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Abstract In this paper we are interested in the global behavior of solutions
of certain analytically nonintegrable Hamiltonian systems. We study the mon-
odromy function defined by W. Balser related to the so-called semi-formal
solutions which corresponds to the fundamental solution in the case of linear
ordinary differential equations. By using the convergent semi-formal solutions
defined by multi-valued first integrals, we prove the formula of a monodromy
function of a nonintegrable Hamiltonian system obtained by the nonlinear
perturbation of confluent hypergeometric system.
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1 Introduction

In this paper we consider a Hamiltonian system with a Hamiltonian function
H . We say that the Hamiltonian system is Cω-Liouville integrable if there
exist first integrals φj ∈ Cω (j = 1, . . . , n) which are functionally independent
on an open dense set and Poisson commuting, i.e., {φj , φk} = 0, {H, φk} = 0,
where {·, ·} denotes the Poisson bracket. If φj ∈ C∞ (j = 1, . . . , n), then we
say C∞- Liouville integrable.

In [2] Bolsinov and Taimanov studied the Hamiltonian system related with
geodesic flow on a Riemannian manifold which is C∞-integrable and not Cω-
integrable. They also showed that non Cω- integrability is closely related with

Partially supported by Grant-in-Aid for Scientific Research (No. 20540172), JSPS, Japan.

M. Yoshino
Department of Mathematics, Hiroshima University, Hiroshima 739-8526, Japan
Tel.: +81-82-424-7345
Fax: +81-82-424-0710
E-mail: yoshinom@hiroshima-u.ac.jp



2 Masafumi Yoshino

the non Abelian property of a fundamental group of the manifold. Then Gorni
and Zampieri (cf. [3]) showed similar results in the local setting, namely for
a Hamiltonian system which has a certain kind of irregular singularity at the
origin they showed the non Cω- integrability. The latter result is also extended
for a certain class of Hamiltonians in [5].

In this paper we are interested in the monodromy of non Cω-integrable
Hamiltonian system, namely, in the monodromy function. The monodromy
function was defined in [1] as the formal power series of some parameter,
which is a natural extension of the so-called monodromy of linear ordinary
differential equations. We will prove formulas of the monodromy function. In
proving the formulas we also show super integrability in the class of multi-
valued first integrals. It naturally leads us to the existence and the expression
of the so-called convergent semi-formal solutions in terms of a certain system
of equations defined by functionally independent multi-valued first integrals.
The explicit formula of the monodromy function is easily shown by the system.
Although the super integrability in an analytic category is difficult to show,
that in a class of multi-valued functions seems easier to verify for general class
of Hamiltonians. Indeed, the Hamiltonian system studied in the last section
is not integrable, while it is still super integrable in a class of multi-valued
functions. (cf. [5]).

This paper is organized as follows. In Section 2 we prepare the notion of
the convergent semi-formal solution and the monodromy function. In Section
3 we introduce the confluent hypergeometric system. In Section 4 we consider
Hamiltonians derived from a linear confluent hypergeometric system. We first
prove the super integrability in a class of multi-valued first integrals. Then
we give the formula of the monodromy function. In Section 5 we calculate
the monodromy function of a nonintegrable Hamiltonian which is a nonlinear
perturbation of a system studied in Section 4.

2 Semi-formal solution via first integrals

Let n ≥ 2 and σ ≥ 1 be integers. Consider the Hamiltonian system

z2σ dq

dz
= ∇pH(z, q, p), z2σ dp

dz
= −∇qH(z, q, p), (1)

where q = t(q2, . . . , qn), p = t(p2, . . . , pn), and H(z, q, p) is analytic with re-
spect to (z, q, p) ∈ C × Cn−1 × Cn−1 in some neighborhood of the origin. By
taking q1 = z as a new unknown function (1) is written in an equivalent form
with Hamiltonian

H(q1, q, p1, p) := p1q
2σ
1 + H(q1, q, p)

q̇1 = Hp1 = q2σ
1 , ṗ1 = −Hq1 = −2p1q

2σ−1
1 − ∂q1H(q1, q, p), (2)

q̇ = ∇pH = ∇pH(q1, q, p), ṗ = −∇qH = −∇qH(q1, q, p).
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The solution of (1) is given in terms of that of (2) by taking q1 = z as an
independent variable.

