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RIEMANN-HILBERT PROBLEM AND SOLVABILITY OF
DIFFERENTIAL EQUATIONS

Abstract. In this paper Riemann—Hilbert problemis applied to the solv-
ability of a mixed type Monge-Ampére equation and the index formula
of ordinary differential equations. Blowing up onto the torus turns mixed
type eguations into elliptic equations, to which R-H problem is applied.

1. Introduction

This paper is concerned with the Riemann—Hilbert problem and the (unique) solvabil-
ity of differential equations. The Riemann—Hilbert problem has many applicationsin
mathematics and physics. In this paper we are interested in the solvability of a mixed
type Monge-Ampére equation , a homology equation appearing in a normal form the-
ory of singular vector fields and the index formula of ordinary differential equations.
These equations have a singularity at some point, say at the origin. We handle these
singular nature of the equations by akind of blowing up an the Riemann—Hilbert prob-
lem.

Our ideais as follows. When we want to solve these degenerate mixed type equa-
tions in a class of analytic functions, we transform the equation onto the torus em-
bedded at the origin. This is done by a change of variables similar to a blowing up
procedure. Although we transform the local problem for a mixed type equation to a
global one on tori, it turns out that, in many cases the transformed equations are el-
liptic on the torus. This enables us to apply a Riemann—Hilbert problem with respect
to tori. Once we can solve the lifted problems we extend the solution on the torusin-
side the torus analytically by a harmonic (analytic) extension. The extended function
is holomorphicin a domain whose Silov boundary is atorus. Moreover, by the maxi-
mal principle, the extended function is a solution of a given nonlinear equation sinceit
satisfies the same equation on its Silov boundary, i.e., on tori. The uniqueness on the
boundary and the maximal principle also implies the uniqueness of the solution.

This paper is organized as follows. In Section 2 we give examples and a general
class of mixed type equations for which the blowing up procedure turns the mixed
type equations into elliptic equations on tori. In Section 3 we discuss the relation of
the blowing up procedure with a resolution of singularities. In Sections 4 and 5 we
study the solvability of ordinary differential equations via blowing up procedure and
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the Riemann-Hilbert problem. In Section 6 we study the index formula of a system of
singular ordinary differential operatorsfrom the viewpoint of the blowing up procedure
and the Riemann-Hilbert problem. In Sections 7 and 8 we apply the R—H problem with
respect to T2 to a construction of a parametrix. In Section 9 we apply the results of
Sections 7 and 8 to the unique solvability of a mixed type Monge—Ampére equation of
two variables. In Section 10 we study the solvability of a mixed type Monge-Ampere
equation of general independent variables. In Section 11 we apply our argument to
a system of nonlinear singular partial differential equations arising from the normal
form theory of a singular vector field. In Section 12 we extend our argument to the
solvability of equations containing alarge parameter.

This paper is originally written for the lectures at the workshop “Bimestre Inten-
sivo” held at Torino in May-June, 2003. | would like to express high appreciationsto
Prof. L. Rodino for inviting me to the workshop and encouraging me to publish the
lecture note.

2. Blowing up and mixed type operators

Let us consider the following Monge-Ampére equation

M) = det(Un) = F00. tex = 20 i =1 ...n
— XiXj/) — ) XiXj — 8X|8XJ ) 5] i R R )
wherex = (X1, ..., %n) € € C R" (resp. in C") for some domain 2. Let ug(x) bea

smooth (resp. holomorphic) functionin 2, and set
fo(x) = det((Uo)x;x;)-

Then ug(x) is asolution of the above equation with f = fq. (fo isaso-caled Gauss
curvature of ug). Consider a solution u = ug + v which is a perturbation of ug(x),
namely

(MA) det(vxi Xj + (UO)Xi Xj) = fO(X) + g(X) in Q,

where g issmooth in Q( resp. anayticin ).
Define

WR(DR) 1= {u= Y u,x"; lullr := D |uy|R" < oo},
n n

We want to solve (MA) for g € WR(DR).

We shall lift (MA) onto the torus T". The function space Wr(DR) is transformed
to WRr(T"),

WR(T = {u =) u, R fullr =) |uy|R" < oo},
n n
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where R = (Ry, ..., Ry), R” = R*--- RI". In order to calculate the operator on the
torus we make the substitution

1 10 1 0
The reduced operator on the torusis given by
det (zj‘lzllej Dkv + (Uo)x; Xk(z)) = fo+g.

REMARK 1. The above transformation onto the torus is related with a Cauchy-
Riemann equation as follows. For the sake of simplicity we consider the one dimen-
sional case. The samethings hold in the general case. We recall the following formula,
fort =re'’

a 1/ 93 .0 — 9 1( a8 .9
to=t—=-|r——i— ), =t—==|r—+i1—),
at 2\ or a0 at 2\ or a0
where § be a Cauchy-Riemann operator. Assume that du = 0. Then, by the above
formulawe obtain

0 . a .0
r—u=—i—u, tdu=—1—u= Dyu.
or 20 a0

Note that the second relation is the one which we used in the above.

REMARK 2. (Relationto Langer’stransformation) The transformation usedin the
aboveis essentially x; = €% . Similar transformation x = eY was used by Langer in
the study of asymptotic analysis of Schrédinger operator for a potential with pole of
degree2ax =0

d? ) k(k + 1)
_W‘i‘)» (V(X)+W>U= Eu,

where E isan energy and V (x) isaregular function.

Some examples
Let n = 2, and set X3 = X, X2 = y. Consider the Monge-Ampére equation
(MA) M(u) + c(X, Y)uxy = fo(X,y) +g(X, y),

where
M(U) = UxxUyy — Uz, fo = M(Uo) + C(X, ¥) (Uo)xy.

with c(x, y) and uo being analyticin x and y. Let Pv := M/, v = £ M(uo + £v)|.—0
be alinearization of M (u) at u = ug. By simple calculations we obtain

M,V == (U0)xxd5v + (Uo)yydZv — 2(Uo)xydxdyv.
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ExAMPLE 1. Consider the equation (MA) for
Up = x%y?, c(x,y)=kxy keR.
We have fo = 4(k — 3)x2y2. Thelinearized operator is given by
P = 2x%0% + 2y%97 + (K — 8)xydxdy, dx = 9/0X, dy = 3/dy.

