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1 Introduction

This paper is concerned with the solvability of a Fuchsian system of a singular nonlinear partial differential
equations in a bounded domain Ω ⊂ Rn or in Rn. These equations naturally appear when we solve a class of
Monge-Ampère equations or when we linearize a singular vector field by a coordinate change. (See §2). As we
can see from the simple example Lu := (t d

dt −1)u = t, these equations do not have a smooth solution in general.
Indeed, if u(t) = c0 + c1t+ v(t), v = O(t2) is a solution, then the relations L(c0 + c1t) = −c0 and Lv = O(t2)
imply that u is not smooth at t = 0. In fact, if we allow a singular solution, then we see that u = ct + t log t,
(c, constant) gives a solution. Here we take the branch of the logarithm such that log 1 = 0. If we restrict t to
the real line, then u gives a Hölder continuous function on the real line. Similar property holds for Lu = x1,
where L = x1

∂
∂x1

+mx2
∂

∂x2
− 1, (m > 1). The equation Lu = x1 has no smooth solution at the origin, while

u = cx1 + x1 log x1, (c, constant) is a singular solution. It gives a Hölder continuous function on the real line
for an appropriate choice of the branch of log x1. We also note that this phenomenon is closely related with a
Grobman-Hartman theorem. (cf. Remark 2.9). These examples are known as a so-called totally characteristic
type partial differential equation.(cf. [3]). As to formal solutions of nonlinear first order totally characteristic type
equations we refer [3], and as to singular solutions of nonlinear singular partial differential equations we refer
[19]. We also remark a related work [11] concerning symbolic calculus on manifolds with edges.

The object of this paper is to solve this type of equations in a class of finitely smooth functions. For this purpose
we employ a rapidly convergent iteration method in a class of non smooth functions, because the Fuchsian
equations have a loss of regularity. We stress that the usual rapidly convergent iteration scheme is not useful
in order to solve this type of equations, because one requires high regularity in the iterative scheme, while our
solution does not have such smoothness in general. We introduce a partial smoothing operator which preserves
the vanishing order of approximate solutions on every coordinate axis. This smoothing operator is useful in the
iterative scheme because the Fuchsian partial differential operators which we study in this paper lose derivatives
of the transversal direction of every coordinate axis, although they preserve the vanishing order. Concerning the
loss of regularity of nonlinear equations (of multiple characteristics) we refer [5], [7] and [18].
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4 Yoshino: Nonlinear Singular Equations

This paper is organized as follows. In §2 we state the main theorem and we give several consequences and
applications. In §3 we prepare lemmas which are necessary for the proof of the main theorem. The proof of the
main theorem is given in §4 by using a rapidly convergent iteration method.

2 Statement of results

Let x = (x1, . . . , xn) ∈ Rn be the variable in Rn (n ≥ 2). For a multiinteger α = (α1, . . . , αn) ∈ Zn
+,

Z+ = {0, 1, 2, . . .} we set |α| = α1 + · · · + αn. We define

∂j = ∂/∂xj, δj = xj∂j (j = 1, . . . , n), δα = δα1
1 · · · δαn

n .

Let m ≥ 1, m ≥ s ≥ 0, N ≥ 1 be integers, and let

pj(δ) =
∑

|α|≤m

aαjδ
α, (aαj ∈ R, j = 1, . . . , N)

be Fuchsian partial differential operators. Let

aj(x, z), z = (zα)|α|≤s j = 1, . . . , N,

be real-valuedC∞ functions of (x, z) ∈ Rn×Ω, where Ω ⊂ RkN , (k = #{α ∈ Zn
+; |α| ≤ s}) is a neighborhood

of the origin.
We study the solvability of the system of equations for u = (u1, . . . , uN )

Gj(u) := pj(δ)uj + aj(x, δαu; |α| ≤ s) = 0, j = 1, . . . , N. (2.1)

Let σ be a nonnegative number, and Γ be a domain of R
n. We define Hσ ≡ Hσ,Γ as the set of holomorphic

(vector) funtions v(ζ) = (v1(ζ), . . . , vN (ζ)) of ζ = η + iξ ∈ Γ + iRn such that

v σ,Γ := sup
η∈Γ

∫
Rn

〈ζ〉σ |v(ζ)|dξ <∞, (2.2)

where 〈ζ〉 = 1 +
∑n

j=1 |ζj |, and |v(ζ)| = (
∑N

j=1 |vj(ζ)|2)1/2. The space Hσ,Γ is a Banach space with the norm
(2.2). The fundamental properties of Hσ,Γ is given in Proposition 3.1 which follows.

Let f(x) be an integrable N - vector function on Rn
+, R+ := {t ∈ R; t ≥ 0} and let f̂(ζ) be the Mellin

transform of f

f̂(ζ) ≡M(f)(ζ) =
∫

R
n
+

f(x)xζ−edx, e = (1, . . . , 1), ζ = η + iξ, η ∈ Γ, ξ ∈ R
n, (2.3)

where xζ−e = xζ1−1
1 · · ·xζn−1

n , ζ = (ζ1, . . . , ζn). It is easy to see that f̂(ζ) is analytic if the integral (2.3)
absolutely converges. The inverse Mellin transform is given by

f(x) = M−1(f̂)(x) = (2π)−n

∫
Rn

f̂(η + iξ)x−η−iξdξ, (2.4)

where xj > 0 (j = 1, . . . , n) and η is so taken that the integral converges. We note that these formulas follow
from the corresponding ones of the Fourier transform by the change of variables eθj → xj .

We define Hσ,Γ as the inverse Mellin transform of Hσ,Γ. We note that the Mellin transform gives the one to
one correspondence between the spaces Hσ,Γ and Hσ,Γ. For u ∈ Hσ,Γ we define the norm ‖u‖σ,Γ of u by

‖u‖σ,Γ := M(u) σ,Γ.

For an integer k ≥ 1 we denote by (Hσ,Γ)k the product of k copies of Hσ,Γ. The norm in (Hσ,Γ)k is defined as
the sum of the norm of each component. For simplicity, we denote the norm in (Hσ,Γ)k by ‖ · ‖σ,Γ if there is no
fear of confusion.
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Let pj(ζ) =
∑

|α|≤m aαj(−ζ)α be the indicial polynomial associated with pj(δ), where ζ = (ζ1, . . . , ζn) is
the covariable of x in the sense of the Mellin transform. We assume

(A.1) There exists a constant c > 0 such that

|pj(η + iξ)| ≥ c(|η| + |ξ|)s, ∀η ∈ Γ, ∀ξ ∈ R
n, j = 1, . . . , N.

We set a(x, z) = (a1(x, z), . . . , aN(x, z)). Then we assume that a(x, z) ∈ (C∞(Rn × Ω))N and

(A.2) ∀α ∈ Zn
+, ∀β ∈ ZkN

+ , ∃Cαβ > 0 such that

|(∂/∂z)βδα
x a(x, z)| ≤ Cαβ , ∀(x, z) ∈ R

n × Ω.

Then our main theorem in this paper is the following

Theorem 2.1 Let σ ≥ m be an integer. Suppose that (A.1) hold for some bounded domain Γ ⊂ Rn containing
the origin. Assume (A.2). Then there exist an integer ν = ν(σ) ≥ 0 and an ε = ε(σ) > 0 depending on σ such
that, if the following conditions are satisfied

‖a(·, 0)‖ν,Γ < ε, ‖∇za(·, 0)‖ν,Γ < ε,

then Eq. (2.1) has a solution u ∈ (Hσ,Γ)N .

Next we study the local solvability. We say that u ∈ (Hν,Γ)N at the origin if there exists a ψ ∈ C∞(Rn) with
compact support and being identically equal to one in some neighborhood of the origin such that ψu ∈ (Hν,Γ)N .
For open sets Γ1 ⊂ Rn and Γ2 ⊂ Rn the relation Γ1 ⊂⊂ Γ2 means Γ1 ⊂ Γ2, where Γ1 is the closure of Γ1.
Then we have

Theorem 2.2 Let σ ≥ m be an integer. Suppose that (A.1) holds for some bounded domain Γ containing the
origin. Then there exists an integer ν ≥ 0 such that, if

a(x, 0) ∈ (Hν,Γ)N and ∇za(x, 0) ∈ (Hν,Γ)kN at the origin,

then there exists a solution u ∈ (Hσ,Γ′)N of (2.1) in some neighborhood of the origin for every Γ′ ⊂⊂ Γ.

Remark 2.3 a) Theorem 2.1 and Theorem 2.2 yield the solvability of (2.1) in some neighborhood of the
origin in a class of finitely smooth functions. Indeed, we can solve (2.1) in the sectors {εjxj ≥ 0; j = 1, . . . , n},
(εj = ±1), after the change of variables xj �→ εjxj , (j = 1, . . . , n) , because δj is invariant under the change
of variables. By the assumption 0 ∈ Γ and the definition of Hν,Γ, the solution u together with the derivatives
δαu, |α| ≤ s vanishes (to a finite order) on the coordinate planes xj = 0 (j = 1, . . . , n). (See Proposition 3.1.)
Hence, by patching the solutions in these sectors we obtain a finitely smooth solution in some neighborhood of
the origin.

b) (Bifurcation from a resonance) The uniqueness of solutions in Theorem 2.1 and Corollary 2.2 does not
always hold if there is a resonance. Indeed, we consider the equation

p(δ)u+ λa(x, u) = 0, a(x, u) = O(|u|2),

where u is a scalar unknown function, λ is a real parameter, and where p(δ) is an Fuchisian partial differential
operator similar to pj(δ) in (2.1). We note that u ≡ 0 is a trivial solution of the equation. We assume (A.1) for
some domain Γ � 0. Then we shall show that the above equation has a non trivial family of solutions u = uλ,
uλ = λu0 + vλ for sufficiently small λ, where u0 satisfies p(δ)u0 = 0.