Semi-formal solution. We define the semi-formal solution of (1). (cf. [1]).
Let O(S̃0) be the set of holomorphic functions on S̃0, where S̃0 is the universal
covering space of the punctured disk of radius r, S0 = {|z| < r} \ 0 for some
r > 0. The (2n− 2)-vector x̌(z, c) of formal power series of c

x̌(z, c) =
∑
|ν|≥0

x̌ν(z)cν = x̌0(z) +X(z)c+
∑
|ν|≥2

x̌ν(z)cν (3)

is said to be a semi-formal solution of (1) if x̌ν ∈ (O(S̃0))2n−2 and x̌(z, c) =
(q(z, c), p(z, c)) is a formal power series solution of (1). Here X(z) is a (2n−2)-
square matrix with component belonging to O(S̃0). If X(z) is invertible, then
we say that (q(z, c), p(z, c)) is a complete semi-formal solution. We say that
a semi-formal solution is a convergent semi-formal solution (at the origin) if
the following condition holds. For every compact set K in S̃0 there exists a
neighborhood U such that the formal series converges for z ∈ K and c ∈ U .
The semi-formal solution at z0 ∈ C is defined similarly.

Monodromy function. We will give the definition of the monodromy func-
tion of (1). Let z0 be any point in C and let (q, p) be a semi-formal solutions
of (1) about z0. We define the monodromy function v(c) around z0 by

(q, p)((z − z0)e2πi + z0, v(c)) = (q, p)(z, c), (4)

where v(c) = (vj(c))j . The existence of v(c) in the class of formal power
series of c is proved in [1]. If we denote the linear part of v(c) by Mc, then by
considering the linear part of the monodromy relation we haveX((z−z0)e2πi+
z0)M = X(z). Hence M−1 is the so-called monodromy factor.

Construction of convergent semi-formal solution. In the following we will
show that the convergent semi-formal solution of (1) is obtained by solv-
ing certain system of nonlinear equations given by first integrals. We con-
sider (2). Given functionally independent first integrals H(q1, q, p1, p) and
ψj ≡ ψj(q1, q, p) (j = 1, 2, . . . , 2n − 2) of (2), where ψj is holomorphic
when q1 ∈ S̃0 and q and p in some neighborhood of the origin. The func-
tional independentness means that there exists a neighborhood of the origin
of (q, p, p1) ∈ V such that the matrix

t(∇q,p,p1H,∇q,p,p1ψj)j↓1,2,... ,2n−2 (5)

has full rank 2n−1 on (q1, p1, q, p) ∈ S̃0×V . We assume that every coefficient
in the expansion of ψj in the powers of q and p is holomorphic with respect
to q1 on S̃0.

Let the point (q1,0, p1,0, q0, p0) and the values cj,0 (j = 1, 2, . . . , 2n − 2)
satisfy that

H(q1,0, p1,0, q0, p0) = 0, ψj(q1,0, q0, p0) = cj,0, (j = 1, 2, . . . , 2n− 2). (6)
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For cj = c̃j + cj,0, c̃ = (c̃1, . . . , c̃2n−2) ∈ C2n−2 we consider the system of
equations of p1, q and p

H(q1, p1, q, p) = 0, ψj(q1, q, p) = cj , (j = 1, 2, . . . , 2n− 2). (7)

If (7) has a solution, then we denote it by q ≡ q(q1, c), p ≡ p(q1, c), p1 ≡
p1(q1, c). We see that q, p and p1 are holomorphic functions of q1 in S̃0 and c
in some neighborhood of c = 0 if we assume (5). The next theorem was proved
in [6].

Theorem 1 Suppose that H(q1, q, p1, p) and ψj ≡ ψj(q1, q, p) (j = 1, 2, . . . ,
2n − 2) are functionally independent when q1 ∈ S̃0. Assume (6). Then the
solutions of (7) gives the convergent complete semi-formal solution of (1),
(q(z, c), p(z, c)) provided that q (resp. p) is not a constant function.

Remark 1 Theorem 1 can be extended to the first order system of ordinary
differential equations of n-unknown functions without Hamiltonian structure
if one assumes the existence of functionally independent (n−1)-first integrals,
which implies the super integrability in the Hamiltonian case. It should be
noted that, because we take multi-valued first integrals into account, the so-
called multi-valued super integrability holds in many examples. This enables
us to calculate the monodromy even if the Hamiltonian is not integrable.

3 Confluent hypergeometric equation

We consider a class of hypergeometric system

(z − C)
dv

dz
= Av, (8)

where C and A are diagonal and constant matrices of size m, respectively. The
system has only regular singular points on the Riemann sphere.