The characteristic polynomial is given by (with the standard notation) —2x %62 —
2y2§22 — (k — 8)xy£&1&2. Thediscriminant is given by

D = (k — 8)2x%y? — 16x°y? = (k — 4)(k — 12)x%y?.

It follows that (MA) is (degenerate) hyperbolic if and only if k < 4 or k > 12, while
(MA) is (degenerate) elliptic if and only if 4 < k < 12. In either case, (MA) degener-
ates on the lines xy = 0, namely the characteristic polynomial vanishes.

By lifting P onto the torus we obtain

2D1(D1 —1) +2D2(D2 — 1) + (k — 8) D1 D>.
Here, for the sake of simplicity we assume Rj = 1. The symbol is given by
o(n) =21 — 1) + n2012 — 1)) + (k= 8)nngz,

where n; isthe covariable of 6j. Consider now the homogeneous part of degree 2. If
this does not vanish on || = 1 we obtain the following

2+ (k—8)n1p2 # 0 forall n e R?, |n| = 1.

The condition is clearly satisfied if k = 8. If k # 8, noting that —1/2 < n1n2 < 1/2
we obtain —1/2 < —2/(k — 8) < 1/2. By simple calculation we obtain 4 < k < 12.
Namely, if the given operator isdegenerate elliptic the operator on thetorusisan elliptic
operator.

EXAMPLE 2. Consider (MA) under the following condition
uo=x*+kx?y?>+y* keR, c=0.
Then we have
fo = M(ug) = 12(2kx* + 2ky* + (12 — k?)x2%y?).
The linearized operator is given by
P = 12y29% + 12x%37 + 2K(X?35 + y205) — 8xydxdy.
The characteristic polynomial is given by

—12y%€2 — 12x%2 — 2k(x%E} + y2E3) + 8xyE16.
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Since the discriminant is equal to — fo, we study the signature of fg. The following
facts are easy to verify :

2
12 — k2 D
fo/12 = 2k <x2 + y2> - ay“, D = (k? — 12)® — 16k2.

It followsthat D < Oiff -6 <k < —20or2 <k <6,andD > 0iffk < —6,k > 60r
—2 < k < 2. Hence, by the signature of fo we obtain:

if kK < —2itishyperbolic and degenerates at the origin,

if k = —2itis hyperbolic and degenerateson thelinex = tvy,

if —2 < k < Oitisof mixed type,

if k = Oitiséeliptic and degenerateson thelinesx = 0and y = 0,

if 0 < k < 6itiselliptic and degenerates at the origin,

if k = 6itiselliptic and degenerateson thelinesx = +y,

if k > 6itisof mixed type.

More precisely, in the mixed case the set {fop = 0} ¢ R? consists of four lines
intersecting at the origin. The equation changes its type from elliptic to hyperbolic or
vice versawhen crossed one of these lines. The equation degenerateson thisline. (See
the following figure of the casek > 6, where H and E denote the hyerbolic and elliptic
region, respectively. )

Inthecase —2 < k < 0, asimilar structure appears. Theelliptic and hyperbolicregions
areinterchanged.
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The operator on the torusis given by

P = 12(e2%272%p (D, — 1) 4+ 21202, (D, — 1))
+ 2k(D1(D1—1) + D2(D2 — 1)) — 8D1Ds.
Herewe assume Rj = 1 asbefore. Setting zj = €%, the principal symbol is given by

o (z, 1) := 2k(n% + n3) — 8nanz + 12(z; %2503 + 252, %n3).

Hence the condition o (z, ) # 0 on T2 reads:
k—d4nima +6(nit°> +n5t™2) #£0  VteC, [t|=1VpeR? |y =1

If n1 = nawehaveny =np = il_/ﬁ inview of |n| = 1. By substituting thisinto the
above equation we have, fort = e'?

k—2+46c0s20 #0 0<6 < 2ru.

It followsthat k & [—4, 8]. Similarly, if n1 = —ny it followsthat k ¢ [—8, 4]. In case
n1 # £n2 we have

2 Mm@+ 03t = (2 — (2 —t72) £0, ift?#£ 41

Hence the imaginary part of k — 45112 + 6(n3t2 + nat~2) does not vanish.

If t2 = +1, our condition can be written in k % 4n1np £ 6. Because —1/2 <
nin2 < 1/2it followsthat k ¢ [—8, —4] and k ¢ [4, 8]. Summing up the above we
obtain k < —8 or k > 8. Under the condition the operator on the torus is dliptic.
Especially, we remark that the same property holdsin the mixed case k > 8.

We will extend these examples to more general equations. Because the problemis
an essentially linear problem we study alinear equation. We consider a Grushin type

operator
9 B
P = x¥ [ — s
> e (5)

lee]=m,|B|<m

where a,g € R and m > 1. For the sake of simplicity weassume R; = 1 (j =
1,...,n). he principa symbol of the lifted operator of P on T" is given by, with
el = (&, ... &) e,

p(e’ E) — Z aaﬁei(ﬂl—ﬂ)@%-ﬂ_
le|>m,|B]=m
Let po(¢) bethe averaging of p(9, &) on T"

1

= 6,£)do = ot”,
Po(&) (Zﬂ)n/w P, &) ;aas
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and define
Q0,&) = p(9, &) — po(é).

We assume that po(&) iselliptic: thereexist C > Oand N > 0 such that
|po(§)| = CI§|™, forall &£ e R", |£] = N.

We define the norm of || Q|| as the sum of absolute values of all Fourier coefficients of
Q. We notethat if || Q| issufficiently small compared with C the lifted operator P on
the torusis elliptic.

