the exceptional sets of {w’/}¢ for which the sys-
tem {Ly + B1}¢ is not globally G’ hypoelliptic. The sizes of NG (d) and
NG7(3;1) will be estimated in terms of the Hausdorff dimension and loga-

rithmic Hausdorff dimension associated with the Gevrey index o.
For n > d let Eg(o) = Eg(o;n,d) be the set

Es(o) ={X eR" :|qX — 8| < e lal'? for infinitely many q € Z"}.
Note that if X is identified with w = (w',... ,w?), we have
Ey(0) C NG°(d) and Eg(o) C NG7(8;d)
A § cover of a set A is a union of sets C' with diameter less than or equal

to ¢ such that A C UC.

Definition 6.1. Let J C R and define the function f : RY — R by
f(r) =r=Dd(log 1/r)=5. The logarithmic Hausdorff measure of J is
£(J):=liminf > f(L(C)),

0—0 C5
CeCs:uCDJ

where the infimum is over all 6 covers, €5 of J and L(C) < § is the diameter
of C. The logarithmic Hausdorff dimension is
Ldim (J) := sup{s : £°(J) = oo} = inf{s : £°(J) = 0}.

Hence Ldim (J) is the unique value for which £°(.J) changes from being
oo to 0. The definition of Hausdorff dimension is the same as above with
f(L(C)) = L(C)?; its properties can be found in [20]. To denote the infor-
mation given by the two dimensions, ordinary and logarithmic the dimension
of J will be written as the ordered pair dim.J = (dim J, Ldim .J).

For the homogeneous case the following theorem will be proved.

Theorem 6.2. Let o € RT. Then dimEy(o;n,d) = ((n — 1)d, no).

By modifying the proof of Theorem 6.2 an inhomogeneous version will
also be proved for the case d = 1.

Theorem 6.3. Let 0 € RY and 8 € R. Then dmeﬂ(U; n,1) = (n—1,n0).

Remark 6.4. Identify R* with (R*)¢ and note that the sets NG (3;d) are
invariant under the action of SL(n;Z) (P(NG?(8;d)) = NG (B;d) for all
P € SL(n;7Z)). Next, let ~ be an equivalence relation in NG?(B;d) such
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that w ~ &' if and only if w = PW' for some P € SL(n;Z) (i.e., they lie
in the same orbit), then the space of SL(n;Z) orbits NG°(3;d)/ ~ has the
same dim.

Without loss of generality, as the two sets are invariant under translations
of integer vectors, we can restrict ourselves to the sets Eg(o;n,d) N md
where I = (—%, %] The proofs are done in three parts: firstly the Hausdorff
dimensions are obtained; then an upper bound for the logarithmic Hausdorff
dimension of Eg(o;n,d) is determined for all 3, n and d and finally lower
bounds for the logarithmic Hausdorff dimensions of the two sets are found.

In [14] the Hausdorff dimension of the set
Wo(r) = Wo(n,d;7) = {X € R™ : |qX| < |g| " for infinitely many q € Z"}

was shown to be (n — 1)d + n/(7 + 1). Plainly, the (n — 1)d—dimensional
hyperplanes Ry = {X € I : qX = 0} are contained in Fy(o) for all
q € Z" so that dim Ey(0) > (n — 1)d. Also Ey(o) C Wy(r) which implies
that dim Ey(o) < dim Wy(7) for all 7 and all o. Thus dim Ey(o) = (n —1)d.
Similarly, in the inhomogeneous case the (n — 1)-dimensional hyperplanes
Rgq = {x € I" : q.x + (3 = 0} are contained in F3(o;n,1) which implies
that dim Fg(o;n,1) > n — 1. Using the upper bound argument in the next
section with f(L(C)) replaced by L(C)* it is readily verified that for any
s > n — 1 the Hausdorff s—measure of Eg(o;n,1) is zero which implies that
dim Eg(o;n,1) <n — 1 completing the result.

Now we deal with the logarithmic component of dim. In what follows
a < b (respectively a > b) means that there exists a constant ¢ > 0 such
that a < ¢b (a > ¢b). If a < b and a > b then a < b.

First the upper bounds are obtained for both theorems.