First we note that there exists u0 such that p(δ)u0 = 0 if there is a resonance. (See also Example 2.8 which
follows.) If we set v = vλ, then v satisfies

p(δ)v + λa(x, λu0 + v) = 0.

The conditions in Theorem 2.1 read:

‖λa(·, λu0)‖ν,Γ < ε and ‖λ∇ua(·, λu0)‖ν,Γ < ε.
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6 Yoshino: Nonlinear Singular Equations

These conditions are satisfied for sufficiently small λ if a(x, λu0) ∈ Hν,Γ and ∇ua(x, λu0) ∈ Hν,Γ for all
λ close to 0. For example, if the local solvability is concerned, these conditions are verified if a(x, λu0) and
∇ua(x, λu0) vanish to some order for all sufficiently small λ. (We also refer Lemma 4.2 which follows.)

It follows from Theorem 2.1 or Corollary 2.2 that there exists a solution v for sufficiently small λ. Moreover,
by the constructions of an approximate sequence wk in (4.12), we have v = limk wk and

w1 = S0ρ0, L0ρ0 = g0 = −λa(x, λu0), . . .

It follows from the assumption on a that the vanishing order of g0 at the origin is greater than u0. Therefore,
we see that the vanishing order of w1 at the origin is greater than that of u0, because L−1

0 and S0 preserve the
vanishing order. Inductively, we can easily see that the vanishing order at the origin of the solution v = limwk

is greater than that of u0. It follows that u = λu0 + v �= 0. Therefore, we have a family of solutions of our
equation.

Remark 2.4 The smallness conditions in Theorem 2.1 for the nonlinear part a(x, 0) and ∇za(x, 0) of the
equation (2.1) are fulfilled if the following conditions are satisfied

a(x, 0) = 0, ∇zaj(x, 0) = 0, j = 1, . . . , n. (2.5)

On the other hand, the condition (A.2) in Theorem 2.1 is fulfilled if a(x, z) is independent of x or a(x, z) has a
compact support with respect to x.

Example 2.5 We give the example which satisfies (A.1). Let

p2(ζ) := ζ2
1 −

n∑
j=2

cjζ
2
j , cj > 0.

Let p1(ζ) be a linear function of ζ with real coefficients. We set p(ζ) = p2(ζ) + p1(ζ). We assume that

p1(ξ) + η · ∇p2(ξ) �= 0 for ∀η ∈ Γ, and ∀ ξ ∈ R
n such that p2(ξ) ≥ 0, |ξ| = 1.

We want to show that there exists real number K such that p(ζ) +K satisfies (A.1) with s = 1. We have

p(η + iξ) +K = K − p2(ξ) + p(η) + i(p1(ξ) + η · ∇p2(ξ)).

Because η moves in a bounded set it follows that if K > 0 is sufficiently large, the zero set of the polynomial
of ξ, � p(η + iξ) + K is contained in the set p2(ξ) ≥ 0, |ξ| ≥ 1, where �p is the real part of p. On the other
hand, by assumption and the homogeneity, the imaginary part � p(η + iξ) does not vanish on the set p2(ξ) ≥ 0,
|ξ| ≥ 1. It follows that p(η + iξ) +K �= 0 for all η ∈ Γ and ξ.

In order to show (A.1) with s = 1 it is sufficient to consider ξ such that |ξ| ≥ N > 0 for large N . If ξ is in a
conical neighborhood of ξ0 such that p2(ξ0) �= 0, we have (A.1) with s = 2. If otherwise, the assumption implies
that p1(ξ) + η · ∇p2(ξ) �= 0. Hence we have

|p(η + iξ)| ≥ |� p(η + iξ)| ≥ c|ξ| ≥ c′(|ξ| + |η|)

for some c > 0 and c′ > 0. This proves (A.1) with s = 1.

Example 2.6 We write x1 = x, x2 = y, and we consider the Monge-Ampère operator

M(u) := uxxuyy − u2
xy + kxyuxy + cu, 4 < k < 12, c ∈ C.

Let u0 = x2y2 and set f0 = M(u0) = (4k − 12 + c)x2y2. We want to solve the equation

M(u0 + v) = f0(x, y) + g(x, y), in R
2,

where g(x, y) is a given function. If we define

Q = 2x2∂2
x + 2y2∂2

y + (k − 8)xy∂x∂y + c, M̃(u) = M(u) − kxyuxy − cu,

c© 2003 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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then the equation can be written in the form

Qv + M̃(v) = g.

In order to write the equation in the form (2.1) we introduce a new unknown functionw by v(x, y) = x2y2w(x, y).
By simple computations we have

x−2y−2M̃(x2y2w)
= (x2wxx + 4xwx + 2w)(y2wyy + 4ywy + 2w) − (xywxy + 2xwx + 2ywy + 4w)2.

x−2y−2Q(x2y2w)
= 2(δ2x + 4δx)w + 2(δ2y + 4δy)w + (k − 8)(δxδy + 2δx + 2δy)w + (4k − 24 + c)w,

where δx = x∂/∂x and δy = y∂/∂y. This proves that our equation can be written in the form (2.1). We note
that the condition (A.2) is fulfilled. (cf. Remark 2.4).

The indicial polynomial is given by

p(ζ) := 2(ζ2
1 − 4ζ1) + 2(ζ2

2 − 4ζ2) + (k − 8)(ζ1ζ2 − 2ζ1 − 2ζ2) + c+ 4k − 24.

We will show (A.1) with s = 2 for some bounded domain Γ ⊂ R
n \ {p(η) = 0} containing the origin if c = iK ,

K > 0 is sufficiently large . We note that p(ξ) is elliptic by the condition 4 < k < 12. It follows that there exist
ξ0 > 0 and α > 0 independent of K and η such that � p(η + iξ) ≥ α|ξ|2 if |ξ| > ξ0 and η ∈ Γ. If |ξ| ≤ ξ0, then
� p(η + iξ) does not vanish if K is sufficiently large. Therefore we have (A.1) with s = 2.

Next we apply our argument to the normal form theory of a singular hyperbolic vector fieldχ =
∑n

j=1Xj(x)∂j ,
∂j = ∂/∂xj on Rn. We say that χ is singular if Xj(0) = 0 (j = 1, . . . , n). We set X = (X1, . . . , Xn). For the
sake of simplicity, we assume

X(x) = xΛ +R(x), R(x) = (R1(x), . . . , Rn(x)), (2.6)

for a real-valued C∞ function Rj(x) such that Rj(0) = 0, ∇Rj(0) = 0, and a diagonal matrix Λ =
diag (λ1, · · · , λn), λj ∈ R. We want to find a change of variables y �→ x = y + v(y) which linearizes χ. It
follows that v satisfies the so-called homology equation

X(y + v(y))(1 + ∇v)−1 = yΛ,

or equivalently,

Lv = R(y + v(y)), Lv :=
n∑

j=1

λjδjv − vΛ. (2.7)

We define p(ζ) = −∑n
j=1 ζjλjI − Λ, where I is an identity matrix. Then we have

Theorem 2.7 Suppose that (A.1) is satisfied for s = 0 and some bounded domain Γ containing the origin.
Assume (2.6). Let σ ≥ 1 be an integer. Then there exists ν ≥ 0 such that, if the following conditions are satisfied

R ∈ (Hν,Γ)n, ∇Rj ∈ (Hν,Γ)n2
at the origin (j = 1, . . . , n),

then Eq. (2.7) has a solution v ∈ (Hσ,Γ′)n for every Γ′ ⊂⊂ Γ.

Example 2.8 We give examples which satisfy (A.1). Suppose that λ1 · · ·λn �= 0. By definition the k-th
component of � p(ζ) (ζ = η + iξ) is given by −∑n

j=1 ηjλj − λk. Hence the set of η such that � p(ζ) = 0
consists of n hyperplanes,

∑
j ηjλj +λk = 0 not passing through the origin. Therefore we have (A.1) with s = 0

for some open set Γ containing the origin. The followings are typical cases which satisfy (A.1).
(i) Poincaré case; i.e., λj > 0 (j = 1, . . . , n).
(ii) Nonresonant Siegel case; namely, some λj are positive and others are negative, and p(ζ) = 0 (ζ ∈ Zn

+, |ζ| ≥
2) has no solution.
(iii) Infinite resonances case; that is, p(ζ) = 0 (ζ ∈ Zn

+) has an infinitely many solutions.
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8 Yoshino: Nonlinear Singular Equations

The third case contains a volume preserving vector fields, namely
∑n

j=1 λj = 0. In the case (i) the set

{η ∈ −R
n
+;� p(η + iξ) = 0 for some ξ ∈ R

n}

is a compact set not containing the origin. Hence we can take Γ in (A.1) as a bounded domain in Rn
+ \ {� p(ζ) =

0}. In the case (ii) the intersection of the hyperplanes
∑

j ηjλj + λk = 0 and −Rn
+ is noncompact. Hence

the set Γ in (A.1) may be a smaller set. In the case (iii) there is an additional restriction to Γ due to an infinite
resonances apart from the ones caused by a Siegel condition. We note that the larger the set Γ is, the more regular
the solution is.

Remark 2.9 By Remark 2.3 and Theorem 2.7 we can construct a finitely smooth coordinate change which
linearizes χ even in the case of resonances. It is natural to ask wether there exists a C∞ coordinate change which
linearizes χ. The answer to this question is not affirmative. Indeed, if the vector field has a resonance, L has a
(infinite) kernel. It follows that if (2.7) has a C∞ solution v, then the Taylor expansion of v at the origin gives
a formal power series solution of (2.7). Hence the Taylor expansion of R satisfies a compatibility condition.
Because we do not assume any compatibility condition a priori, the solution is not smooth in general. We
stress that the regularity of the solution is related with the property of a resonance as we note in the preceeding
example. If we assume the weaker condition λ1 · · ·λn �= 0, the solution is continuous. We remark that this
fact was essentially noted as a Grobman-Hartman theorem for a vector field, which asserts the existence of a
continuous solution of a homology equation (cf. [1], p.127 and p191).