We will show that P may be of mixed type in some neighborhood of the origin
for any C > 0. We assume that P is hyperbolic with respect to x; at the point
X =1r(1,0,...,0) for some smal r > 0 chosen later. We note that this condition
is consistent with the elipticity assumption. Indeed, in P all terms satisfying @ = 8
vanishat x =r(1,0, ..., 0) exceptfor thetermr M3F7. On the other hand there appears

theterm
> gpr oL

[Bl=m,a=(a1,0,...,0),@1>m

from P correspondingto o # . We note that 5 does not appear in the sum. There-
fore, by an appropriate choice of the sign of coefficients in the averaging part the hy-
perbolicity condition is satisfied. Thisis possible for any large C. Same argument is
valid if we consider near the other cordinate axis X j .

Next we study the type of P near x = r(d,...,1). We can write the principal
symbol of i ~™P asfollows.

Z aaﬂrla\%-ﬂ —rm Z aaﬁé;'ﬂ*l- Z aaﬂrla\%-ﬂ

le|=m,[B]=m ler|=m,| Bl=m Jor|>m, [ B]=m
= rm ( Y At ) aa,ssﬁ) + ) sl
la|=m la|=m,a#p la|>m,|B]=m

The averaging part in the bracket in the right-hand side dominates the second term
if lagg| is sufficiently small for « % B, namely if ||QJ| is sufficiently small. The
terms corresponding to |@| > m, || = m can be absorbed to the first term if r > 0
is sufficiently small. Therefore we see that P is élliptic near x = r(1,...,1) for
sufficiently small r > 0. Hence P is of mixed type in some neighborhood of the
origin, whileits blow up to the torusis elliptic. Summing up the above we have

THEOREM 1. Under the above assumptions, if || Q| is sufficiently small and if P
is hyperbolic with respect to x; at the point x = r(1,0,...,0) for small r > 0 the
operator P is of mixed type near the origin, whileits blowing up to thetorusiselliptic.

In the following sections we will construct a parametrix for such operators.
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3. Relation to aresolution

We will show that the transformation in the previous section can be introduced directly
viaaresolution of singularities as follows. First we give a definition of aresolutionin
aspecial case.

Let CP! be a complex projective space and let p : C2\ O — CP?! be afibration
of a projective space. Denotethe graph of pby I' ¢ (C2\ O) x CP!. Theset I' can
be regarded as a smooth surface in C2 x CPL. The projection 771 : C2 x CP! — C2
maps I" onto C? \ O homeomorphically. The closure of the graph I of the map p in
C? x CPlisthesurfaceI'y = ' U (O x CPY).

Indeed, let (x, y) be the coordinatein C2, and let u = y/x be the local coordinate
of CPL. Then (x, y, u) isalocal coordinateof C2 x CPL. I isgivenby y = ux, x # 0,
and 'y isgiven by y = ux. Thisis obtained by adding O x CP1toT.

We can show the smoothness of I'; by considering the second coordinate
(X,y,v),Xx = vy. The projection 7o : C? x CP* — CP? foliate I'; with a family
of lines.

DEFINITION 1. The procedurefromC2 to I'y is called the blowing up to O x CP1.

ExXAMPLE 3. Consider three lines intersecting at the origin O, y = aX, y = X,
y = yX. By y = ux, theselinesaregivenby x = 0,u=a,u= B8, u=y. InT'1 they
intersect with CP? at different points.

We cosider thecasey = x2, y = 0. By blowingupweseethatu = x,u=0,x =0
onTy. Indeed, y = 0is0 = ux, and y = x? isux = x2. Hence we are lead to the
above case.

Inthe case x2 = y3, by setting x = vy we have v2 = y and y = 0. Hence we are
reduced the above case.

Grushin type operators
Let us consider a Grushin type operator.
9 \?
P= “f =) .
Z AupY <8y>
la|=[B]

For the sake of simplicity we assume that a,s are constants. We make the blowing up

yi=zjt, j=1...,n
wheret isavariablewhichtendsto zeroand zj (j = 1,2,..., n) arevariableswhich

remain non zero whent — 0. By introducing these variables we study the properties
of P.



Riemann—Hilbert problem 57

EXAMPLE 4. Inthe case of an Euler operator Z’j‘zl Yj ﬁ we obtain

n n
d d ad
2 Yigy =5t = LBy
j=1 ! j=1 !
If we introduce z; = exp(ifj), the right hand side is elliptic on a Hardy space on the
torus. On the other hand in the radial direction t, it behaves like a Fuchsian operator.

If we assume that t is a parameter we have

o oy _ 0
oz ozjdy;  dyj

Noting that |«| = | 8| we obtain
y o) = z*tlIt1Plaf = 79f.
Hence P istransformed to the following operator on the torus
. a\?
P= — .
2 el (az>
la|=18]

Thisisidentical with the operator introducedin the previous sectionif wesetzj = efi.

4. Ordinary differential operators

Consider the following ordinary differential operator

m
Pt 3) =) a(®)af,

k=0

where 9y = 9/dt and ax(t) is holomorphicin @ c C. For the sake of simplicity, we
assume Q = {|t| < r}, where (r > 0) isasmall constant. We consider the following
map

p: O~ O(Q).

The operator pissingular att = 0. Therefore, instead of considering at the origin
directly we lift p ontothetorus T = {|t| = r}. Inthefollowing we assumethatr = 1
for the sake of simplicity. The caser # 1 can be treated similarly if we consider the
weighted space.

Let L2(T) be the set of square integrable functions on the torus, and define the
Hardy space H2(T) by

o0
HXT) := {u=) une™ € L% up = 0forn < 0}.
—00
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H2(T) is closed subspace of L%(T). Let = be the projection on L2(T) to H2(T).

Namely,
o0 o0
P (Z uneiné)) — Zuneinf).
—00 0

In this situation, the correspondence between functions on the torus and holomorphic
functionsin the disk is given by

o0 o
OQ)> ) unz" «— Zune‘”f’ € H2(D).
0 0

By therelation td; — Dy the lifted operator on the torusis given by

p=> aE@)e " Dy(Dg 1) (Dy —k+1),
k

where we used t“aK = td; (td — 1) - - - (td; — k + 1). By definition we can easily see
that 7 p = p.