Lemma 6.5. Letn,d €N, n >2, 0 € R" and 3 € R. Then
Ldim Eg(o) < no.
Proof. For future reference note that

_p1/0\ (n=1)d e\ (n=1)d
6.1)  fer) = () | = () | .

7a(n—l)al(rs/(r +10g7“) = pn=1)d+s/o

Define Rgq as Rgq = {X € I™ : qX + 8 = 0} and let C(q) denote
a collection of hypercubes C of sidelength L(C) = QnI/Qe_‘q|l/o/|q| cen-
tred on Rgq with centres at a distance of e*‘q|1/o/|q| apart. There are

o\ (n—1)d
< <|q|e‘q|1/ ) such hypercubes. Let C' denote the set Cxy = {C(q) :
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lg| > N}. For each N this set is a cover of Eg(c). Hence, using (6.1)

o) < LYY e« Y 3 ()

r>N |q|=r CeC(q r>N |q|=r

( | ‘l/g)(n l)d

e

% T < Z rn=1=s/o - .

|q| r>N

for s > no and N sufficiently large. Therefore £°(Eg(c)) = 0 for s > no

and Ldim Eg(o) < no. O

Proof of Theorem 6.2. We now obtain a lower bound for Ldim Ey(o;n,d).
First, a Cantor subset K of Ey(o;n,d) and a probability measure supported
on K are constructed. Then the Mass Distribution Principle is used to
show that the logarithmic Hausdorff measure of K is infinity for s < no.
This implies that the logarithmic Hausdorff dimension of K and hence of
Ey(o;n,d) is greater than or equal to no.

For the rest of the proof it is assumed that s < no. Also note that the
following inequality will continually be used:

Nn/d Nn/d Nn/d
(6.2) < < :
16nlog N 8nlog N 8nlog N
where [ . | denotes integer part.

Similar Cantor constructions to the following can be found in [7, p 347]
and [16] (for general dimension functions). Choose N; large enough so that

n/d—1
Nll/o' 5N1
(6.3) e > 2log N,
15Nn—s/a
(6.4) L > 1.

5nd2dnd+4 |ogd N

Starting in one corner, divide I"? into T'(N;) = [Nln/d/8n log N1]™ hy-
percubes C with sidelength

L(C) = Ly, = [N} /8nlog(N1)] !

Define C' to be a hypercube with the same centre as C and L(C') = $L(C).
Let Ry = {Rq : N <|q| < 2N} and let G(NN;) denote the set of cubes C

for which there exists an Rq € Ry, such that C' N Rq > (%L(C’))(nfl)d;
i.e., the intersection C'N Ry is relatively large and Rq does not just ”clip”
one corner. From Lemma 2 in [14] it can be verified that for any ¢ > 0 and

N sufficiently large

Nln/d nd
(6.5) #G(N1) > [m] (I—e).
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o 3T 1) (= Ry )
L(Ny)/2

1/o

For each C' € G(NN1) pick one such intersection C' N Rq and call it I(C').
Now draw smaller hypercubes centred on I(C') and contained in C” of side-

length e*Nll/U/Nl with centres at a distance of Qe*Nll/U /N apart, so that
they are disjoint, (see figure for n = 2). Let #I(C) denote the number of
these small cubes lying on the segment I(C'). Then, using (6.3) it can be
shown that

o\ (n—1)d
(%NIL(C’)eNII/ )

< #I(C)

A\
—~
=z
m
2
=
a

The union of these cubes over all C' € G(N7) forms the first level K of the
Cantor set and #K; denotes the number of them. From (6.2), (6.5) (with
e =1/16) and above

d
15 Nn/d n 1 1o (n—1)d
K o> |1 (S NL(0)eM
(T [8nlogN1 (40 1L(O)e )

15Npd=tn (eNf/")("*”d
> .
Z 2"d+4(8n)d40(n_1)d(log Nl)d

Let E; denote a hypercube in K, so that L(E;) = e M’ /Ny, then (6.4)
yields

n—s/o
#EK1f(L(E)) > 1oy

> 1.
= 5nd2ind+d]ogd N

This will be needed later to use the Mass Distribution Principle.
To obtain the second level K5 precisely the same construction is made
but instead of I™® the cubes from the previous level K are used. Choose
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Ny large enough so that

NP/ /o
6.6 2 NyeMs
(6.6) nlog N, ~ 170

_ /o
67) 3Ny /7 endNy 7 Npd

>
5nd - 25nd+2 190 N, #K
and € > 0 such that

1/o

(6.8) e <2 e 2N N,

Divide 1™ into T(Nz) hypercubes of sidelength Ly, = [N;L/d/Sn log No] !
as before. Since Ny > N; from (6.2)

#G(Ng) >

n/d nd n2
Ny ] (1—2)> Ny (1—2).