The system contains a subclass written in a Hamiltonian form. Indeed, set
v = t(q, p) ∈ C2n−2 and assume that C and A are block diagonal matrices

C = diag(Λ1, Λ1), A = diag(A1,−tA1) (9)

where Λ1 and A1 are (n − 1)-square diagonal and constant matrices, respec-
tively. In order that (8) can be written in a Hamiltonian form we further
assume that

Λ1A1 = A1Λ1. (10)

Define

H := 〈(z − Λ1)−1p,A1q〉. (11)

Then one can write (8) in the Hamiltonian form

dq

dz
= Hp(z, q, p),

dp

dz
= −Hq(z, q, p). (12)
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If we introduce the variable q1 by q1 = z−1, then one can write (12) in the
autonomous form for the Hamiltonian

H := p1q
2
1 − 〈(q−1

1 − Λ1)−1p,A1q〉. (13)

We will introduce the irregular singularity at the origin q1 = 0 by the
confluence of singularities. Let λj (j = 2, . . . , n) be the diagonal elements of
Λ1. We assume λj �= 0 for all j. Take nonempty sets J and J ′ such that J∪J ′ =
{2, 3, . . . , n}. Without loss of generality one may assume J = {2, 3, . . . , n0}
for some n0 ≥ 2. We merge all regular singular points q1 = λν for ν ∈ J ′ to
the origin. Let ν ∈ J ′. Substitute q1 
→ q1ε

−1, p1 
→ p1ε in (13), and let ε→ 0.
Note that the substitution extends to a symplectic transformation. One easily
verifies that (q−1

1 ε − λν)−1 tends to −λ−1
ν because we assume λν �= 0. We

multiply the ν-th row of A1 with ε−1, similarly as in the case of the confluence
of the hypergeometric equation.

On the other hand, if ν ∈ J , then we require that the singular point λ−1
ν

does not move when ε → 0 by replacing λν with λνε, to obtain (q−1
1 ε −

λνε)−1 = ε−1(q−1
1 − λν)−1. By taking the limit of εH as ε→ 0, we obtain the

new Hamiltonian H

H(q1, p1, q, p) := p1q
2
1 − 〈A(q1)A1q, p〉, (14)

where

Aν(q1) =
{ −λ−1

ν if ν ∈ J ′

(q−1
1 − λν)−1 if ν ∈ J.

Note that, by the confluence precedure we obtain

−q21
dq

dq1
= AA1q, −q21

dp

dq1
= −tA1Ap. (15)

If λj are mutually distinct, then it follows from (10) that A1 is a diagonal
matrix. Denote the diagonal entries of A1 by τj . Then we have

H(q1, p1, q, p) = p1q
2
1 +

n∑
j=2

τj
λj
qjpj +

∑
j∈J

τj
λ2

j

qjpj

q1 − λ−1
j

. (16)

4 First integrals and computation of monodromy

Let H be given by (14). Then the Hamiltonian vector field χH is given by

χH := q21
∂

∂q1
− 2q1p1

∂

∂p1
+ 〈∂q1A(q1)A1q, p〉 ∂

∂p1
(17)

−
n∑

ν=2

(A(q1)A1q)ν
∂

∂qν
+

n∑
ν=2

(tA1A(q1)p)ν
∂

∂pν
,
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where (A(q1)A1q)ν denotes the ν-th component of A(q1)A1q and so on. We
assume (10). First we look for first integrals of the form ψ =

∑n
j=2 ψj(q1)qj .

Let aν,j be the (ν, j)-component of A1 and write the ν-th component of A by
Aν . We consider

∑n
ν=2(AA1q)ν

∂
∂qν

ψ. Since ∂
∂qν

ψ = ψν(q1), we have

n∑
ν=2

(AA1q)ν
∂

∂qν
ψ =

∑
ν

⎛
⎝∑

j

Aνaν,jqjψν

⎞
⎠ =

∑
j

(∑
ν

Aνaν,jψν

)
qj . (18)

Hence χHψ = 0 is equivalent to

q21
dψj

dq1
+
∑

ν

Aνaν,jψν = 0, j = 2, . . . , n, (19)

or equivalently, with Ψ := (ψν(q1))ν↓2,... ,n

A−1q21
dΨ

dq1
+ tA1Ψ = 0. (20)

By (10) we have ai,jAi = ai,jAj for every i and j. Hence, if Ai �= Aj, then
we have ai,j = 0. Indeed, the condition Ai �= Aj holds, if i ∈ J and j ∈ J ′ or
i ∈ J ′ and j ∈ J , or more generally if λi �= λj . Hence, by suitable permutation
of λj one may assume that A1 is a block diagonal matrix each of which blocks
are assigned by some k and those j’s such that λj = λk. Moreover, we may
assume that there exist positive integers, ν, μ, n1, n2, . . . , nν , nν+1, . . . , nμ

such that

n1 + · · · + nν = #J ′, nν+1 + · · · + nμ = #J, #J + #J ′ = n− 1

and that, there exist k1, k2, . . . , kν ∈ J ′ and kν+1, . . . , kμ ∈ J so that Ai’s are
given by

−λ−1
k1

(1 ≤ i ≤ n1), −λ−1
k2

(n1 + 1 ≤ i ≤ n1 + n2), · · · , (21)

−λ−1
kν

(n1 + · · · + nν−1 + 1 ≤ i ≤ n1 + · · · + nν),

(q−1
1 − λkν+1)

−1 (n1 + · · · + nν + 1 ≤ i ≤ n1 + · · · + nν+1), · · · ,
(q−1

1 − λkμ)−1 (n1 + · · · + nμ−1 + 1 ≤ i ≤ n1 + · · · + nμ).