For a given equation Pu = f in some neighborhood of the origin we consider
pa = f onthetorus, where f(9) = f(€?). If weobtainasolution i = 3"5° une™ e
H2(T) of pa = f,u:= Y5 unt" isaholomorphic extension of G into |t| < 1. The
function Pu — f isholomorphicinthedisk |t| < 1, and vanisheson its boundary since
pt = f. Maximal principle impliesthat Pu = f in the disk, i.e, u is a solution of
a given equation. Clearly, the maximal principle also implies that if the solution on
the torus is unique, the analytic solution inside is also unique. Hence it is sufficient to
study the solvahility of the equation on the torus.

Reduced equation on thetorus

Define (Dg) by the following

(Do)u = > un(ne™, (n) = 1+ n?2
n

This operator also operates on the set of holomorphic functionsin the following way
{tanu = (14 (td/a)*% = " un(n)z".
We can easily see that
Dy(Dy — 1) -+ (Dp —k+ 1)(Dg) ¥ = 1d + K,

where K is acompact operator on H 2.

It follows that since (Dy)~™ is an invertible operator we may consider p(Dy)™™
instead of p. Notethat p(Dgy)™™ = 7 p(Dy) ™™, and the principal part of p(Dg)~™ is
am(€'?)e™'M . Hence, modulo compact operators we are lead to the following operator

(%) ram(E@?)e M - H2 5 H2,
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Indeed, the part with order < m is a compact operator if (D)™™ is multiplied.

The last operator is contains no differentiation, and the coefficients are smooth. It
should be noted that althogh am(t) vanishesat t = 0, am(€'?) does not vanish on the
torus.

DEFINITION 2. We call the operator (x) on H 2(T) a Toeplitz operator. The func-
tion am(€'?) is called the symbol of a Toeplitz operator.

5. Riemann-Hilbert problem and solvability

DEFRINITION 3. Arational function p(z) := a(z)z—™issaid to be Riemann-Hilbert
factorizable with respect to |z| = 1 if the following factorization

P(2) = p-(2) p+(2),

holds, where p.(z), being holomorphicin |z| < 1 and continuous up to the boundary,
does not vanishin |z] < 1, and p_(2), being holomorphicin |z| > 1 and continuous
up to the boundary, does not vanishin |z| > 1.

The factorizability is equivalent to say that the R—H problem for the jump function
p and the circle has a solution.

EXAMPLE 5. We consider p(2) := a(2)z ™ (a(0) # 0) (m > 1). Let a(z) bea
polynomial of order m+ n (n > 1). Then we have

P2) = cz—A) - (Z—2Am)(Z—Amt1) -+ (Z— Amyn)Z ™
A A
= c(1—71)---(1—f)(z—xmﬂ)---(z—xmn),

where 1j € C. We can easily see that p is Riemann-Hilbert factorizable with respect
to the unit circleif and only if

(RH) Al < < Aml <1< [Amyal <0 < [Amenl.

THEOREM 2. Suppose that (RH) is satisfied. Then the kernel and the cokernel of
the map (*) vanishes.

Proof. We consider the kernel of (). By definition, = pu = O isequivaent to
pEe?)uE?) = ge”),

where g consists of negative powers of e'?. If [xj| < 1 the series (1 — xje71%)~1
consists of only negative powers of €'?. Hence, if (1 — Aje7'")U (%) = F(€?) for
some F consisting of negative powersit follows that U (') = (1 — je7'*)~1F (")
consists of negative powers. By repeating this argument we see that

(Z—Ami1) - (Z— AmynU(@), z=¢"
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consists of only negative powers. On the other hand, since thisis a polynomial of zwe
obtainu = 0.

Next we study the cokernel. Let f € H2(T) be given. For the sake of simplicity
we want to solve

(1 - Ale‘m) (em - Az) ue'?y = f(e'y modulo negative powers,

where |A1] < 1 < |A2]. Hence we have

(e“’ —xz) uEe?) = (1— Me—i@)_l f=fotf=f,

modulo negative powers. Here f, (resp. f_) consists of Fourier coefficients of non-
negative (resp. negative) part. Hence, we have

(e”’ - kg) ueEe?y = f,.

The solutionis given by u(e'?) = (¢ — 1»)~1f, . Hence the cokernel vanishes. This
ends the proof.
O

6. Index formulaof an ordinary differential operator

We will give an elementary proof of an index formula. (Cf. Malgrange, Komatsu,
Ramis). Let @ ¢ C be abounded domain satisfying the following condition.

(A.1) Thereexists aconforma map ¢ : Dy, = {|z] < w} > Q such that ¢ can be
extented in some neighborhood of D, = {|z| < w} holomorphically.

Letw > 0, u > 0, and define

n
w'n! )2 < o0).
— !

Gu () = fu="Y_unx"; [lul®:=") (lun] o
n n

where (n— w)! = 1if n—pu < 0. Clearly, G, (1) isaHilbert space. Define A, (1) as
the totality of holomorphic functionsu(x) on  such that u(y(z)) € G, (u) .

Consider an N x N (N > 1) matrix-valued differential operator
P(X, 9x) = (pij (X, 9x)),

where pjj is holomorphic ordinary differential operator on Q. For simplicity, we as-
sume that there exist real numbersvi, uj (i, j =1,..., N) such that

ord pij < puj —vi, ordpi =pni —vi.
Hence

N N
©) P, ax) : [ [ Aw(=pj) — [ ] Aw(=v)).

j=1 j=1
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If we write
Hj—Vi

P (X, 80 = Y a&(X)df, a(x) € O@R)
k=0
we obtain, by the substitution x = ¥ (2)

Bizi)= > aW@y @ k+-.

k=pj—vj

Here the dots denotes terms of order < . j — vj, which is acompact operators.
Defien a Toeplitz symbol Q%(z) by Q%(z) := (quz(z)). Here

@ qigiz(z) = 8y (W (2)(zy' (2)" .
Then we have

THEOREM 3. Suppose (A.1). Thenthe map (1) isa Fredholm operator if and only
if

(3) detQ%(z) £0  for Vze C,|z| = w.

If (3) holds the Fredholm index of (1), x (:= dim¢ Ker P — codimgIm P) is given by
the following formula

(4 —X d(logdet Q% (2)),

2 |zl=w

where the integral is taken in counterclockwise direction.

