

Research Institute for Science and Engineering

コンパクトX線源実現のための パルスレーザー光共振器開発の現状と X線生成試験

Major in Pure and Applied Physics,

Faculty of Science and Engineering, Waseda University

Kazuyuki Sakaue

Comparison of Produced X-ray Energy

Motivation of This Research

レーザーコンプトン散乱法による X線生成システムの開発 第2世代放射光源と同等のX線源の開発 X線検出器の開発 特に本システムの適したもの 現在までの実験状況 パルスレーザー光共振器を用いた Laser-Compton 散乱X線生成の実証 -rays パルスレーザー光共振器の開発 高増大率共振器の実現 光共振器の安定運転 **Pulse Laser Pulsed-Laser Multi-Bunch Beam Super Cavity** 高品質マルチバンチ電子ビーム生成

Contents of This Talk

パルスレーザー光共振器を用いた 第2世代放射光源と同等のX線源の開発

現在までの実験状況 パルスレーザー光共振器を用いた Laser-Compton散乱X線生成の実証

> パルスレーゲー光共振器の開発 高増大率共振器の実現 光共振器の安定運転

X線生成システムの開発 X線換出器の開発 キシステムの適したもの

-rays

Pulse Laser Multi-Bunch Beam

高品質マルチバンチ電子ビーム生成

Pulsed-Laser

Super Cavity

Multi-Bunch Electron Linac

LUCX Multi-Bunch Electron Linac

Beam Parameter at LUCX Accelerator

Contents of This Talk

パルスレーザー光共振器を用いた 第2世代放射光源と同等のX線源の開発

現在までの実験状況 パルスレーゲー光共振器を用いた Laser-Compton 徴乱X線生成の実証

> パルスレーザー光共振器の開発 高増大率共振器の実現 光共振器の安定運転

/維生成システムの開発 /線検出器の開発 / ネテムの適したもの

-rays

Pulse Laser Multi-Bunch Beam

Pulsed-Laser Super Cavity

高品質マルチバンチ電子ビーム生成

Pulsed-Laser Super-Cavity

Pulsed-Laser Super-Cavity

パルスレーザー光共振器の特徴 〇共振器内のレーザー蓄積(蓄積率Scav) 〇安定かつ小さなウェスト(w₀) 〇パルス化によってピーク強度大 〇加速器との組み合わせで取り出す必要なし

共振器の共鳴条件

$$L_{cav}/c = mT_{laser}$$

パルスレーザー
共振器の周期が
パルス繰り返しの
整数倍になること

Cavity Resonance Condition

Cavity Resonance Condition

Cavity Resonance Condition

Pulsed-Laser Stacking

Super-Cavity System

Difficulty of Pulsed Laser Stacking

Present Status

Present Status of Super-Cavity

Introduction of "Burst Mode"

"Burst Mode" Super-Cavity for Multi-Bunch Electron Beam Normal Mode Operation Burst Mode Operation

Laser Cavity

Burst Mode Experiment

Status of Burst Mode Cavity

Contents of This Talk

パルスレーザー光共振器を用いた 第2世代放射光源と同等のX線源の開発

現在までの実験状況 パルスレーザー光共振器を用いた Laser-Compton散乱X線生成の実証 X線生成システムの開発 X線検出器の開発 特に本システムの適したもの

-rays

パルスレーゲー光共振器の開発 麻痺大半共振器の実現 批共振器の安定運転

Pulse Laser Multi-Bunch Beam

高品質マルチバンチ電子ビーム生成

高輝度電子源研究会@広島大学

Pulsed-Laser

Super Cavity

Super-Cavity System at LUCX

Particle Specification at Collision Point

Laser and Electron Beam Specification at the Collision Point

Expected X-ray at Detector Position

Contents of This Talk

パルスレーザー光共振器を用いた 第2世代放射光源と同等のX線源の開発

現在までの実験状況 パルスレーザー光共振器を用いた Laser-Compton散乱X線生成の実証

> パルスレーゲー光共振器の開発 車車大率共振器の実現 批共振器の安定運転

X線主成システムの開発 X線検出器の開発 ホンステムの適したもの

-rays

Pulse Laser Multi-Bunch Beam

商品類マルチバンチ電子ビーム生成

Pulsed-Laser

Super Cavity

X-ray Detection

- by LYSO Scintillation Detector
 - >Number of X-rays Measurement
 - known detection efficiency
- by Micro-Channel Plate
 - >Pulse-by-Pulse Measurement
 - unknown efficiency but enough temporal resolution
- by HOPG (Bragg Reflector) Based Spectrometer
 - >X-ray Energy Measurement
 - **Bragg reflection provides X-ray energy**