We take a non singular constant matrix P such that P tA1P
−1 =: B1 is a

Jordan canonical form. Set Φ = PΨ . Because A and A1 commute, (20) can be
written in

A−1q21
dΦ

dq1
+B1Φ = 0. (22)

First we consider the rows of (22) corresponding to some −λ−1
k in A, k ∈ J ′,

where k = kj (1 ≤ j ≤ ν). The block of B1 corresponding to −λ−1
k in A can

be decomposed into the sum of Jordan blocks with size m(k, s) and diagonal
elements −τ(k, s) (s = 1, 2, . . . , jk) for some m(k, s) and −τ(k, s), where jk is
the number of Jordan blocks in B1 corresponding to −λ−1

k .
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For simplicity, assume that the block of B1 corresponding to −λ−1
k in A

has one Jordan block of size � with diagonal component −τk and the lower
off-diagonal element 1 for some �. Set Φ = t(Φ1, . . . , Φ�). Then (22) gives the
system of equations for Φj

−λkq
2
1

dΦj

dq1
− τkΦj + Φj−1 = 0, j = 1, 2, . . . , �. (23)

Let m, 1 ≤ m ≤ � be given. We will solve (23) by defining Φj = 0 for
j < m. Indeed, for j = m (23) becomes the equation of Φm, −λkq

2
1(dΦm/dq1)−

τkΦm = 0. Hence the solution is given by Φm = exp(τk/(λkq1)). Then one
can inductively determine Φj for j > m and one obtains a first integral for
each m, 1 ≤ m ≤ �. They are functionally independent solutions of (23).
More precisely, we obtain Φj for j > m as follows. Φm+1 is given by Φm+1 =
−(λkq1)−1 exp(τk/(λkq1)). Then, one can easily see, by induction, that Φm+i

is given by

Φm+i = Ẽi(q1) exp
(

τk
λkq1

)
, i = 0, 1, . . . , �−m, Ẽi(q1) :=

(−1)i

λi
ki!q

i
1

. (24)

Next we consider the case where the block of A1 is assigned by some k ∈ J .
We make a similar argument as in the case k ∈ J ′. Namely, instead of (23) we
have

(q−1
1 − λk)q21

dΦj

dq1
− τkΦj + Φj−1 = 0, j = 1, 2, . . . , �. (25)

Let 1 ≤ m ≤ � and define Φj = 0 for j < m. By (25) with j = m we easily see
that Φm is given by

wk(q1) :=
(

q1

q1 − λ−1
k

)τk

. (26)

We determine Φj for j > m inductively. Consider (25) with j = m+1. Recalling
that Φm is the solution of the inhomogeneous equation of (25) with j = m+ 1
and that

− 1
q21(q

−1
1 − λk)

= − 1
q1

+
1

q1 − λ−1
k

,

we have

Φm+1 =
(

q1

q1 − λ−1
k

)τk

log
(
q1 − λ−1

k

q1

)
. (27)

When we determine Φm+2 by (25) with j = m+ 2, we use the relation

∫ q1
(

1
t− λ−1

k

− 1
t

)
log

(
t− λ−1

k

t

)
dt =

1
2

(
log

(
q1 − λ−1

k

q1

))2

+ C,
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where C is a constant. Then we take

Φm+2 =
1
2!

(
q1

q1 − λ−1
k

)τk
(

log
(
q1 − λ−1

k

q1

))2

. (28)

In the same way, one can show that

Φm+j = Ej(q1)
(

q1

q1 − λ−1
k

)τk

, (29)

Ej(q1) :=
1
j!

(
log

(
q1 − λ−1

k

q1

))j

, j = 0, 1, . . . , �−m.

Next we will construct the first integrals of the form
∑n

j=2 ψ̃j(q1)pj . Be-
cause the argument is almost identical to the case of the first integral

∑n
j=2

ψj(q1)qj we will give the sketch of the proof. For the sake of simplicity we write∑n
j=2 ψj(q1)pj instead of

∑n
j=2 ψ̃j(q1)pj . The condition χHψ = 0 is equivalent

to (20) with tA1 replaced by −A1. Take B1 and P as in (22). Then we have

A−1q21
dΦ

dq1
− tB1Φ = 0. (30)

Consider the block of A1 which is assigned by some k ∈ J ′. Then, by (30) we
have