Theorem 2.7 can be extended to a commuting system of hyperbolic singular vector fields on Rn,

χ = {χµ;µ = 1, . . . , d}, [χµ, χν ] = 0 for all ν and µ.

We write χµ =
∑n

j=1X
µ
j (x)∂j and set Xµ = (Xµ

1 , . . . , X
µ
n ). For the sake of simplicity we assume that

Xµ(x) = xΛµ +Rµ(x) for some real-valued C∞ vector function Rµ such that

Rµ(0) = 0, ∇Rµ(0) = 0,

and diagonal matrices

Λµ = diag (λµ
1 , · · · , λµ

n), λµ
j ∈ R, µ = 1, . . . , d.

We are interested in the simultaneous linearization of χ by the change of variables y �→ x = y + v(y). It
follows that v satisfies an overdetermined system of equations

Lµv = Rµ(x+ v),

where Lµ is similarly given by (2.7). Let C be a positive cone generated by the vectors (λ1
j , . . . , λ

d
j ) ∈ Rd,

(j = 1, . . . , n), namely

C := {
n∑

j=1

tj(λ1
j , . . . , λ

d
j ) ∈ R

d; tj ≥ 0, (j = 1, . . . , n), t21 + · · · + t2n �= 0}.

We say that χ satisfies a simultaneous Poincaré condition if the cone C does not contain the origin. In case
d = 1, this condition is equivalent to that the quantity t1λ1

1 + · · · + tnλ
1
n does not vanish for tj ≥ 0 such that

t21 + · · ·+ t2n �= 0. The last condition is equivalent to say that λ1
1 > 0, . . . , λ1

n > 0. This is a well-known Poincaré
condition for a single vector field. We have

Theorem 2.10 Let σ ≥ 1. Suppose that the simultaneous Poincaré condition is satisfied. Then there exists
ν ≥ 0 such that, if

Rµ ∈ (Hν,Γ)n and ∇Rµ ∈ (Hν,Γ)n2
at the origin for µ = 1, . . . , d,

then χ is simultaneously linearized in some neighborhood of the origin by the change of the variables y �→ x =
y + v(y), with v ∈ (Hσ,Γ′)n, ∀Γ′ ⊂⊂ Γ.
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3 Some lemmas

In this section we will prepare lemmas which are necessary in the calculus of a class of pseudo-differential
operators of totally characteristic type in a Mellin’s sense. We cite [11] concerning symbolic calculus of operators
on manifolds with edges.

Let Γ be an open set in Rn. First we study fundamental properties of Hs,Γ (s ∈ R+) defined in §1.

Proposition 3.1 (1) Let s ≥ 0 be an integer and let û ∈ Hs,Γ. Then the inverse Mellin transform u(x) =
M−1(û)(x) of û is a bounded continuous function on Rn

+ such that for every α, |α| ≤ s and η ∈ Γ, the function
xηδαu(x) is continuous and satisfies

xηδαu(x) → 0 as xj → 0, j = 1, . . . , n, (3.1)

xηδαu(x) → 0 as xj → +∞, j = 1, . . . , n. (3.2)

Moreover, for every Γ′ ⊂⊂ Γ there exists c > 0 independent of û such that

sup
x∈R

n
+,|α|≤s,η∈Γ′

|xηδαu(x)| ≤ c û s,Γ, ∀û ∈ Hs,Γ. (3.3)

(2) Let s ≥ 0 be an integer and let u(x) be any bounded continuous function on Rn
+ satisfying (3.1) and (3.2)

for every η ∈ Γ. Then the Mellin transform û(ζ) = M(u)(ζ) of u exists and û(ζ) is holomorphic in Γ + iRn.
Moreover, for every Γ′ ⊂⊂ Γ′′ ⊂⊂ Γ there exist C > 0 such that

〈ζ〉s|û(ζ)| ≤ C sup
x∈R

n
+,|α|≤s,η∈Γ′′

|xηδαu(x)|, ∀ζ,� ζ ∈ Γ′ (3.4)

where 〈ζ〉 = 1 +
∑n

j=1 |ζj |.
(3) Hs,Γ is a Banach space with the norm (2.2).

Proof. We will prove (1). The inverse Mellin transform of û exists because û ∈ Hs,Γ. Moreover we have

xηδαu(x) = (2πi)−n

∫
Rn

(−ζ)αû(ζ)xη−ζdξ, η ∈ Γ,� ζ ∈ Γ. (3.5)

We take η and �ζ in (3.5) such that ηj − � ζj > 0 if xj < 1, ηj − � ζj < 0 if xj ≥ 1. We easily see that (3.1)
and (3.2) hold. The estimate (3.3) follows from (3.5) because |xη−ζ | is bounded by some constant.

We prove (2). The conditions (3.1) and (3.2) with α = 0 imply that the Mellin transform M(u)(ζ) exists and
it is holomorphic in Γ + iRn. In order to show (3.4), we first note that the right-hand side of (3.4) is finite by
(3.1) and (3.2). It follows from (3.1) and (3.2) that, for |α| ≤ s

ζαû(ζ) =
∫
u(x)ζαxζ−edx =

∫
u(x)(∂x · x)αxζ−edx =

∫
R

n
+

δαu(x)xζ−edx. (3.6)

Let τj (j = 1, . . . , n) be such that τj = 1 or τj = −1 and define τ = (τ1, . . . , τn). We define Sτ by

Sτ = {x = (x1, . . . , xn) ∈ R
n
+; 0 ≤ x

τj

j ≤ 1}.

By (3.6), there exists C′ > 0 independent of ζ such that, if � ζ ∈ Γ′

〈ζ〉s|û(ζ)| ≤ C′ sup
|α|≤s

∣∣∣∣∣
∫

R
n
+

xζ−eδαu(x)dx

∣∣∣∣∣ ≤ C′ sup
|α|≤s

∑
τ

∣∣∣∣
∫

Sτ

xζ−eδαu(x)dx
∣∣∣∣ . (3.7)

By assumption, for each Sτ we take an η = η(τ) = (η1, . . . , ηn) and a small ε1 > 0 such that � ζj−ηj > ε1 > 0
if τj = 1, and � ζj − ηj ≤ −ε1 if τj = −1. For a given Γ′′, Γ′ ⊂⊂ Γ′′ ⊂⊂ Γ we can choose ε1 so small that
η ∈ Γ′′.

c© 2003 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



10 Yoshino: Nonlinear Singular Equations

Therefore, there exists C′′ > 0 independent of ζ such that∣∣∣∣
∫

Sτ

xζ−eδαu(x)dx
∣∣∣∣ =

∣∣∣∣
∫

Sτ

xζ−e−ηxηδαu(x)dx
∣∣∣∣

≤ sup
x∈R

n
+

|xηδαu(x)|
∣∣∣∣
∫

Sτ

x� ζ−e−ηdx

∣∣∣∣ ≤ C′′ sup
x∈R

n
+

|xηδαu(x)| . (3.8)

Hence there exists C > 0 such that

〈ζ〉s|û(ζ)| ≤ C sup
x∈R

n
+,η∈Γ′′,|α|≤s

|xηδαu(x)|.

This proves (3.4).
We will prove (3). In order to show that Hs,Γ is complete, suppose that ŵn − ŵm s,Γ → 0 (m,n → ∞).

It follows from (3.3) and (3.4) that {ŵn(ζ)} converges compactly uniformly in � ζ ∈ Γ to a function w(ζ)
holomorphic in ζ ∈ Γ + iRn. Let η ∈ Γ be arbitrarily taken and fixed. By assumption, for every ε > 0 there
exists N ≥ 1 such that∫

〈ζ〉s|ŵn(ζ) − ŵm(ζ)|dξ < ε, ∀n,m ≥ N.

It follows that, for any compact set K ⊂ Rn we have∫
K

〈ζ〉s|ŵn(ζ) − ŵm(ζ)|dξ < ε, ∀n,m ≥ N.

We let m → ∞. Then we have
∫

K
〈ζ〉s|ŵn(ζ) − ŵ(ζ)|dξ ≤ ε for all n ≥ N . Letting K ↑ Rn we obtain∫

Rn〈ζ〉s|ŵn(ζ) − ŵ(ζ)|dξ ≤ ε for all n ≥ N . By taking the supremum with respect to η ∈ Γ, we see that
ŵn − ŵ ∈ Hs,Γ and {ŵn} converges to ŵ in Hs,Γ. �

Now we define a smoothing operator in Hs,Γ. Let φ ∈ C∞(Rn), 0 ≤ φ ≤ 1 be a smooth function with a
compact support such that φ ≡ 1 in some neighborhood of the origin x = 0 and

∫
Rn φ(σ)dσ = 1. Let N ≥ 1,

� ≥ 1 be integers and let τ be an odd integer, 2τ ≥ �. We set ψN (ζ) := exp(N−2τ
∑n

j=1 ζ
2τ
j ) and define

χ�
N (ζ) :=

∫
Rn

φ(σ)

{
ψN (ζ)

(
e−σζ/N −

�∑
ν=1

(
−σζ
N

)ν 1
ν!

)
+ (1 − ψN (ζ))e−σζ/N

}
dσ. (3.9)

The function χ�
N (ζ) is an entire function of ζ in C

n such that χ�
N(ζ) = χ�

N (ζ̄). We define a smoothing operator
SN by

SNv := M−1(χ�
N+1(ζ)v̂(ζ)), v ∈ Hs,Γ (3.10)

where v̂(ζ) is the Mellin transform of v and M−1 denotes the inverse Mellin transform. Then we have

Proposition 3.2 Let Γ be a bounded domain. Then SN has the following properties.
(1) For every 0 ≤ s ≤ r such that r − s is an integer, there exists Cr > 0 such that

‖SNv‖r,Γ ≤ Cr(N + 1)r−s‖v‖s,Γ, v ∈ Hs,Γ.