Proof. Suppose (3). We want to show the Fredholmness of (1). For the sake of
simplicity, we supposethat 1.j — vi = m,i.e, ord pjj = m. If welift P onto the torus
and we multiply the lifted operator on torus with (D)™ we obtain an operator 7 Q%
on H2 modulo compact operators. It is easy to show that 7 Q€ on H? is a Fredholm
operator. (cf. [3]). Because the difference of these operators are compact operatorsthe
lifted operator is a Fredholm operator.

In order to see the Fredholmness of (1) we note that the kernel of the operator on
the boundary coincideswith that of the operator inside (under trivial analytic extension)
because of amaximal principle. The same property holds for acokernel. Thereforethe
Fredholmness of the lifted operator implies the Fredholmness of (1).

Conversely, assume that (1) is a Fredholm operator. We want to show (3). By the
argument in the above we may assume that the operator 7 Q* on H? is a Fredholm
operator. For the sake of ssimplicity, we proveinthecase N = 1, asingle case.

We denote 7 Q% by T. Let K beafinite dimensional projection onto Ker T. Then
there exists aconstant ¢ > 0 such that

ITEN+ IKF| = c|fl, Ve H2
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It follows that
Ilw Q% gl + llw Kgll + ¢l (1 — m)gll = cligll, vge L?
Let U be amultiplication operator by e'?. Then we have
I Q¥ U"g|l + [l KU gl| + cll(1 — m)U"g|| > c[U"g]l, Vg e L2

Because U preservesthe distance we have

IU~"7 Q%xU" g + [lwKxU"g| +¢c|U "1 - m)U" gl > cllgll. vg e L?.
The operator U "z U™ is strongly bounded in L2 uniformly in n. We have

U"rU"g— g
strongly in L2 for every trigonometric polynomia g. Therefore it follows that
U~"zU"g — gstrongly in L2. ThusU ~"(1 — 7)U"g convergesto 0 strongly, and
U7 Q%rU"g=U"zU"Q% "7zU"g — Q%

in the strong sense. On the other hand, because U " convergesto 0 weakly Kz U "g
tends to 0 strongly by the compactness of K. It follows that

1Q%g|l > cligl|

for every g e L. If Q% vanishes at some point to, there exists g with support in some
neighborhood of tg with norm equal to 1. This contradicts the above inequality. Hence
we have proved the assertion.

Next we will show the index formula (4). For the sake of simplicity, we assume that
w = 1and Q¥(z) isarationa polynomial of z, namely

Q*@ =c(z— 1) (2= m)Z— Am1) - (Z = Amin)Z &,
Here
A1l < < Aml <1< [Amyal <0 = [Amenl.
We can easily see that the right-hand side of (4) is equal to m — k. We will show that
the Fredholm index of the operator
7Q%:HZ > H?

isegual to k — m. Because (Z — Am+1) - - - (Z — Amyn) does not vanish on the unit disk
the multiplication operator with this function is one-to-one on H 2. We may assume
that Q¥(2) = (z— A1) --- (z— Am)Z .

We can calculate the kernel and the cokernel of this operator by constructing a
recurrence relation. Let us first consider the case Q% (z) = (z — A)z ¥ (JA| < 1). By
substituting u = Yoy unZ" into

m(z— k)z‘ku =0
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we obtain
o o0
(z— 1z K D unz" =) (un-1- aun)Z" K =0,
n=0 n=0

modulo negative powers of z. By comparing the coefficients we obtain the following
recurrence relation

Uk—1 —UkA =0, Ux—AUky1 =0,...
Hereup, us, ... ux_» arearbitrary. Supposethat ux_1 = ¢ # 0. Then we have
Uk = C/A, Ukg1 = C/A2, ...

Because theradius of convergence of the function u constructed from this seriesis < 1,
u isnot in the kernel. Therefore, the kernel isk — 1 dimensional.

Next we want to show that the cokernel is trivial, namely the map is surjective.
Consider the following equation

o0
Tz—-NzKu=f = Z fnz".
n=0

By the same arguement as in the above we obtain
Uk-1 — UkA = fo, Uk —AUkyr = f1,  Ukpr — AUk = fo, ...
By setting
U0=U1="'=uk—2=07

we obtain, from the above recurrence relations
Uk—1 = AUk + fo = fo+ Afy+ 22Uk = fo+ Afy + 2% f2 4+ A3ugga + - -

= fo+rfi+22f+ 233+
The series in the right-hand side convergesbecause |A| < 1. Similarly we have

Uk = A1 + f1 = f1 4+ Afo 4+ 2%Ukg2 = f1 4+ Afo + 2% f3 4+ 23ugs + -

= f1+kf2+k2f3+k3f4+"~.

The series also converges. In the same way we can show that uj (j = k — 1,k k 4+
1, ...) can be determined uniquely. Hence the map is surjective. It followsthat Ind =
k — 1. This provesthe index formula. The general case can be treated in the same way
by solving a recurrence relation.

We give an alternative proof of this fact. We recall the following facts.

The operator 7z % has exactly k dimensional kernel given by the basis
1,z,...,21. Themap n(z— 1) (JA| < 1) has one dimensional cokernel. Indeed,
the equation (z — A) Y unz” = 1 does not have a solution in H 2 because we have
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Uo = —1/A, u1 = (—1/0)%, up = (—1/4)%, ..., which does not converge on the torus.
These facts show the index formulafor particular symbols.

In order to show the index formula for general symbols we recall the following
theorems.

THEOREM 4 (ATKINSON). If A: H2 - H?and B : H2 — H? are Fredholm
operators B A is a Fredholm operator with the index

Ind BA=1Ind B+ Ind A.

THEOREM 5. For the Toeplitz operatorswq : H? — H2andzp: H? — H?2the
operator 7 (pq) — (7 p)(;rq) isa compact operator.

These theorems show that the index formula for Q% is reduced to the one with
symbols given by every factor of the factorization of Q 2.