−λkq
2
1

dΦj

dq1
+ τkΦj − Φj+1 = 0, j = 1, 2, . . . , � (31)

where � is the size of B1. We can solve (31) by the same method as in (23).
Namely, let an integer m, 1 ≤ m ≤ � be given. Define Φj = 0 for j > m and
determine Φm, Φm−1, . . . , Φ1 recurrently via (31). Then we have

Φm−s = (−1)sẼs(q1) exp
(
− τk
λkq1

)
, s = 0, 1, . . . ,m− 1. (32)

Next, we consider the block of A1 assigned by some k ∈ J . We see that
Φj ’s satisy the equation similar to (25)

(q−1
1 − λk)q21

dΦj

dq1
+ τkΦj = Φj+1, j = 1, 2, . . . , �, (33)

where Φ�+1 = 0. Let m, 1 ≤ m ≤ � be an integer. Define Φj = 0 for j > m.
Then one can easily see that

Φm−s = (−1)sEs(q1)
(
q1 − λ−1

k

q1

)τk

, s = 0, 1, . . . ,m− 1. (34)

Hence we have the first integral as desired. Moreover, by choosing m = 1, . . . , �
we obtain � functionally independent first integrals.

We will define the first integrals ψj(q1, q, p) (j = 1, 2, . . . , 2n− 2). Choose
k = kj in (21) and a Jordan block with diagonal element −τk. Corresponding
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to the transformation Φ = PΨ we define the variable q̃ by q̃ = tP−1q. If k ∈ J ′,
then, by (24) with m = �, �− 1, . . . , 1 the set of first integrals corresponding
to the Jordan block are given by

exp
(

τk
λkq1

)
q̃κ, exp

(
τk
λkq1

)(
q̃κ−1 + Ẽ1q̃κ

)
, . . . , (35)

exp
(

τk
λkq1

)(
q̃κ−�+1 + Ẽ1q̃κ−�+1 + · · · + Ẽ�−1q̃κ,

)
,

where κ is some integer. If k ∈ J , then, by (29) we obtain first integrals(
q1

q1 − λ−1
k

)τk

q̃κ,

(
q1

q1 − λ−1
k

)τk

(q̃κ−1 + E1q̃κ) , . . . , (36)

(
q1

q1 − λ−1
k

)τk

(q̃κ−�+1 + E1q̃κ−�+2 + · · · + E�−1q̃κ, ) .

In view of (21) we can construct functionally independent (n−1)-first integrals
ψ1, . . . , ψn−1.

Next we construct first integrals ψn, . . . , ψ2n−2 depending on p. If k ∈ J ′,
then we use (32) to obtain

exp
(
− τk
λkq1

)
p̃κ−�+1, exp

(
− τk
λkq1

)(
p̃κ−�+2 − Ẽ1p̃κ−�+1

)
, (37)

exp
(
− τk
λkq1

)(
p̃κ−�+3 − Ẽ1p̃κ−�+2 + Ẽ2p̃κ−�+1

)
, . . . ,

exp
(
− τk
λkq1

)(
p̃κ − Ẽ1p̃κ−1 + · · · + (−1)�−1Ẽ�−1p̃κ−�+1

)

where κ is an integer. On the other hand, if k ∈ J , then we use (34), to obtain(
q1 − λ−1

k

q1

)τk

p̃κ−�+1,

(
q1 − λ−1

k

q1

)τk

(p̃κ−�+2 − E1p̃κ−�+1) , . . . , (38)

(
q1 − λ−1

k

q1

)τk (
p̃κ − E1p̃κ−1 + · · · + (−1)�−1E�−1p̃κ−�+1

)
.

Monodromy. Let ψj be the first integrals given by (35), (36), (37) and (38).
We look for the monodromy function. For this purpose, consider the analytic
continuation of ψj with respect to q1 around the small circle at q1 = 0. We
want to expand the analytic continuation of every ψj in terms of ψν ’s. Clearly,
if these first integrals are given in terms of (35) or (37), then the first integrals
are invariant under the analytic continuation around the origin. Therefore we
will consider first integrals (36) and (38). Because the argument is similar we
consider (36). For the sake of simplicity we denote the first integrals (36) by
ψ1, ψ2, . . . , ψ� in this order.

For the sake of clearity we first consider the case � = 1. (36) reduces to
ψ1 ≡ qτk

1 (q1 − λ−1
k )−τk q̃κ. Clearly we have ψ1(q1e2πi) = e2πiτkψ1(q1). Next we
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consider the case � = 2. We have first integrals ψ1 and ψ2(q1) := qτk
1 (q1 −

λ−1
k )−τk(q̃κ−1 + E1(q1)q̃κ). Noting that E1(q1e2πi) = E1(q1) − 2πi we have

ψ2(q1e2πi) = e2πiτkqτk
1 (q1 − λ−1

k )−τk (q̃κ−1 + E1(q1)q̃κ − 2πiq̃κ) (39)
= e2πiτkψ2(q1) − 2πie2πiτkψ1(q1).