X-ray Detection

- by LYSO Scintillation Detector
 - **>Number of X-rays Measurement**
 - known detection efficiency
- by Micro-Channel Plate
 - >Pulse-by-Pulse Measurement
 - unknown efficiency but enough temporal resolution
- by HOPG (Bragg Reflector) Based Spectrometer
 - >X-ray Energy Measurement
 - **Bragg reflection provides X-ray energy**

LYSO Scintillation Detector

X-ray Detection by LYSO Scintillation Detector

- Timing Scan : LaserのReferenceの位相をずらして衝突タイミングをScan Mover Position (Vertical) Scan : Laserの乗っているTableの位置Scan
- ⇒衝突位置はScreenで合わせているため、まずは衝突タイミングを捜す

Number of X-rays

Number of Produced X-ray Photons Measurement

X-ray Detection

by LYSO Scintillation Detector

>Number of X-rays Measurement

known detection efficiency

by Micro-Channel Plate

>Pulse-by-Pulse Measurement

unknown efficiency but enough temporal resolution

by HOPG (Bragg Reflector) Based Spectrometer

>X-ray Energy Measurement

Bragg reflection provides X-ray energy

MCP X-ray Detector

高輝度電子源研究会@<u>広島大学</u>

MCP Waveforms

X-ray Waveform Detected by Micro-Channel Plate

X-ray Detection

- by LYSO Scintillation Detector
 - >Number of X-rays Measurement
 - known detection efficiency
- by Micro-Channel Plate
 - >Pulse-by-Pulse Measurement
 - unknown efficiency but enough temporal resolution
- by HOPG (Bragg Reflector) Based Spectrometer
 - >X-ray Energy Measurement
 - **Bragg reflection provides X-ray energy**

HOPG Based X-ray Spectrometer

Rocking Curve Measurement

高輝度電子源研究会@<u>広島大学</u>

X-ray Energy Measurement

X-ray Energy Measurement by Bragg Angle HOPG反射板の反射角度によるX線エネルギー測定結果

反射率最大の角度 (Bragg Angle) からX線の波長を算出

Contents of This Talk

パルスレーザー光共振器を用いた 第2世代放射光源と同等のX線源の開発

現在までの実験状況 パルスレーザー光共振器を用いた Laser-Compton散乱X線生成の実証

パルスレーゲー光共振器の開発 離地大率共振器の実現 距共振器の安定運転 X線生成システムの開発 X線検出器の開発 ホシステムの適したもの

-rays

Pulse Laser Multi-Bunch Beam

Pulsed-Laser Super Cavity

商品類マルチバンチ電子ビーム生成

Feasibility of LCS X-ray Source

LINAC Base Laser-Compton X-ray Source

高輝度電子源研究会@広島<u>大学</u>

Feasibility of LCS X-ray Source

ERL Base Laser-Compton X-ray Source

Conclusions

Num. X-ray/X-ray Energy/Widths of All Scans ⇒ 全ての結果がLaser-Compton散乱の予見する結果と一致している ⇒確実にLaser-Compton散乱を実現しており、正しい信号を得ていることを示している ⇒Super-Cavityを用いたX線生成の実証

 Num. X-rayがほぼ計算と一致 ⇒ 100Bunch+Super-Cavityでも計算に乗ることを実証 今後…さらにビームカレントを上げることでさらなる線量増大が期待される 現在 3×10⁴/5mm/2.3m/sec (△ E/E~10%)
⇒<u>超伝導LINAC</u>や<u>蓄積リング</u>・ERLなどと組み合わせることによって

第2世代放射光施設と同等程度の輝度のX線源を構築することが可能

Super-Cavity Development 現状、機械的制御 (Piezo) のみ ⇒ 電気的光学的制御を含める …より帯域の広い制御が可能となり、FB後の残りNoiseを減らせる ⇒1~2桁の増大を目標

Burst mode ⇒ ダメージ閾値近い

・・・・ 共振器設計から見直す必要あり(すでに4枚鏡構成の共振器設計が始められている) 今後、Laser-Comptonに限らず他の応用へも視野を広げて行きたい

Fin.