7. Riemann-Hilbert problem - Case of 2 variables

We start with

DEFINITION 4. Afunctiona(f1,62) =Y, 8,€" onT?:=Sx S, S={|z| = 1)
is Riemann-Hilbert factorizable with respect to T 2 if there exist nonvanishing functions
a,,,a_4,a__,a,_ onT2with (Fourier) supports contained repectively in

l:'={n1=0n2=0}, Il:={n1=0n2=0},

T :={n=<0,n2=<0}, IV:={n=0n=0}

such that
a(01,02) =ajrata—a4—.

THEOREM 6. Suppose that the following conditions are verified.

(A.1) 0(2,6) #£0 VzeT? Ve eR2,|E| =1,
(A.2) indioc =indoo =0,
where 1
indla = — d21|090(C= Z2, ‘%—)7
2l Jigj=1

andindz o issimilarly defined. Then o (z, £) is R—H factorizable.

Here the integral is an integer-valued continuous function of z, and &, which is
constant on the connected set T2 x {|&| = 1}. Hence it is constant.
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Proof. Suppose that (A1) and (A.2) are verified. Then the function loga(9) is well
defined on T2 and smooth. By Fourier expansion we have

|Oga(9) = b++ + b_+ + b__ + b+_

where the suportsof by, b_,,b__,b,_ arecontainedin I, I'l, I'll, 1V, respec-
tively. The factorization

a(®) = exp(b;+) exp(b_) exp(b__) exp(b—)

isthe desired one. This ends the proof.
O

REMARK 3. The above definition can be extended to a symbol of a pseudodiffer-
ential operator a = a(61, 62, &1, £2). We assume that the factorsa,,a_1,a _,a;—
are smooth functionsof £ , in addition.

8. Riemann-Hilbert problem and construction of a parametrix

In this section we give a rather concrete construction of a parametrix of an operator
reduced on the tori under the R—H factorizability.

Let L2(T?) be aset of square integrable functions, and let us define subspaces H 1,
H, of L2(T?) by

Hy = [UG L%u= Zugeiw}, Hz = [ue L% u= Zugeiw].

01>0 £2>0
We notethat H2(T?) = H1 N Hy. We define the projections 71 and 7> by
71 L3(T?) — Hy, 72 LA(T?) — Ho.

Then the projection 77 : L2(T2) — H2(T?) is, by definition, equal to 177. We define
a Toeplitz operator T,. and T.; by

T;. :=ma(@,D): Hi — Hj, T.4 :=ma(@, D) : Hp — Ho.

If the Toeplitz symbols of these operators are Riemann-Hilbert factorizable it follows
that T,. and T.; are invertibel modulo compact operators, and their inverses (modulo
compact operators) are given by

G  Tl=maitaiimatalm, T1'=mariatimartaln,,

where the equality means the one modul o compact operators.

THEOREM 7. Let a(f, D) be a pseudodifferential operator on the torus. Suppose
that a(9, D) is R—H factorizable. Then the parametrix R of 7a(f, D) isgiven by

©6) R=n(T: 1+ T —a©, D)™,

where a(9, D)~ is a pseudodifferential operator with symbol given by a(9, £) 1.



66 M. Yoshino

These facts are essentially proved in [9] under slightly different situation. We give
the proof for the reader’s convenience. In the following A = B meansthat A and B
are equal modulo compact operators.

Proof of (5). By comparing the principal symbol of both sides we aobtain a(@, D) =
aii+a-ta—ay-.

P B “1,-1_ o-1.-1
Ty ma/ya,"ma_ja_-m =ma;ra ja a; -ma,ya,-ma_ja__m

1,1 1.1
=ma-ja-_apiar-aja, _ma ja “m

“1o-1_ -1 -1 -1,-1
+ma ya —ayay (I —m)a,ja,“ma ja ~m=ma ja ma_ja__m,

where we used
(I —ma;a;tm = 0.
Therefore, the right-hand sideis equal to

nla_+a__a:}ra:fn1 +ma ja (I — nl)ajiajinl

and hence = ;. Hereweused ria_ya__ (I — 1) = 0. Similarly, we can show

7118._’__}_ a;frrla:i a:irrlT_;_. = m1.

This ends the proof.

Proof of (6). Notingthat 7 = 7172 we have
nTJr_,lrran = JTT_,:,]'JT]_T[zaJT = nTJr_,lrrlan — nTJr_,lnl(I — mo)am

_ -1.,-1 -1.,-1
=n —ma,ya,-ma_ja_-m(l —mp)ar

-1,.-1

-1_-1
=m —ma,ya, " (mm+m(l —m))a”ja " m(l —m2)am.

Similarly, we have

-1 -1 -1 -1
T mar =g T mimean = w1 "mar — x 1. m2(l — m)an

“1,-1_ . -1.-1
=nm —ma,ya_jma,~a_"m(l —mar

-1.,-1 -1,.-1
= —ma,ya_y(mme+m(l —m))a;—a_~ma(l —mp)am.

On the othe hand, sincea—1a = | we have

—nra lrar = —wa?!

T2 = —7 — na_l(nlnz — Dam.
By using

mny — | =mwi(ma — 1) + (w1 — Daz — (w1 — D@2 — 1)
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we have

1 1

—ma “mwanm = —mme — mmed (e — law

—na_l(rrl — Dmamr + na_l(rrl — D) (2 — ar.
Combining these relations
1

RT =7 —ra;tail(r + m(l — m))a-talm(l — marn

1

1.1 1
—ma ya_y(m +m(l —m))a,~a ~m(l —m)an

1

—ma “mi(me — lamr — na_l(nl — )moamr + na_l(nl — (o — D)am.
We note
7+l —m2) =1 — (1 — (w2 — 1) = m2(l —ma),
m+m(l —m) =1 —(@1— D@2 — 1) —m —m2).
It follows that

RT — 7 =rwata t((r— (w2 — 1)

+mo(l —m))a=taztmi(l — mo)ar + ra i — 1) (w2 — ar

+rajza’y ((r— D(mz — 1) +m(l — m2)ata lma(l — my)ar.