8nlog Ny (16n)7d log™® Ny

Let T, (IN2) denote the number of hypercubes contained in ) and #Gg, (N2)
be the number of those which have large intersection with a resonant set
Rq € Rn,. It is readily verified that

e*Nll/a 1 n T N e*Nll/a 9 nd
— < <
NiLx, st s\ mzg 72
and (6.6) implies that
- d o\ nd
e_Nll/ " 2€_N11/ "
N <Tp, (N2) < -
2N Ly, NiLpy,
Equations (6.8) and (6.5) can be used to show that #G(Ny) > T'(N2) —
Tg, (N2)/4 whence

1/o
3Tg, (N e~ ndN;
#Gp, (N2) > 1(2) AN— 1 nd N
4 4-274(16m) A NTAN,“ log™"" Ny

Do exactly the same as before with the segments I(C) to construct the
second level of the Cantor set Ks. Let #Hy be the number of hypercubes
of K5 in one Fy so that #Ks = # K # H>. Then

1/o
Hy > #Gp, (V) Ly Mo /20)

and
o\ (n—1)d
#Hy < #Gpg, (N2) (LN2N2€N21/ ) .
Thus
3N2nd7d+ne(n71)dN21/a o ndNy/?

Ky > #K
#Ha 2 % b4 ommd(8p)n . 40(n=Dd1ogd N, N7
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and, from (6.7)
3Ny /7 ¢ndN,”
5nd . 26nd+2]og? N, N

Similarly for the r’th level. Assume that K, ; has been constructed with

#Kof (L(E»)) =

#K; > 1.

1/o
hypercubes E,_; of sidelength e N1 /Ny_1. Choose N, sufficiently large so
that

N,,”.’L/d Nl/o'
6.9 s NeND
(6.9) 16n1log N, re
n—s/o nderio nd
(6.10) SNy e N

>
5nd - 25nd+2 90 N, #K,
and £ > 0 so that

1/o
(6.11) e <2 e ?NmiN T,

Let Tr, ,(N;) denote the number of hypercubes of the 7’th level contained
in E,_; (a cube in K,_1) and #Gpg, ,(N;) the number which have large
intersection with a resonant set Rq € Ry, _,. Following the argument exactly
as for the second level but using equations (6.9) and (6.11) rather than
equations (6.6) and (6.8) we get

o /o
3Nnd—d+ne(n—1)der/ e—nalNTlf1
6.12 K, > #K,_ L
(6.12) #Hr 2 #Kr 14-22”d(8n)d40(”_1)dlongr N,
and
_ /o
3Nn s/o efndN:_l
(6.13)  #K,.f(L(E,)) 2 #K,_1 > 1,

- 5nd . 95nd+2 logd N, Nﬁiil

from (6.10).

Let K = N, K. It can be readily verified thatthat K C Ey(o;n,d). Now
we proceed to contruct a probability measure supported on K. In order to
do this the following lemma from [20, page 55] is needed.

Lemma 6.6 (The Mass distribution principle). Let u be a probability mea-
sure supported on a subset F of RE. Suppose there are positive constants A
and § such that p(C) < Af(L(C)), for any cube C' with sidelength L(C) < .
Then £5(F) > AL,