(2) For every 0 ≤ s ≤ r such that r − s ≤ � is an integer, there exists Cr > 0 such that

‖(I − SN )v‖s,Γ ≤ Cr(N + 1)s−r‖v‖r,Γ.

(3) SN maps a real-valued function to a real-valued function.
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Proof. Proof of (1). In view of the definition of the norm ‖SNv‖r,Γ we consider

∫
〈ζ〉r |χ�

N+1(ζ)v̂(ζ)|dξ, ζ = η + iξ, η ∈ Γ. (3.11)

Writing 〈ζ〉r = 〈ζ〉r−s〈ζ〉s and recalling that r−s is a nonnegative integer we have that 〈ζ〉r−s = (1+
∑ |ζj |)r−s

is a polynomial of |ζj |. Hence we will estimate |ζαχ�
N+1(ζ)| (|α| ≤ r − s). In view of (3.9) we consider

∫
φ(σ)(1 − ψN+1(ζ))ζαe−σζ/(N+1)dσ

=
∫
φ(σ)(1 − ψN+1(ζ))(−(N + 1)∂σ)αe−σζ/(N+1)dσ

= (N + 1)|α|
∫
∂α

σφ(σ)(1 − ψN+1(ζ))e−σζ/(N+1)dσ. (3.12)

In order to estimate the right-hand side, we note

ψN+1(ζ) = exp

⎛
⎝ 1

(N + 1)2τ

n∑
j=1

(η2
j + 2iηjξj − ξ2j )τ

⎞
⎠ .

Because τ is an odd integer, ψN+1(η+ iξ) tends to zero forN = 1, 2, . . . when ξ tends to infinity for a bounded
η. Similarly, e−σζ/(N+1) is bounded for N = 1, 2, . . . when ξ → ∞ and η is bounded. Hence the term (3.12)
can be estimated by Cr(N + 1)|α| ≤ Cr(N + 1)r−s for some constant Cr > 0.

We consider the term

I :=
∫
φ(σ)ψN+1(ζ)

(
e−σζ/(N+1) −

�∑
ν=1

(
− σζ

N + 1

)ν 1
ν!

)
ζαdσ.

By setting t = (t1, . . . , tn) = ζ/(N + 1) we have

I = (N + 1)|α|
∫
φ(σ)ψN+1(t(N + 1))(e−tσ −

�∑
ν=1

(−σt)ν(ν!)−1)tαdσ.

Because ψN+1(t(N + 1)) is exponentially decreasing to zero when � t → ∞ for N = 1, 2, . . . , the integrand
is uniformly bounded for ξ ∈ Rn and N = 0, 1, 2, . . . . Therefore we see that |ζαχ�

N+1(ζ)| (|α| ≤ r − s) is
bounded by C′

r(N + 1)r−s for some constant C′
r > 0 which is uniform in η ∈ Γ, N = 0, 1, 2, . . . and ξ ∈ R

n,
|ξ| → ∞. It follows that |〈ζ〉r−sχ�

N+1(ζ)| is bounded by Cr(N + 1)r−s for some constant Cr > 0 which is
uniform in η ∈ Γ, ξ ∈ Rn and N = 0, 1, 2, . . . By (3.11) we obtain (1).

Proof of (2). By (3.10) we have

‖(I − SN )v‖s,Γ = (I − χ�
N+1)v̂ s,Γ.

c© 2003 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



12 Yoshino: Nonlinear Singular Equations

For the sake of simplicity we set s− r = a ≤ 0. Recalling that
∫
φ(σ)dσ = 1 and r − s ≤ � we have

χ�
N+1(ζ) − 1 =

∫
φ(σ)ψN+1(ζ)

(
e−σζ/(N+1) −

�∑
ν=1

(
− σζ

N + 1

)ν 1
ν!

)
dσ (3.13)

+
∫
φ(σ)(1 − ψN+1(ζ))e−σζ/(N+1)dσ −

∫
φ(σ)dσ

=
∫
φ(σ)ψN+1(ζ)

(
e−σζ/(N+1) −

�∑
ν=0

(
− σζ

N + 1

)ν 1
ν!

)
dσ

+
∫
φ(σ)(1 − ψN+1(ζ))e−σζ/(N+1)dσ −

∫
φ(σ)dσ +

∫
φ(σ)ψN+1(ζ)dσ

=
∫
φ(σ)ψN+1(ζ)

(
e−σζ/(N+1) −

�∑
ν=0

(
− σζ

N + 1

)ν 1
ν!

)
dσ

+
∫
φ(σ)(1 − ψN+1(ζ))(e−σζ/(N+1) − 1)dσ ≡ I1 + I2.

By the definition of the norm we consider

(χ�
N+1(ζ) − 1)〈ζ〉a = 〈ζ〉aI1 + 〈ζ〉aI2.

As to the term 〈ζ〉aI1, we set ζ = t(N + 1). Then the integrand is equal to

φ(σ)〈Nt + t〉aψN+1(tN + t)(e−tσ −
�∑

ν=0

(−σt)ν(ν!)−1).

We note that

〈Nt+ t〉 = 1 + (N + 1)
∑

j

|tj |.

If
∑

j |tj | ≥ ε > 0 for some ε, we have 〈Nt+ t〉 ≥ (N + 1)ε. Hence it follows that 〈Nt+ t〉a ≤ (N + 1)aεa.
Because ψN+1(tN + t) is an exponentially decreasing function of (� tj)2τ when � t → ∞ the integrand is
bounded by C(N + 1)a for some C > 0 independent of t.

Next we consider the case
∑

j |tj | < ε. Because 〈Nt+ t〉 ≥ (N + 1)
∑

j |tj | we have

〈Nt+ t〉a ≤ (N + 1)a(
∑

j

|tj |)a.

Hence we have

(|t1| + · · · + |tn|)a(e−tσ −
�∑

ν=0

(−σt)ν(ν!)−1) = (|t1| + · · · + |tn|)a
∞∑

ν=�+1

(−σt)ν(ν!)−1. (3.14)

Noting that

|σt| ≤ (|t1| + · · · + |tn|)(|σ1| + · · · + |σn|)

and −a ≤ �, the right-hand side of (3.14) is bounded by some constant independent of t. Hence 〈ζ〉aI1 is
estimated by C(N + 1)a for some C > 0 independent of ζ.

We will estimate 〈ζ〉aI2. By setting ζ = t(N + 1) we consider the term

J ≡ (1 − exp(
∑

t2τ
j ))(e−tσ − 1).
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If
∑ |tj | > ε > 0, we have 〈Nt+ t〉a ≤ εa(N + 1)a. Hence we see that 〈Nt+ t〉aJ is estimated by C(N + 1)a

for some C > 0 independent of t. In case
∑ |tj | ≤ ε we have

〈Nt+ t〉a ≤ (N + 1)a(
∑

|tj |)a.

Because J can be divided by
∑
t2τ
j and −a ≤ � ≤ 2τ , it follows that (

∑ |tj |)aJ is bounded by some constant
independent of t. Hence 〈ζ〉aI2 can be estimated byC(N+1)a. Hence (χ�

N+1−1)〈ζ〉a is bounded byC(N+1)a.
Because

(1 − χ�
N+1)v̂〈ζ〉s = −(χ�

N+1 − 1)〈ζ〉av̂〈ζ〉r

we obtain (2).
Proof of (3). We note that f is real-valued if and only if M(f)(ζ) = M(f)(ζ̄). Hence it is sufficient to show

that χ�
N+1(ζ)v̂(ζ) = χ�

N+1(ζ̄)v̂(ζ̄). The last relation follows from the definition of the smoothing operator and
the assumption on v. �

Lemma 3.3 Let s be a positive integer and let Γ1, Γ2 and Γ be open connected sets such that Γ ⊂ Γ1 + Γ2.
Let u ∈ Hs,Γ1 and v ∈ Hs,Γ2 . Then, it follows that uv ∈ Hs,Γ and the following estimate holds

‖uv‖s,Γ ≤ ‖u‖s,Γ1‖v‖s,Γ2 .

Proof. Suppose that f(x)
∏n

j=1 x
ηj−1
j (η ∈ Rn) is an integrable function on Rn

+. Let M(f)(η + iξ) be the
Mellin transform of f

M(f)(η + iξ) =
∫

R
n
+

f(x)
n∏

j=1

x
ηj−1+iξj

j dx =
∫

R
n
+

f(x)
n∏

j=1

x
ηj−1
j

n∏
j=1

x
iξj

j dx.

We set tj = log xj , t = (t1, . . . , tn). Noting that dt =
∏n

j=1 x
−1
j dx we have the expression

M(f)(η + iξ) =
∫

Rn

eη·tf(et1 , . . . , etn)eiξtdt = F−1(eη·f(e·))(ξ),

where F−1 denotes the inverse Fourier transform.
Let ûj = F−1(uj), (j = 1, 2). We assume ûj ∈ L1(Rn) ∩ L2(Rn). Let

û1 ∗ û2 :=
∫
û1(ξ)û2(η − ξ)dξ

be the convolution of û1 and û2. We can easily show that û1 ∗ û2 = F−1(u1u2).
Let γ′ ∈ Γ. By assumption Γ ⊂ Γ1 + Γ2, we have γ′ = γ1 + γ2, γ1 ∈ Γ1, γ2 ∈ Γ2. If we set γ2 = γ, we

obtain γ1 = γ′ − γ. Hence we have the expression

γ′ = γ + γ′ − γ, γ ∈ Γ2, γ′ − γ ∈ Γ1.

By the conditions u ∈ Hs,Γ1 and v ∈ Hs,Γ2 and Proposition 3.1 we have

eγtv(et) ∈ L1 ∩ L2 and e(γ
′−γ)tu(et) ∈ L1 ∩ L2.

It follows that

F−1(eγ·v(e·)e(γ
′−γ)·u(e·)) = F−1(eγ′·v(e·)u(e·)) = M(vu)(γ′ + iξ)

= F−1(eγ·v(e·)) ∗ F−1(e(γ
′−γ)·u(e·)) = (M(v)(γ + i·) ∗M(u)(γ′ − γ + i·))(ξ).