In order to show that the right-hand side operators are compact operators we will show
that the operators

m(ms — D@2 — 1), ma(l —r)eri(l —m2), m1(l — m2)ema(l — m1)

are compact. Here ¢ is an appropriately chosen smooth function. In order to show this
let

u=Y U el? g =) g€
o B

be the Fourier expansion of u € L2 and ¢ € C™, respectively. Because ¢ (6, D)
is order zero pseudodifferential operator the Fourier coefficients of ¢ g(&) is rapidly
decreasing in & when |8| — oo. Therefore

rpri— Dz —Hu= Y ( > w,s(u)ua)ei“".

pn=a+pel \a+p=u,aclll

Because u € | and —«a € | by the definition of | and |11, 8 satisfies that |8] =
| — a| > |ul. It followsthat, for all n > 1 and

W™ Y leswliual < D IBIMep()llugl < oo.

a+p=p,aclll

Indeed, |p(n)||BI" is bounded in w and B. It follows that the Fourier coefficients
converge uniformly inu € L2. Thus rg(rry — 1) (2 — |) is acompact operator. The
compactness of other operators are proved similarly. Hence R is aleft regularizer. We
can similarly show that R isaright regularizer. This ends the proof.

O
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9. Solvability in two dimensional case

Let f be aformal power series, and k = ord f be the order of f, namely the least
degree of monomials which constitute f. Hence it follows that 95 f (0) # O for some
|a| = k and 8f f(0) = Oforall |8] < k — 1. For apolynomial ug of ordug = 4 we
define fo = M (up). Thenwe have

THEOREM 8. Let n = 2. Suppose that (A.1) and (A.2) are verified. Then there
existr > Oand aninteger N > 4 depending only on u and the equation such that, for
every g € Wg satisfying ||g|lr < r,ord g > N the equation (MA)

(MA) M(v + Uo) = det(vx x; + (Uo)xx;) = fo(X) +9(x) ing,
has a unique solution v € Wg such that ordv > N.

REMARK 4. The conditions (A.1) and (A.2) areinvariant if we replace R with Ro
(0 < p < 1). By taking R small, if necessary, we may assume ||g||r < r. Hencethe
solution exists in some neighborhood of the origin.

Proof. We linearize M

M (up + v) = M(up) + m Pv 4+ R(v),
where R(v) isaremainder. It followsthat
(%) 7Pv+ R@w) =g on Wgr(T".

By the argument in the preceeding section there exists a parametrix S of 7 P. Indeed,
we have St P = 7 + R, where R is an operator of negative order. It follows that the
norm of R on the subspace of Wr with order greater than N can be made arbitrarily
small if N is sufficiently large. It follows that StP = 7 + R is invertible on the
subspace of Wr with order greater than N for sufficiently large N. Thereforeif N is
sufficiently large and if the order of g is greater than N we can solve (x) by astandard
iteration. Hence, if ||g|| r is sufficiently small (x) has a unique solution v.

Let 0 be an analytic extension of v to Dr. The function
M(uo+19) - fo—g

is holomorphic in DR, and vanishes on the Silov boundary of Dg. By the maximal
principle, we have
M(up+ ) = fop+g inDg.

Hence we have the solvability.

Uniqueness. Suppose that there exist two solutions wi and w2 to (MA) such that
Jwjl < e for small ¢. We blow up the equation to T". By the uniqueness of the
operator on the boundary we have w1 = w2 on T". By the maximal principle we have
w1 = w2 in Dr.

O
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We consider two examplesin Section 2. We use the same notations as in Section 2.
EXAMPLE 6. The condition (A.1) reads
2+ (k—8)nn2 #0 foral n e R2, |y = 1.

Thisisequivalenttok > 4. We can easily seethat (A.2) holdsif k > 4. The condition
isweaker than the ellipticity condition in Section 2 because we work on a Hardy space.
The same istruein the next example.

EXAMPLE 7. By the sameargument as beforewe can verify that (A.1) isequivalent
tok < —60rk > 8. We can easily verify (A.2) for ¢ = (0, 1) under these conditions.

Convergence of all formal power series solutions We give an application of The-
orem 8. Kashiwara-Kawai-Sjostrand ([5]) gave a subclass of linear Grushin operators
for which all formal power series solutions converge. Here we give aclass of nonlinear
operators for which all formal power series solutions converge.

THEOREM 9. Assume (A.1) and (A.2). Then, for every g holomorphic in some
neighborhood of the origin such that ordg > 4 all formal power series solutions of
(MA) of the formu = ug + w, ordw > 4 converge in some neighborhood of the
origin.

Proof. Letw = Zj’oz5wj be any formal solution of (MA) for ordg > 5, wherew j is
a polynomia of homogenous degree j. Let k be an integer determined later, and set
w = wgo + U, wherewg = le(:5wj ,ordU > k + 1. Determineh by M (ug + wo) =
fo + h, and write the equation in the form

M@up+wo+U)= fo+h+g—h.

Theorder of g—h can be made arbitrarily largeif k is sufficiently large. It followsfrom
Thorem 6 that, if k is sufficiently large the formal power series solution U is uniquely
determined by g — h. The condition (A.1) and (A.2) are invariant if we replace ug
with up + wg. By Remark 4 the above equation has a unique analytic solution. By the
uniqueness of aformal solution U converges.

O

10. Solvability in general independent variables

For agiven ug(x) holomorphicin some neighborhood of the originsuchthat ordu g = 4
weset fo(X) = M(Up) := det((Uo)xx;)- For ananalytic g(x) (ordg > 5) we study the
equation

(MA) M(uo + v) = fo(X) + g(x).

By the argument in Section 2 M may be of mixed type at u = ug, while its blow up
onto thetorusiselliptic. If we can construct a parametrix of the reduced operator on the
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torus of the linearized operator of (M A) the argument in the case of two independent
variables can be applied to the case of general independent variables. Therefore, in
order to show the solvability we construct a parametrix.