We will consider the general case. We note

Es(q1e2πi) =
1
s!

(E1(q1) − 2πi)s =
s∑

j=0

Ej
1(−2πi)s−j

j!(s− j)!
=

s∑
j=0

Ej
(−2πi)s−j

(s− j)!
.

(40)

Hence we have the following relation for first integrals given by (36)

ψ�(q1e2πi) (41)

=
(

q1e
2πi

q1 − λ−1
k

)τk (
q̃κ−�+1 + E1(q1e2πi)q̃κ−�+2 + · · · + E�−1(q1e2πi)q̃κ

)

= e2πiτk

(
q1

q1 − λ−1
k

)τk �−1∑
r=0

(−2πi)r

r!
(q̃κ−�+1+r + · · · + E�−1−r(q1)q̃κ)

=
�−1∑
r=0

e2πiτk
(−2πi)r

r!
ψ�−r(q1),

where E0 = 1 and Es = 0 for s < 0. In the same way, for the first integrals
given by (38) we have

ψ�(q1e2πi) (42)

=
(
q1 − λ−1

k

q1e2πi

)τk (
p̃κ − E1(q1e2πi)p̃κ−1 + · · · + (−1)�−1E�−1(q1e2πi)p̃κ−�+1

)

=
�−1∑
r=0

e−2πiτk
(2πi)r

r!
ψ�−r(q1).

Let v(c) = (vk,j(c))k,j and w(c) = (wk,j(c))k,j be the monodromy function,
where k and j mean that vk,j is the j-th component in the block corresponding
to k = kμ in (21). We also write c = (ck,j)k,j with the same convention. v and
w are monodromy functions corresponding to q and p, respectively. Define

vk,j(c) =
j−1∑
r=0

e2πiτk
(−2πi)r

r!
ck,j−r wk,j(c) =

j−1∑
r=0

e−2πiτk
(2πi)r

r!
ck,j−r. (43)

We have

Theorem 2 Assume (10). Then the functions (v(c), w(c)) in (43) is the mon-
odromy function around q1 = 0 of the semi-formal solution of (1) defined by
(7) with Hamiltonian (14).
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Remark 2 We can also show, by a similar argument as in Theorem 2 that the
monodromy function around q1 = λ−1

k is given by (ṽ(c), w̃(c)), where the (k, j)
component of ṽ(c) is given by wk,j(c) and (μ, j) component for μ �= k is given
by cμ,j . The factor w̃(c) is similarly defined as ṽ(c) with wk,j(c) replaced by
vk,j(c). Indeed, one may consider the analytic continuation around λ−1

k instead
of the origin. The form of the first integrals yields the assertion.

Proof of Theorem 2. By Theorem 1 (q(z, c), p(z, c)) is the unique solution of
(7). On the other hand, by (41), (42) and (43) we see that (q(z, c), p(z, c))
satisfies the relations ψν(ze2πi, q(z, c), p(z, c)) = vν(c), where vν(c) is the ν-
th component of v(c). It follows from Theorem 1 that q(ze2πi, v(c)) coincides
with q(z, c). We have the same relation for p(z, c). Hence we have (4), and the
assertion follows. This ends the proof.

Example. We will consider the Hamiltonian (16) assuming that λj ’s are
mutually distinct. First we will determine the convergent semi-formal solution
of (1). For k = 2, . . . , n, the first integrals of the form qkwk(q1) are given by

wk(q1) =

⎧⎪⎪⎨
⎪⎪⎩

(
q1

q1 − λ−1
k

)τk

if k ∈ J

exp
(

τk
λkq1

)
if k �∈ J.

(44)

Similarly, the first integrals of the form pkuk(q1) are given by

uk(q1) = wk(q1)−1, k = 2, . . . , n. (45)

By (44) and (45) we have the first integrals ψj (j = 1, 2, . . . , 2n− 2)

ψj =
{

qj+1wj+1(q1) (j = 1, 2, . . . , n− 1)
pj−n+2wj−n+2(q1)−1 (j = n, n+ 1, . . . , 2n− 2). (46)

We define the convergent non constant semi-formal solution q(z, c) and
p(z, c) of (1) by (7) with q1 = z. Let v(c) be the monodromy function defined
by (4). We will study the monodromy around the origin z0 = 0 or around
z0 = λ−1

k for some k ∈ J . Note that λ−1
k is a regular singular point of our

equation which remains unchanged under the confluence procedure.
We consider the case z0 = 0. In order to determine v(c), we first note

H(q1e2πi, p1, q, p) = H(q1, p1, q, p). On the other hand, for 1 ≤ j ≤ n − 1 we
have

ψj(q1e2πi, q, p) = qj+1wj+1(q1e2πi) = (47)

=
{
e2πiτj+1qj+1wj+1(q1) = cje

2πiτj+1 , if j + 1 ∈ J
qj+1wj+1(q1) = cj, if j + 1 �∈ J.