Recall that F; represents a cube in Kj;, that is in the i’th level of K and
define a probability measure on K in the following way: u(E;) = (#K;) ! <
f(L(E;)) from (6.13), for i € N. Thus the sum of the measures of all hyper-
cubes in the 7’th level in one fixed cube on the r — 1’th level is u(E,_1), i.e.
w(Ey) = u(Er_1)/(#H,). To use Lemma 6.6 we need to show that the mea-
sure of an arbitrary cube B is also < f(L(B)) where L(B) is the sidelength
of the cube. Without loss of generality we can choose an arbitrary cube B
contained in some hypercube F,._; and containing at least two cubes of the
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r’th level so that L(B) < e N /Ny_1. (If B never contains two hypercubes
of any level then its measure is zero.) There are two cases to consider. The
first is when B intersects hypercubes lying on at least two different segments
I(C). In this case L(B) > Ly, = [N;L/d/Sn log N,] . Let S be the number
of segments I(C) that B intersects. Then S < (L(B)/Ly,)™. The maxi-

mum number of hypercubes E, of K, that B can intersect on each segment
1/o

(n—1)d
is (L, Nee®™'7) "7 Evidently

Nl/a (TL*l)d 1o
N(B) . S (LNTNTG r ) - L(B)ndN;ldfdJrne(nfl)dNT
- #K, - log? N, #K,
From (6.12)
1/o
L(B)ndendNTleniil
B r
n(B) < 5

However, #K,_1 > 1/f(L(E,_1)) which implies that
/o
u(B) < L(B)"e" NS N F(L(B, 1)),

/o

As the function f(r)/r"® decreases for r < 1 and since L(B) < e_NTI*I/N,«_l <
1 we obtain u(B) < f(L(B)).

The second case is when B intersects cubes in K, from only one segment

1/o o

I(C). As before L(B) < e~ /N,_;, and L(B) > L(E,) = ¢ /7 /N,.
The number of cubes that B can intersect is < (L(B)/L(E,))™ 1, There-
fore

LB LBV (L(E,))
L(E) VigK, = L(E,) Vi

As f(r)/r(» D4 =1/log®(1/r) is an increasing function and L(B) > L(E,)
it is easy to verify that u(B) < f(L(B)).

Thus from Lemma 6.6 (the Mass Distribution Principle) for s < no we
have £°(K) > 1 which implies that Ldim (Ey(o;n,d)) > no and completes

n(B) <

the proof of Theorem 6.2. O
Proof of Theorem 6.3. Only the lower bound is left to prove. Let IT" = {x €
I" :|x| > ¢} and let || . || denote the distance from the nearest integer, i.e.
||x|| = miny 72 [x — k|. The following lemma is needed.

Lemma 6.7. For every N > 2 and almost all x € I there exists q €
Z™\{0} with N/log* N < |q| < N such that dist (x, Rgq) < N 2log’ N.

Proof. From [33], pp. 74-75 it can be verifed that for every N > 2 and
almost all x € I"™ there exists q € Z™\{0} with N/log* N < |q| < N such
that

(6.14) lla-x — B < N""log? N
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The following argument is done in detail for n = 2 and any decreasing
function ¢(N) and is not difficult to extend to n > 3. Consider the line
x2 = 1. Then |q-x + (] < ¢(N) implies that |g1z1 + g2 + 8| < #(N). Thus
we can consider the inequality ||¢g12 + || < ¢(IN). Similarly consider the
line z9 = « for any 1 > o > 0. Then the inequality |q171 + goa + 3] < ¢(N)
is the same as the inequality ||gz + 3'|| < a”'¢(N) where x = z;/a and
B = B/a. Thus, if there exists a function ¢ for which almost all points on
the lines 9 = « are covered by intervals centered at points (p + 3)/q of
length a~'¢(N)/q with N/log* N < ¢ < N then for some fixed § > 0 with
a > 0 almost all points in Ig will be covered by the set

U {x:]a-x+ 8 < ¢(lal)}
a:N>|q|>N/log* N

for N sufficiently large. On letting ¢(N) = N~ log® N and using (6.14) and
the fact that N > |q| > N/log* N the lemma is proved. Exactly the same
argument can be used for n > 3. O

Using the ubiquity argument from [33] it can be shown that as in the
homogeneous case with Ly = [N?/8nlog” N]~! we have

Nz "
GIN)>|————| (1—¢).
#G(N) 2 [8mlog7N] ( )
Theorem 6.3 can now be proved by using the above and following the proof
of Theorem 6.2 exactly. U

Theorems 6.2 and 6.3 show that the sets Ey(o;m,n) and Eg(o;m,1)
consist of more than just the resonant hyperplanes Ry 3.
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