Let P bethelinearized operator of M(u) at u = ug

Pi=My= Y OM/3Z)(X. U3 = > aa(x)d,

le]<m a,|al<m

where m € N, and a,(x) is holomorphic in some neighborhood of the origin. We
define the symbol o (z, &) of the reduced operator on tori by

0(2,6) = Y a@Z *p.E)E) ™,

le]<m

wherezj = Rj€%, (&) = (1+1£1)Y2 and pa(§) = [T]_1 & (& =D -+ & —aj +1).

REMARK 5. By elementary calculations we can show that

o(2.6)(E)™ = (21 zn) * det <$j &k + 2 zkquXk(z)) — fo(2).

We will not use the concrete expression in the following argument.

We decompose o (z, £) asfollows

0(2,8) =0'(¢) +0"(2,8),

whereo’(§) = [1m o (Re'?, £)d6 isthe average over T". We assume
(B.1) thereexist constant ¢ € C, |c| = 1and K > 0 such that

Reco’(§) > K >0 forall V& eZl.

Then we have

THEOREM 10. Assume (B.1). Then there exists Ko such that for every K > Kg the
reduced operator of P on T" has a parametrix on Wr(T").

Proof. We lift the operator P < Dy >~ to the torus. Its symbol is given by o (z, &).
We have, for u € Wr(T™)

I(I = ecro)ullr = [l (1 — eCo)ullr = [I(1 — eCo)ull 2.

Here we used the boundedness of = : £} — ¢ . If we can prove that

(X = ecojullyr < lullz, = llullr
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we have ||(I — ecto)u|lr < ||U||lr. Thusecro = | — (I — ecmro) isinvertible on
WR(T™), and wo isinvertible. Indeed, it follows from (B.1) that there exists K1 > 0
suchthat if K > K1 we have

Reco(z,§) = Reco’(§) + Reco”(z,§) > K — Ky, VzeT", V& € Z1.
Hence, if ¢ > Oissufficiently small we have
[1—eco(-, &) llLe <1—e(K —Kyp), VEeZl.

From this estimate we can prove the desired estimate (cf. [12]).

11. Solvability of a homology equation

We want to linearize an analytic singular vector field at a singular point via coordinate
change. The transformation satisfies a so-called homology equation

n

0
Lu=RX+Uu), L= ijxj—_,
=1

where X = (X1, ..., Xn), and R(y) is an analytic function of y given by the vector
field, and 2 are eigenvalues of the linear part of the vector field. Here we assume that
the vector field is semi-simple. We say that the Poincaré condition is satisfied if the
convex hull of all xj in the complex plane does not contain the origin. Let us apply
our arguement to this equation. By a blowing up we obtain a nonlinear equation on
H2(T™). Then we have

ProPOsSITION 1. The Poincaré condition holdsif and only if the lifted operator of
£ to H2(TM) isdliptic.

Proof. The latter condition reads: Z?Zl)\.jfj # 0VE € R", |€| = 1. Onecan easily
see that Poincaré condition implies the condition. Conversely, if the ellipticity holswe
obtain the Poincaré condition. This ends the proof.

O

We remark that, by the solvability on tori we can prove the so-called Poincaré's
theorem.

Next we think of the simultaneous reduction of a system of d vector fields {X '},
whose eigenvalues of the linear parts are given by AJV (=21....n@=1,...,d).
By the same way as before we are lead to the system of equations

d
Lyu=R,(x+u), L,=Y Mxj—, p=1...d
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Definerj == (A},...,ch‘), j=1...,nand

Pi={> &A1& 2062+ +& #£0¢.

j=1
We say that a system of vector fields satisfies a simultaneous Poincaré condition if I
does not containthe origin. Set & = (£1, ..., &)). Then the condition can be writtenin
n
Ve e R1\0, 3kl <k=<d)suchthat » 1k 0.
j=1

Thisis equivalent to say that the lifted operator on tori is an elliptic system.

12. Analysisof equations containing a lar ge parameter

Let p(x, dx) be a pseudodifferential operator of order m with polynomial coefficients,
and let q(x) be arational function. For a given analytic f we consider the asymptotic
behaviour when A — oo of the solution u of the equation

() (P(X, 3%) + A2q0)u = ().
By the substitution x > €' = (€% ..., &) we obtain an equation on T".
(p€?, 7" Dy) + 2%q@”))u = ().
We consider the casen = 1. Set z = €'’ and define
oz, € 1) = pz 2 ') +2%q(2).
Assume the uniform R-H factorization condition
(URH) o(z,E, 1) #0for Vze T,V(E, 1) e R2, 62422 =1,

1
2mi
Let || - ||s be a Sobolev norm. We recall that ord f is the least degree of monomials
which constitute f. Then we have

/ d,logo(z,£,2) =0 3§, ) e R2, €2 432 =1,
|z|]=1

THEOREM 11. Lets > 0, and assume (URH). Then there exists N > 1 such that
for any f satisfying ord f > N (7) has a unique solution u. Moreover, there exists
C > 0 such that the estimate

IUlls+mgq < 2 2P(Cllulls + C}{lullo)

holdsfor all » > O,wherep+qg=1,0<p<1
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Proof. We consider the principal part and we neglect the lower order terms. Write
7o (2,2 1Dg, 1) = (DI + 2%)7 (DY 4+ 1% Yo (z, 271Dy, 1).

Then 7(DJ! + A%)~Yo(z, 271Dy, 1) is uniformly invertible for A > 0 by virtue of
(URH). The estimate for D) + 12 follows from direct computation.
O

We consider the casen = 2. We defineo (z, €, A) (z € T?) asin the above, and we
assume

(URH) o(z,&, 1) #0for Vze T,V(E, 1) e RS, €2+ 22 =1,

1 .
—/ dz logo(z,£,2) =0, for j =1,2,3(6,1) e R3, [g2 + 22 =1.
2mi |z|=1
Under these conditions the operator 77 (|Dgy|™ + A%) 1o (z, Dg, 1) has a regularizer.
Therefore, it can be transformed to | Dg|™ + A2 modulo compact operators. By solving
the transformed equation via Fourier method we obtain the same estimateasn = 1.

REMARK 6. If A movesin asector, . = pe'® (f1 < o < 62) we can treat (7)
similarly if we replace g with 2% q in (URH).
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