If n ≤ j ≤ 2n− 2, then we have

ψj(q1e2πi, q, p) = qj−n+2wj−n+2(q1e2πi)−1 = (48)

=
{
e−2πiτj−n+2pj−n+2wj−n+2(q1)−1 = cje

−2πiτj−n+2 , if j − n+ 2 ∈ J
pj−n+2wj−n+2(q1)−1 = cj , if j − n+ 2 �∈ J.
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We define v(c) = (vj(c))j by

vj(c) =

⎧⎪⎪⎨
⎪⎪⎩
cje

2πiτj+1 , if 1 ≤ j ≤ n− 1, j + 1 ∈ J
cj , if 1 ≤ j ≤ n− 1, j + 1 �∈ J
cje

−2πiτj−n+2 if n ≤ j ≤ 2n− 2, j − n+ 2 ∈ J
cj , if n ≤ j ≤ 2n− 2, j − n+ 2 �∈ J.

(49)

Similarly, we define ṽ(c) = (ṽj(c))j by the right-hand side of (49) with τj+1

and τj−n+2 in (49) replaced by −τj+1δk,j+1 and −τj−n+2δk,j−n+2, respectively.
Here δk,j+1 and δk,j−n+2 are Kronecker’s delta. Then, by Theorem 2 and the
remark which follows we have

Corollary 1 Assume that λj �= 0 for all j and that λj’s are mutually distinct.
Then the monodromy functions for the Hamiltonian (16) around the origin and
λ−1

k (k ∈ J) are given by (49) and ṽ(c), respectively.

5 Monodromy for Hamiltonians with nonlinear perturbations

Consider the Hamiltonian H + H1, where H and H1 are given, respectively,
by (16) and

H1 =
n∑

j=2

q2jBj(q1, q), (50)

where Bj(q1, q)’s are holomorphic at the origin with respect to (q1, q) ∈ C ×
Cn−1. One can see that H is integrable, while H + H1 is not integrable for
generic H1 �= 0. (cf. [5]).

In order to give the formula of the monodromy we will construct first
integrals of the Hamiltonian vector field χH + χH1 in the forms qkwk(q1)
(k = 2, . . . , n) and pkuk(q1)+Wk(q1, q) (k = 2, . . . , n). Note that χH1 is given
by

χH1 =
n∑

j=2

(
−2qjBj

∂

∂pj
− q2j

n∑
ν=2

∂qνBj
∂

∂pν
− q2j (∂q1Bj)

∂

∂p1

)
. (51)

As for the first integrals qkwk(q1) we have χH1(qkwk(q1)) = 0 because the
first integrals do not contain p and p1. Hence qkwk(q1)’s are first integrals of
χH + χH1 , where wk is given by (44).

We will construct the first integrals pkuk(q1)+Wk(q1, q) by solving (χH +
χH1)(pkuk+Wk) = 0, where k = 2, . . . , n. We compare the coefficients of pk in
the equation. Because no term containing pk appears from χH1(pkuk + Wk),
we may consider χH(pkuk) = 0. We easily see that uk is given by uk =
w−1

k (q1), where wk(q1) is given by (44). Next we construct Wk by comparing
the coefficients of the powers of p0

k = 1 in the equation (χH + χH1)(pkuk +
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Wk) = 0. Because χH1Wk = 0 by definition, it follows that Wk is determined
by the equation

χHWk = −χH1(pkuk) = uk

⎛
⎝2qkBk +

n∑
j=2

q2j∂qk
Bj

⎞
⎠ .

By expanding Bj(q1, q) =
∑

�B
(�)
j (q1)q� and Wk(q1, q) =

∑
�W

(�)
k (q1)q� and

setting

R(�)(q1) =

⎛
⎝2B(�−ek)

k (q1) +
n∑

j=2

(�+ ek − 2ej)B
(�+ek−2ej)
j (q1)

⎞
⎠ ,

where ek is the k-th unit vector, we see that W (�)
k (q1) satisfies⎛

⎝q21 d

dq1
+

n∑
j=2

τj
λj
�j +

∑
j∈J

τj
λ2

j

�j

q1 − λ−1
j

⎞
⎠W

(�)
k = wk(q1)−1R(�)(q1). (52)