Hence we have

M(vu)(γ′ + iξ) = (M(v)(γ + i·) ∗M(u)(γ′ − γ + i·))(ξ).
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14 Yoshino: Nonlinear Singular Equations

We note

〈ζ〉 = 1 +
∑

|ζj | ≤ 1 +
∑

(|ηj | + |ζj − ηj |) ≤ 〈η〉〈ζ − η〉.
Let

� ζ = γ′ ∈ Γ, � (ζ − η) = γ′ − γ ∈ Γ1, � η = γ ∈ Γ2, � ζ = ξ, � η = η′.

Then, by the definition of the convolution we have

‖uv‖s,Γ = M(uv) s,Γ = sup
� ζ=γ′∈Γ

∫
〈ζ〉s|M(uv)(γ′ + iξ)|dξ

≤ sup
∫
〈η〉s〈ζ − η〉s

∫
|M(u)(γ′ − γ + i(ξ − η′))| |M(v)(γ + iη′)|dη′dξ.

By Fubini’s theorem the right-hand side is estimated in the following way

≤ sup
∫
〈ζ − η〉s|M(u)(ζ − η)|dξ

∫
〈η〉s|M(v)(η)|dη′

≤ M(u) s,Γ1
M(v) s,Γ2

= ‖u‖s,Γ1‖v‖s,Γ2 .�

Let φ0(t) be a smooth function on R such that φ0 ≡ 1 for |t| ≤ 1/2 and suppφ0 ⊂ {|t| ≤ 1}. We define
φ(x) := φ0(x1) · · ·φ0(xn). Then we have

Lemma 3.4 Assume that 0 ∈ Γ. Let σ ≥ 0 and let g ∈ (Hσ+n+1,Γ)N . We define g̃(x) := g(x)φ(x/λ), where
λ > 0. Then for every Γ′ ⊂⊂ Γ we have ‖g̃‖σ,Γ′ → 0 when λ→ 0 .

Proof. We define h(x) by h(x) = g(x)xη , where η ∈ Γ. Then, by Proposition 3.1 and the Leibnitz rule
δβh(x) is continuous for every β, |β| ≤ σ + n + 1. For every ζ = (ζ1, . . . , ζn) such that � ζ ∈ Γ′ we take
η = (η1, . . . , ηn) ∈ Γ such that ηj < � ζj for j = 1, . . . , n. Then we have

M(g̃)(ζ) =
∫

R
n
+

g̃(x)xζ−edx =
∫

R
n
+

h(x)φ(x/λ)xζ−η−edx, e = (1, . . . , 1), � ζ ∈ Γ′. (3.15)

By the assumption 0 ∈ Γ and Proposition 3.1 we have δβg(x) = δβ(h(x)x−η) vanishes as xj → 0 (j =
1, . . . , n). Because the support of g̃ is contained in {|xj | ≤ λ, j = 1, . . . , n} there exists c > 0 such that, for
|α| = σ + n+ 1

|ζαM(g̃)(ζ)| =
∣∣∣∣
∫
h(x)φ(x/λ)x−ηζαxζ−edx

∣∣∣∣ (3.16)

=
∣∣∣∣
∫
h(x)φ(x/λ)x−η(∂ · x)αxζ−edx

∣∣∣∣ =
∣∣∣∣
∫
δα(h(x)φ(x/λ)x−η)xζ−edx

∣∣∣∣
≤ c max

|β|≤σ+n+1,|xj|≤λ
|δβh(x)| max

|xj |≤λ,|β|≤σ+n+1
|δβφ(x/λ)||η|σ+n+1λReζ1+···+Reζn−η1−···−ηn ,

where we used∫
|xζ−η−e|dx ≤ CλReζ1+···+Reζn−η1−···−ηn

for some C > 0 independent of λ. Because δβh(x) is continuous on Rn
+, we can easily see that the quantity

max |δβh(x)| is bounded in λ when λ ≤ 1. Similarly, the term max |δβφ(x/λ)| is uniformly bounded in λ when
λ ≤ 1. Indeed, we have

δjφj(
xj

λ
) = xj∂xjφj(

xj

λ
) =

xj

λ
φ′j(

xj

λ
).

This is uniformly bounded in λ by the condition of the support of φj . Therefore it follows from (3.16) that there
exists ε(λ), ε(λ) → 0 (λ→ 0) such that

〈ζ〉σ+n+1|M(g̃)(ζ)| ≤ ε(λ).

It follows that ‖g̃‖σ → 0 when λ→ 0. �
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Proposition 3.5 Suppose that an open set Γ in Rn contains a sequence ηi = (ηi
1, . . . , η

i
n) (i = 1, 2, . . . ) such

that ηi
j → −∞ as k → ∞ for j = 1, . . . , n. Moreover, suppose that u ∈ ⋂∞

ν=0(Hν,Γ)N . Then, by extending u
as 0 for x /∈ Rn

+ we have

(x1 · · ·xn)−ku ∈ C∞(Rn) for all k = 0, 1, 2, . . .

Proof. Let α ∈ Zn
+ and an integer k ≥ 0 be arbitrarily given. We take η such that η ∈ Γ and −η−(k, . . . , k) >

α. By the assumption and Proposition 3.1 xηδαu(x) is continuous on Rn
+. Because xα∂α

x u is a linear combination
of δβu (|β| ≤ |α|) xηxα∂α

x u is continuous on Rn
+. Because α+ η < −(k, . . . , k) we see that (x1 · · ·xn)−k∂α

x u
is continuous on R

n
+. �

Lemma 3.6 (Interpolation estimate) Let σ ≥ τ ≥ 0, σ �= 0, and r ≥ 0. Let Γ be an open set in Rn containing
the origin. Suppose u ∈ (Hσ+r,Γ)N . Then we have

‖u‖τ+r,Γ ≤ ‖u‖τ/σ
σ+r,Γ‖u‖1−τ/σ

r,Γ .

Proof. Because the inequality is trivial in case σ = τ or τ = 0 we assume that σ > τ > 0. We set p = σ/τ
and q = (1 − p−1)−1. Then we have p−1 + q−1 = 1 and, by Hölder’s inequality we obtain, for ξ = �ζ∫

〈ζ〉τ+r|û(ζ)|dξ =
∫
〈ζ〉τ+r|û(ζ)|1/p+1/qdξ (3.17)

≤
(∫

〈ζ〉σ+r |û(ζ)|dξ
)1/p(∫

〈ζ〉r|û(ζ)|dξ
)1/q

≤ û
τ/σ

σ+r,Γ û
1−τ/σ

r,Γ = ‖u‖τ/σ
σ+r,Γ‖u‖1−τ/σ

r,Γ .

4 Proof of Theorem 2.1

For the sake of simplicity we denote by P (δ) the diagonal matrix with diagonal elements p1(δ),. . . , pN(δ) in this
order. Then we can write (2.1) in the form

P (δ)u+ a(x, δαu) = 0.

Let u ∈ (Hσ+s,Γ)N , and let Lu be the linearized operator of (2.1) at u. We consider

Luv ≡ P (δ)v + Y · ∇za(x, z)|z=(δαu),Y =(δαv) = g. (4.1)

where v = (v1, . . . , vN ). Then we have

Proposition 4.1 Let σ be a nonnegative integer. Assume (A.2) and suppose that (A.1) holds for some bounded
domain Γ containing the origin. Moreover, assume that ∇za(x, 0) ∈ (Hσ,Γ)kN , where

k = #{α ∈ Z
n
+; |α| ≤ s}.

Then there exists ε > 0 such that, if

‖u‖σ+s+n+1,Γ < ε and ‖∇za(·, 0)‖σ,Γ < ε,

then Eq. (4.1) has a solution v ∈ (Hσ+s,Γ)N for every g ∈ (Hσ,Γ)N . Moreover, there exists C > 0 independent
of g such that

‖v‖σ+s,Γ ≤ C‖g‖σ,Γ, ∀g ∈ (Hσ,Γ)N . (4.2)

The solution v is real-valued if g and u are real-valued.

In order to prove Proposition 4.1 we prepare a lemma.
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16 Yoshino: Nonlinear Singular Equations

Lemma 4.2 (Superposition estimate) Let σ be a nonnegative integer. Suppose that 0 ∈ Γ and (A.2) is fulfilled.
Let γ ∈ Zn

+ and let the integer k be given in Proposition 4.1. Assume that ∇za(x, 0) ∈ (Hσ+|γ|,Γ)kN . Then,
for every neighborhood Γ0 of the origin in R

n, Γ0 ⊂⊂ Γ there exists ε > 0 such that , if ‖u‖s+n+1,Γ < ε and
u ∈ (Hσ+s+n+1,Γ)N , we have

(∇zδ
γ
xa)(·, δαu) ∈ (Hσ,Γ0)

kN .

Moreover there exists C > 0 independent of γ such that

‖(∇zδ
γ
xa)(·, δαu)‖σ,Γ0 ≤ ‖∇za(·, 0)‖σ+|γ|,Γ0 + C‖u‖σ+s+n+1,Γ, ∀u ∈ (Hσ+s+n+1,Γ)N .

(4.3)

Proof. Because 0 ∈ Γ it follows from (1) of Proposition 3.1 that δαu (|α| ≤ s) are bounded and continuous on
Rn

+, and vanish at the origin. Moreover, by (3.3) sup |δαu| (|α| ≤ s) are bounded by ‖u‖s,Γ ≤ ‖u‖s+n+1,Γ < ε.
Hence, by taking ε > 0 sufficiently small, the function (∇zδ

γ
xa)(x, δ

αu) is well-defined as a continuous function.
It follows that

‖(∇zδ
γ
xa)(·, δαu)‖σ,Γ0 ≤ ‖(∇zδ

γ
xa)(·, 0)‖σ,Γ0 + ‖(∇zδ

γ
xa)(·, δαu) − (∇zδ

γ
xa)(·, 0)‖σ,Γ0 . (4.4)

The first term in the right-hand side of (4.4) is bounded by ‖∇za(·, 0)‖σ+|γ|,Γ0 . Hence we will consider the
second term. By Taylor’s formula, it is equal to, with z = (δαu),

‖
∫ 1

0

z · (∇2
zδ

γ
xa)(·, tδαu)dt‖σ,Γ0 ≤ sup

t
‖z · (∇2

zδ
γ
xa)(·, tδαu)‖σ,Γ0. (4.5)

In order to estimate the right-hand side it is sufficient to estimate

‖δβ(z · ∇2
z(δ

γ
xa)(·, tδαu))‖0,Γ0 for |β| ≤ σ.