The solution of the inhomogeneous equation is given by
∏n

j=2 wj(q1)�j . Hence

W
(�)
k is given by

W
(�)
k =

(
n∏

ν=2

wν(q1)�ν

)∫ q1

a

t−2wk(t)−1R(�)(t)
n∏

ν=2

wν(t)−�νdt, (53)

where a ∈ C\0 is some fixed point. Note that W (�)
k is analytic on the universal

covering space of C\ {0, λ−1
j (j ∈ J)}. The series

∑
�W

(�)
k (q1)q� converges if q1

is on some compact set in the universal covering space of C \ {0, λ−1
j (j ∈ J)}

and q is in some neighborhood of the origin. Note that
∑

�W
(�)
k (q1)q� is the

convergent semi-formal series. Summing up the above we have

Theorem 3 The Hamiltonian system with the Hamiltonian function H +H1

has (2n − 1) functionally independent first integrals of the form, H + H1,
qkwk(q1), pkwk(q1)−1 +Wk(q1, q) (k = 2, . . . , n).

Monodromy function We will detemine the monodromy function. Define the
first integrals ψj by (46) with pj−n+2wj−n+2(q1)−1 replaced by pj−n+2

× wj−n+2(q1)−1 + Wj−n+2(q1, q). We first consider the monodromy around
the origin. Suppose that q = q(q1, c) and p = p(q1, c) satisfy (7). We shall show
that there exists vj(c) such that q and p satisfy

ψj(q1e2πi, q, p) = vj(c) for 1 ≤ j ≤ 2n− 2. (54)

If one can show the relation, then, by the uniqueness of semi-formal solution
we have q(q1e2πi, v(c)) = q(q1, c) and p(q1e2πi, v(c)) = p(q1, c). Hence v(c) is
the desired monodromy function.
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The relation (54) is clear if 1 ≤ j ≤ n − 1 by definition. Indeed, vj(c)’s
(1 ≤ j ≤ n− 1) are given by (49). Next we consider

ψj(q1e2πi, q, p) = pjwj(q1e2πi)−1 +Wj(q1e2πi, q), for n ≤ j ≤ 2n− 2.

By (53) we have

Wj(q1e2πi, q) =
∑

�

W
(�)
j (q1e2πi)q� (55)

=
∑

�

Ij,�(q1e2πi, a)
n∏

ν=2

(
qνwν(q1e2πi)

)�ν

=
∑

�

Ij,�(q1e2πi, ae2πi)
n∏

ν=2

(
qνwν(q1e2πi)

)�ν

+
∑

�

Ij,�(ae2πi, a)
n∏

ν=2

(
qνwν(q1e2πi)

)�ν
,

where a is sufficiently close to the origin and

Ij,�(q1, a) =
∫ q1

a

t−2wj(t)−1R(�)(t)
n∏

ν=2

wν(t)−�νdt. (56)

The integral Ij,�(ae2πi, a) is taken along the circle with center at the origin
and radius |a|. By definition there exists a complex number mj such that
wj(q1e2πi) = mjwj(q1). On the other hand, by (7) we have qνwν(q1) = cν .
Hence we have

∑
�

Ij,�(ae2πi, a)
n∏

ν=2

(
qνwν(q1e2πi)

)�ν (57)

=
∑

�

Ij,�(ae2πi, a)
n∏

ν=2

(qνwν(q1)mν)�ν =
∑

�

Ij,�(ae2πi, a)
n∏

ν=2

(cνmν)�ν .

Note that the sum in the right-hand side converges for sufficiently small c.
Next we consider the first term in the right-hand side of (55). By the change

of variables like t = se2πi in the integral we have

∑
�

Ij,�(q1e2πi, ae2πi)
n∏

ν=2

(
qνwν(q1e2πi)

)�ν (58)

=
∑

�

m−1
j Ij,�(q1, a)

(
n∏

ν=2

m−�ν
ν

)
n∏

ν=2

(qνwν(q1)mν)�ν

=
∑

�

m−1
j Ij,�(q1, a)

n∏
ν=2

(qνwν(q1))
�ν .
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Note that the right-hand side term is equal to m−1
j Wj(q1, q). Therefore, by

(57) and (58) we have

Wj(q1e2πi, q) = m−1
j Wj(q1, q) +

∑
�

Ij,�(ae2πi, a)
n∏

ν=2

(cνmν)�ν . (59)

By the definition of ψj we have

ψj(q1e2πi, q, p) = m−1
j ψj(q1, q, p) +

∑
�

Ij,�(ae2πi, a)
n∏

ν=2

(cνmν)�ν (60)

= m−1
j cj +

∑
�

Ij,�(ae2πi, a)
n∏

ν=2

(cνmν)�ν =: vj(c).

Therefore we have (54). We have

Theorem 4 Let vj(c) be defined by (49) for 1 ≤ j ≤ n − 1 and by (60) for
n ≤ j ≤ 2n − 2. Then v(c) = (vj(c))j is the monodromy function of the
Hamiltonian H +H1.
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