We first consider the case β = 0. Let φ0(t) ∈ C∞(R), φ0(t) > 0 be a smooth function such that φ0 ≡ 1 in some
neighborhood of the origin t = 0 and that φ0(t) = t−τ when |t| � 1, where τ > 0 is a small constant to be
chosen later. We define φ(x) :=

∏n
j=1 φ0(xj) and write

z · ∇2
zδ

γ
xa(x, tz) = φ−1(x)z · φ∇2

zδ
γ
xa(x, tz).

We take Γ1 (Γ0 ⊂⊂ Γ1 ⊂⊂ Γ) and Γ2 ⊂⊂ Γ′
2 := {η > 0; 0 < ηj < τ} such that Γ0 ⊂⊂ Γ1 + Γ′

2 ⊂⊂ Γ, by
taking τ sufficiently small. In view of Lemma 3.3 we estimate ‖φ−1z‖0,Γ1 and ‖φ∇2

zδ
γ
xa‖0,Γ2 .

We consider ‖φ−1z‖0,Γ1 . We set s = n + 1 and u = φ−1z in (3.4). By assumption Γ1 + Γ′
2 ⊂⊂ Γ we take

Γ′′ such that Γ1 ⊂⊂ Γ′′ ⊂⊂ Γ, Γ′′ + Γ′
2 ⊂⊂ Γ. Then, by integration we have, for some C > 0,

‖φ−1z‖0,Γ1 = M(φ−1z) 0,Γ1

≤ C sup
x,|α|≤n+1,η∈Γ′′

|xηδα(φ−1z)| sup
� ζ∈Γ1

∫
〈ζ〉−n−1dξ, ξ = � ζ.

Because φ−1(x) has the growth xτ
j near xj = ∞ we have, for some C1 > 0,

sup
x,|α|≤n+1,η∈Γ′′

|xηδα(φ−1z)| ≤ C1 sup
x,|α|≤n+1,η∈Γ′′

|xη+τeδαz| (4.6)

where e = (1, . . . , 1). By Proposition 3.1, (3.3) with Γ′ ⊃⊃ Γ′′ + Γ′
2, Γ′ ⊂⊂ Γ, the right-hand side term

can be bounded by C2‖z‖n+1,Γ for some C2 > 0. By the definition of z, the term C2‖z‖n+1,Γ is bounded by
C3‖u‖s+n+1,Γ for some C3 > 0.

Next we will estimate ‖φ∇2
zδ

γ
xa‖0,Γ2 we note, from (A.2), that φ∇2

zδ
γ
xa decays faster than or equal to

∏
x−τ

j

when x→ ∞. By Proposition 3.1 we consider

sup
x∈R

n
+,η∈Γ′′

2 ,|λ|≤n+1

|xηδλ
x(φ∇2

zδ
γ
xa)|, Γ2 ⊂⊂ Γ′′

2 ⊂⊂ Γ′
2 ⊂⊂ Γ. (4.7)
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We take Γ′′
2 sufficiently small that ηj − τ < 0 for every η ∈ Γ′′

2 . In the term xηδλ
x(φ∇2

zδ
γ
xa), the terms which

appear when the differentiation δλ is applied to φ are bounded, because the decay order of xηxj∂xjφ when

xj → ∞ is xηj−τ
j . On the other hand the term (∇2

zδ
γ
xa)(x, tδ

αu) is bounded by some constant independent of γ
because of (A.2). Hence the norm is bounded. Next we consider the case when the differentiation δλ is applied
to the x variable of δγ

xa. We can easily see that these terms are bounded by some constant independent of γ in
view of (A.2). On the other hand, if the differentiation δλ is applied to δαu in (∇2

zδ
γ
xa)(x, tδαu), these terms are

bounded by some constant independent of γ by the assumption ‖u‖s+n+1,Γ < ε and Lemma 3.3. It follows that
xηδλ

x(φ∇2
zδ

γ
xa) is bounded by some constant independent of γ. Therefore we see that z · ∇2

z(δ
γ
xa) ∈ (H0,Γ0)kN ,

and satisfies the estimate

‖z · ∇2
z(δ

γ
xa)‖0,Γ0 ≤ C‖u‖s+n+1,Γ

for some C > 0 independent of γ. By (4.5) and (4.4) we see that ∇z(δγ
xa) ∈ (H0,Γ0)kN and (4.3) holds.

In the general case β �= 0, the term δβ(z · ∇2
zδ

γ
xa)(·, tz)) is the sum of products of the terms

δε
x((∂γ

z ∇2
zδ

γ
xa)φ),

ν∏
j=1

δαj+βju, (|αj | ≤ s,

ν∑
1

βj ≤ β, αj , βj ∈ Z
n
+),

and the differentiations of φ−1 for some multiintegers γ and ε.
The term δε

x((∂γ
z ∇2

zδ
γ
xa)φ) can be estimated by (A.2) by the same argument as in the case β = 0. Concerning

the products of the differentiations of φ−1 and
∏
δαj+βju, the argument in the case β = 0 implies that one may

consider ‖∏ δαj+βju‖n+1,Γ when u ∈ (Hσ+s+n+1,Γ1 )N in view of the estimate of ‖φ−1δαj+βju‖0,Γ1 . In the
following we omit the suffix Γ of the norm for the sake of simplicity. By Lemma 3.3 and |αj | ≤ s we have

‖
∏

δαj+βju‖n+1 ≤
∏
j

‖δαj+βju‖n+1 ≤
∏
j

‖u‖|αj|+|βj|+n+1 ≤
∏
j

‖u‖|βj|+s+n+1.

We set a =
∑

j |βj | (a ≤ |β| ≤ σ). By Lemma 3.6 with r = s+ n+ 1, τ = |βj | we see that the right-hand side
is estimated in the following way

≤
∏

‖u‖|βj|/a
a+s+n+1‖u‖1−|βj|/a

s+n+1 ≤ ‖u‖
� |βj|/a
a+s+n+1‖u‖1−� |βj|/a

s+n+1 = ‖u‖a+s+n+1 ≤ ‖u‖σ+s+n+1.

Summing up the above, the second term of the right-hand side of (4.4) can be bounded by C‖u‖σ+s+n+1 for
some C > 0 independent of u and γ. Therefore we see that ∇z(δγ

xa)(·, δαu) ∈ (H0,Γ0)kN , and (4.3) holds. �

Proof of Proposition 4.1. We apply the Mellin transform to the equation Luv = g. Then we have

P (ζ)v̂(ζ) +
∑

α

q̂α(ζ) ∗ (−ζ)αv̂(ζ) = ĝ(ζ), ζ = η + iξ, η ∈ Γ, ξ ∈ R
n, (4.8)

where ∗ denotes the convolution and

q̂α(ζ) = M(qα)(ζ), qα(ζ) = (∂a/∂zα)(x, δαu).

Because a(x, z) is real-valued it follows that q̂α is real-valued if u is real-valued, namely q̂α(ζ) = q̂α(ζ̄). Because
P (ζ)−1 exists for ζ = η + iξ ∈ Γ + iRn by assumption it follows from (4.8) that

v̂(ζ) + P (ζ)−1
∑

α

q̂α ∗ ((−ζ)αv̂(ζ)) = P (ζ)−1ĝ(ζ). (4.9)

We define the sequence {v̂k} inductively, by

v̂0 = P (ζ)−1ĝ, v̂1 = −Av̂0, v̂k+1 = −Av̂k, k = 0, 1, 2, . . . , (4.10)

Av̂(ζ) = P (ζ)−1
∑
α

q̂α(ζ) ∗ ((−ζ)αv̂(ζ)).
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18 Yoshino: Nonlinear Singular Equations

Indeed, by Lemma 4.2 we have qα ∈ (Hσ,Γ0)N for all α, |α| ≤ s and some Γ0 ⊂⊂ Γ. Because

q̂α(ζ) ∗ ((−ζ)αv̂(ζ)) = M(qαδαv)(ζ),

we see, from Lemma 3.3, that v̂k ∈ (Hσ+s,Γ)N for k = 0, 1, 2, . . . . Moreover, v̂k is real-valued if g and u are
real-valued. If there exists a limit v̂ =

∑∞
k=0 v̂k ∈ (Hσ+s,Γ)N , v̂ is a real-valued solution of (4.8). Indeed, we

have

v̂ + P−1
∑

α

(q̂α ∗ (−ζ)αv̂) =
∑

v̂k +
∑

Av̂k =
∑

(v̂k − v̂k+1) = v̂0 = P (ζ)−1ĝ(ζ). (4.11)

Therefore v = M−1(v̂)(ζ) gives a solution of Luv = g.
By Lemmas 3.3, 4.2 and the assumption we have, for some C > 0 and C1 > 0

‖vk+1‖σ+s,Γ = Av̂k σ+s,Γ ≤ C
∑
α

q̂α ∗ (−ζ)αv̂k σ,Γ = C
∑

α

‖qαδαvk‖σ,Γ

≤ C
∑
α

‖qα‖σ,Γ0‖vk‖σ+s,Γ

≤ C
∑
α

(‖∇za(·, 0)‖σ,Γ0 + C1‖u‖σ+s+n+1,Γ)‖vk‖σ+s,Γ ≡ K‖vk‖σ+s,Γ.

We choose ε > 0 so small that K ≤ 1/2. It follows that the sum v̂ =
∑
v̂k converges in (Hσ+s,Γ)N . The

estimate (4.2) easily follows from the same arguments as in (4.11). �

Proof of Theorem 2.1. We divide the proof into 5 steps.
Step 1. We define the iteration scheme. Let 1 < τ < 2. Let Sk (k = 0, 1, 2, . . . ) be the smoothing operator

defined by (3.10) with N + 1 = µk = dτk

, where d > 1. For a vector valued function v = (v1, . . . , vN ) we
define Skv := (Skv1, . . . , SkvN ). For the sake of simplicity we use the notation Skv for a vector valued function
as well as for a scalar function. We set G(u) = (G1(u), . . . , GN (u)) and define the sequences {wk} and {gk}
by the following relations

w0 = 0, wk+1 = wk + Skρk, Lwk
ρk = gk, gk = −G(wk), k = 0, 1, 2, . . . , (4.12)

where g0 = a(x, 0) and the linearized operator Lw is given by (4.1). We note that wk is real-valued if gk is
real-valued. In the following we sometimes omit the suffix Γ of ‖ · ‖ν,Γ, and we denote it by ‖ · ‖ν if there is no
fear of confusion.

We choose ν and κ in the following way and we fix them.

κ > max{σ − s, 2(n+ 1)(2 − τ)−1}, ν > (1 + τ)κ+ (τ − 1)−1(m+ n+ 2 − s+mτ).
(4.13)

We want to show that there exists C > 0 independent of d > 1 and k such that

‖gk‖0 ≤ CΛνµ
−κ
k , k = 0, 1, 2, . . . , Λν = dκ‖g0‖ν+1,Γ. (4.14)

The estimate (4.14) holds for k = 0. Indeed, we can take C = 1 because dκµ−κ
0 = 1. We suppose that (4.14)

holds up to k, and we shall show (4.14) for k + 1.
Step 2. For a nonnegative integer � we shall show that there exists C > 0 independent of d > 1 and k such

that, for j = 1, . . . , k + 1,

‖wj‖� ≤ CΛν (if � < κ+ s), ‖wj‖� ≤ CΛνµ
�+1−κ−s
j−1 (if � ≥ κ+ s). (4.15)

In the following we denote constants independent of d > 1 and k by C, C1, C2 and so on. Let 0 ≤ j ≤ k. By
(4.12) we have wj+1 = wj + Sjρj =

∑j
i=0 Siρi. First we assume that � ≥ s. Then, by (1) of Proposition 3.2,

Proposition 4.1 and (4.14) with k = i we have

‖wj+1‖� ≤
j∑

i=0

‖Siρi‖� ≤ C

j∑
i=0

µ�−s
i ‖ρi‖s ≤ C1

j∑
i=0

µ�−s
i ‖gi‖0 ≤ C2Λν

j∑
i=0

µ�−κ−s
i . (4.16)

c© 2003 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



mn header will be provided by the publisher 19

In case � < κ+ s, the sum
∑j

i=0 µ
�−κ−s
i is bounded by some constant independent of j and d > d0 if d0 > 1. If

� < s, we have ‖wj+1‖� ≤ ‖wj+1‖s. Hence we are reduced to the case � = s. Therefore we have proved (4.15)
when � < κ+ s. In case � ≥ κ+ s we have

j∑
i=0

µ�−s−κ
i ≤ µ�−s−κ

j

j∑
i=0

d(τ i−τ j)(�−s−κ). (4.17)

The sum in the right-hand side is bounded by some constant independent of d > d0 and j if � > κ + s and
d0 > 1. It follows that ‖wj+1‖� is bounded by C2(j + 1)Λν ( if � = κ+ s) and C3Λνµ

�−s−κ
j ( if � > κ+ s) for

some C3 > 0. Because j + 1 ≤ µj for sufficiently large d > 1 we obtain (4.15).
Step 3. We want to show the estimate: there exists C > 0 independent of k and d such that

‖gk‖ν ≤ CΛν(1 + µ
(ν+m+n+2−κ−s)/τ
k ). (4.18)

By (4.12), (2.1) and (4.15) we have

‖gk‖ν ≤ CΛνµ
ν+m+1−κ−s
k−1 + ‖a(·, δαwk) − g0‖ν + ‖g0‖ν . (4.19)

Recalling that g0 = a(x, 0) we obtain

‖a(·, δαwk) − g0‖ν = M (a(·, δαwk) − a(·, 0)) ν . (4.20)

The right-hand side can be estimated by the argument given after (4.4). We replace ∇zδ
γ
xa(·, δαwk) with

a(·, δαwk). It follows that it is bounded by C‖wk‖s+ν+n+1 for some C > 0 independent of k. By (4.15),
it is estimated by CΛν(1 + µν+n+2−κ

k−1 ) for possibly another constant C > 0 independent of k. Recalling that
‖g0‖ν ≤ Λν , m ≥ s and µk = µτ

k−1 we get (4.18) from (4.19).
Step 4. We will show that there exists C > 0 independent of k and d such that

‖ρk‖ν ≤ CΛν(1 + µ
(ν+m+n+2−s−κ)/τ
k ). (4.21)

It follows from (4.1) and (4.12) that ρk satisfies

P (δ)ρk +
∑
α

δαρk · ∇zαa(x, δ
αwk) = gk. (4.22)

Set uk = Pρk. Then uk satisfies

uk +
∑
|α|≤s

∇zαa(x, δ
αwk) · δαP−1uk ≡ uk +B(wk)uk = gk, (4.23)

where B(wk) =
∑

α ∇zαa(x, δαwk) · δαP−1. Hence uk is given by

uk =
∞∑

j=0

(−B(wk))jgk. (4.24)

In view of the condition (A.2) we have

‖ρk‖ν = ‖P−1uk‖ν ≤ C‖uk‖ν−s ≤ C‖uk‖ν ,

for some C > 0 independent of ν, ρk. Hence we may consider ‖δβuk‖0 for |β| = q ≤ ν.
We will estimate ‖δβ(Bjgk)‖0 for |β| = q. We first consider the case j = 1, ‖δβ(Bgk)‖0 . In view of the

definition of B and the Leibnitz formula we have

δβ(Bgk) =
∑

γ+ε=β

∑
α

δγ(∇zαa(x, δ
αwk))δεδαP−1gk =

∑
α,γ+ε=β

δγ(∇zαa)δ
ε+αP−1gk

=
∑

α,γ+ε=β

δγ(∇zαa)P
−1δα+εgk =

∑
α,0≤µ≤q

∑
γ+ε=β,|γ|=q−µ,|ε|=µ

δγ(∇zαa)P
−1δα+εgk,
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20 Yoshino: Nonlinear Singular Equations

where we used the commutativity of P−1 and δε+α. In view of the definition (A.1) and the assumption |α| ≤ s
there exists a constant C > 0 such that

‖P−1δα+εgk‖0 ≤ C‖δεgk‖0 ≤ C‖gk‖µ.

Next we study the term δγ(∇zαa(x, z)), z = (δαwk)α. For the sake of simplicity we denote the j-th compo-
nent of z = (δαwk)α by zj := δαjwk, (j = 1, . . . , �, � ≥ 1). By Leibnitz rule we have the expression

δγ∇zαa(x, z) =
∑ ∗(δγ0

x ∇n1
z1
∇n2

z2
· · · ∇n�

z�
∇zαa)(x, z)

n1∏
j=1

δγ1,j+α1wk · · ·
n�∏

j=1

δγ�,j+α�wk,

where the summation
∑∗ is taken for all pairs of indices

γ = γ0 +
n1∑

j=1

γ1,j + · · · +
n�∑

j=1

γ�,j ; γ0, γ1,j, . . . , γ�,j ∈ Z
n
+; n1, . . . , n� ∈ Z+.

We first consider the term which appear when the differentiations are applied to the x variables of ∇a(x, z).
Noting that δγ

x∇zαa(x, z) = ∇zα(δγ
xa)(x, z) we get, from (4.3) that

‖δγ∇za(·, δαwk)‖0,Γ0 ≤ ‖∇za(·, 0)‖|γ|,Γ0 + C‖wk‖s+n+1,Γ. (4.25)

The right-hand side can be made arbitrarily small, if wk ∈ (Hν+s+n+1)N and

‖wk‖s+n+1 < ε, ‖∇za(·, 0)‖|γ|,Γ0 ≤ ‖∇za(·, 0)‖ν,Γ < ε

for sufficiently small ε.
We next investigate the terms that appear when the differentiations are applied to δαwk in ∇a(x, δαwk). For

simplicity we consider the terms δγ
x∂

θ
z∇a(x, z)δξ+αwk for some multi integers ξ, θ, γ, |ξ| ≤ q − µ. Let τ > 0

be a small number, and let φ0(t) ∈ C∞(R), φ0(t) > 0 be a smooth function such that φ0(t) ≡ tτ in some
neighborhood of the origin t = 0 and φ0(t) = t−τ when |t| � 1. Define φ(x) :=

∏n
j=1 φ0(xj), and write

δγ
x∂

θ
z∇a(x, z)δξ+αwk =

(
φ(x)δγ

x∂
θ
z∇a(x, z)

) (
φ(x)−1δξ+αwk

)
.

By Lemma 3.3 we have

‖δγ
x∂

θ
z∇a(x, z)δξ+αwk‖0 ≤ ‖φ(x)δγ

x∂
θ
z∇a(x, z)‖0‖φ(x)−1δξ+αwk‖0.

We will estimate ‖φ(x)δγ
x∂

θ
z∇a(x, z)‖0. By integrating (3.4) with

s = n+ 1, u = φ(x)δγ
x∂

θ
z∇a(x, z), z = (δαwk),

and by recalling the definition of the norm we have, for Γ′′ ⊃⊃ Γ0 and some constants C > 0 and C′ > 0,

‖u‖0,Γ0 = û 0,Γ0
≤ C sup

x∈R
n
+,|α|≤n+1,η∈Γ′′

|xηδαu(x)|
∫
〈η + iξ〉−n−1dξ

≤ C′ sup
x∈R

n
+,|α|≤n+1,η∈Γ′′

|xηδαu(x)|.

We note that, if |ηj | is sufficiently small, the quantity

xηδαu(x) = xηδα
(
φ(x)δγ

x∂
θ
z∇a(x, z)

)
tends to zero when xj → ∞ by (A.2) and the decay property of φ(x). It follows that, if we take Γ0 and Γ′′

sufficiently small we have

sup
x∈R

n
+,|α|≤n+1,η∈Γ′′

|xηδα
(
φ(x)δγ

x∂
θ
z∇a(x, z)

) | ≤ C′′,
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for some C′′ > 0. It follows that

‖φ(x)δγ
x∂

θ
z∇a(x, z)‖0 ≤ C′C′′.

On the other hand, we can easily show that ‖φ(x)−1δξ+αwk‖0 is bounded by a constant multiplied by ‖wk‖s+n+1+|ξ|.
Therefore the term ‖δγ

x∂
θ
z∇a(x, z)δξ+αwk‖0 is estimated by ‖wk‖s+n+1+|ξ|. By the interpolation and the sim-

ilar calculations as in the proof of Lemma 4.2 the product of the terms which appear by differentiating δαwk in
∇a(x, z) is estimated by ‖wk‖s+n+1+q−µ. Hence, for every ε′ > 0 there exists a constant C > 0 such that

‖δβ(Bgk)‖0 ≤ C

q∑
µ=0

(ε′ + ‖wk‖s+n+1+q−µ)‖gk‖µ.

Especially, we have ‖Bgk‖0 ≤ Cε′‖gk‖µ for some constant C > 0, because ‖wk‖s+n+1 < ε.
In order to estimate δβ(Bjgk) we note that

δβ(Bjgk) =
∑

|β�|=µ,0≤µ≤q

∑
β=β1+···+β�,1≤�≤q

(δβ1B)B · · ·B(δβ2B)B · · ·B · · · (δβ�−1B)(δβ�gk).

We can estimate the right-hand side terms by Lemma 3.3, the interpolation lemma and the above estimate of
‖δβ(Bv)‖0. Because the number of combinations in δβ(Bjgk) can be estimated by a constant multiplied by
jq−µ there exists C1 > 0 such that

‖δβ(Bjgk)‖0 ≤ C1

q∑
µ=0

jq−µ(Cε′)j−qCq(ε′q + ‖wk‖s+n+1+q−µ)‖gk‖µ,

if ‖wk‖s+n+1 < ε and wk ∈ (Hq+s+n+1)N , which follows from (4.15) if Λν is sufficiently small.
Let s+ n+ 1 + q − µ ≥ κ+ s. Then it follows from (4.15), (4.18) and µk = µτ

k−1 that

‖gk‖µ‖wk‖s+n+1+q−µ ≤ C2Λ2
νµ

n+2+q−µ−κ
k−1 (1 + µ

(µ+m+n+2−s−κ)/τ
k )

≤ C2Λ2
νµ

(q−µ+n+2−κ)/τ
k (1 + µ

(µ+m−s+n+2−κ)/τ
k ) ≤ C2Λ2

ν(1 + µ
(q+m−s+n+2−κ)/τ
k ) (4.26)

for some C2 > 0, where we have used n+ 2 − κ ≤ 0 by (4.13), and

q − µ+ n+ 2 − κ ≤ q +m− s+ n+ 2 − κ.

We can similarly argue in case s+ n+ 1 + q − µ < κ+ s. It follows that there exists C3 > 0 such that

‖δβ(Bjgk)‖0,Γ ≤ C3j
qrj

1Λ
2
ν(1 + µ

(q+m+n+2−s−κ)/τ
k ).

Because

‖δβuk‖0,Γ ≤
∞∑

j=0

‖δβ(Bjgk)‖0,Γ, ‖ρk‖ν ≤ C‖uk‖ν , q ≤ ν,

we obtain (4.21).
Step 5. We will estimate ‖gk+1‖0. By (4.12) we have

−gk+1 = G(wk+1) = G(wk + Skρk) = G(wk) + Lwk
Skρk +Q(wk, Skρk)

= G(wk) + Lwk
ρk + Lwk

(Sk − I)ρk +Q(wk, Skρk), (4.27)

where Q(wk, Skρk) is the quadratic term of Skρk. Hence we have

‖gk+1‖0 ≤ ‖Lwk
(Sk − I)ρk‖0 + ‖Q(wk, Skρk)‖0 ≡ I1 + I2. (4.28)
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By (4.21) and Proposition 3.2 we have

I1 ≤ C‖(Sk − I)ρk‖m ≤ CC′µm−ν
k ‖ρk‖ν ≤ C2C′Λνµ

m−ν
k (1 + µa

k) (4.29)

for some constants C > 0 and C′ > 0, where

a = (ν +m+ n+ 2 − s− κ)/τ > 0.

Because 1 ≤ µa
k the right-hand side is bounded by C′′Λνµ

m−ν+a
k for some C′′ > 0. By (4.13) we have

m− ν + a < −κτ . Hence it follows from µk+1 = µτ
k that

µm−ν+a
k = µm−ν+a+κτ

k µ−κτ
k = µm−ν+a+κτ

k µ−κ
k+1. (4.30)

If we take d ≥ d0 sufficiently large, we can absorb constants independent of d by the term µm−ν+a+κτ
k ≤ d−1.

Therefore we have I1 ≤ CΛνµ
−κ
k+1/2.

As to I2 we have, by Propositions 3.1, 3.2, 4.1 and the inductive assumption of gk

I2 ≤ C1‖Skρk‖2
s+n+1 ≤ C2µ

2n+2
k ‖ρk‖2

s ≤ C3µ
2n+2
k ‖gk‖2

0 ≤ C3µ
2n+2−2κ
k (CΛν)2. (4.31)

If we take ‖g0‖ν+1,Γ so small that

2C3CΛν = 2C3Cd
κ‖g0‖ν+1,Γ ≤ 1,

then we have I2 ≤ CΛνµ
−κ
k+1/2. Therefore it follows from (4.28) that ‖gk+1‖0 ≤ CΛνµ

−κ
k+1. This proves (4.14).

It follows from (4.12), (4.14), (1) of Proposition 3.2 and Proposition 4.1 that, for every � < κ+ s

‖wk+1 − wk‖� ≤ ‖Skρk‖� ≤ Cµ�−s
k ‖ρk‖s ≤ C′µ�−s

k ‖gk‖0 ≤ C′′µ�−s−κ
k Λν .

Clearly w = limk wk exists in (H�)N , and w satisfies G(w) = limG(wk) = − lim gk = 0. Since κ > σ − s we
have σ < κ+ s and w ∈ (Hσ)N . This proves Theorem 2.1. �

Proof of Theorem 2.2. Let φ(x/λ) (λ > 0) be a cutoff function given in Lemma 3.4. Instead of (2.1) we
consider the equation

G̃j(u) := pj(δ)uj + φ(x/λ)aj(x, δαu; |α| ≤ s) = 0, j = 1, . . . , N. (4.32)

We can easily see that φ(x/λ)a(x, z) satisfies (A.2). Let ν be a positive integer. Let ψ ∈ C∞(Rn) be a function
with compact support which is identically equal to 1 in some neighborhood of the origin such that

ψa ∈ (Hν+n+1,Γ)N , ψ(x)∇za(x, 0) ∈ (Hν+n+1,Γ)kN .

We take λ > 0 so small that supp φ(x/λ) ⊂ {x;ψ ≡ 1}. Then we have φ(x/λ)ψ(x) ≡ φ(x/λ). It follows from
Lemma 3.4 that there exists λ > 0 such that

‖φa(·, 0)‖ν,Γ′ < ε, ‖φ∇zaj(·, 0)‖ν,Γ′ < ε (Γ′ ⊂⊂ Γ).

Therefore, by Theorem 2.1 Eq. (4.32) has a solution u ∈ (Hσ,Γ′)N . This yields a solution of (2.1) because φ ≡ 1
in some neighborhood of the origin. �

Proof of Theorem 2.10. By definition the dual cone of C is not empty. Hence there exist cµ ∈ R(µ = 1, . . . , d)
such that

∑d
µ=1 cµλ

µ
j > 0 for all j = 1, . . . , n. It follows that χ0 =

∑d
µ=1 cµχ

µ commutes with χµ and χ0 is a
Poincaré vector fields since all eigenvalues of the linear part of χ0 are positive. In the following we assume that
χ1 is a Poincaré vector field in χ. By Theorem 2.7, there exists a change of variables, y �→ x = y + v(y) which
linearizes χ1, namely R1 = 0. For simplicity we assume that χ1 is linearized. In view of the commutativity and
the definition of the homology equation, we have

L1R
µ(x) − LµR

1(x) = ∂R1(x)Rµ(x) − ∂Rµ(x)R1(x) = 0, µ = 1, . . . , d.
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It follows that we have L1R
µ = 0 for µ = 1, . . . , d.

We define w(σ) and X(σ), respectively by

w(σ) := Rµ(x1σ
λ1
1 , . . . , xnσ

λ1
n), X(σ) := diag(σ−λ1

1 , . . . , σ−λ1
n).

It is easy to verify that dX/dσ = −Λ1Xσ−1. Hence we have

d

dσ
(wX) =

dw

dσ
X + w

dX

dσ
=
dw

dσ
X − wΛ1Xσ−1. (4.33)

By the relation L1R
µ = 0 with xj replaced by xjσ

λ1
j (0 < σ ≤ 1) the right-hand side of (4.33) is zero. By

assumption, Rµ ∈ Hν,Γ and Rµ vanishes at the origin x = 0. Therefore, by integrating (4.33) with respect to σ
from 0 to 1 we have Rµ = 0. �
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