Photon Detector with PbWO₄ Crystals and APD Readout

APS "April" Meeting in Denver, CO on May 4, 2004

presented by Kenta Shigaki (Hiroshima University, Japan) for the ALICE-PHOS Collaboration

- Presentation Outline -

- physics via photon channels at LHC-ALICE
- calorimeters in relativistic heavy ion experiments
 - working environments and performance requirements
 - best scintillation crystal and readout device candidates
- basic properties of key components
 - PbWO₄ crystals
 - avalanche photo diode readout system
- prototypes of PbWO₄/APD calorimeter
 - 1st stage prototypes 3×3 assemblies
 - basic properties of PbWO₄ crystals and APD readout system
 - 2nd stage prototype 16×16 assembly
 - ALICE-PHOS performance evaluation
- summary and outlook

- Physics via Photon Channels at LHC-ALICE -

- photons in relativistic heavy ion experiments
 - vital probes of initial/hot/dense phase of collision system
 - direct thermal photons
 - photon HBT correlations
 - jet quenching
 - experimental virtues
 - photons and neutral mesons measured in same detector
 - particle identification to very high transverse momentum
- photons: promising though difficult
 - many interesting physics outcome at RHIC
 - many more waiting at LHC
 - even more powerful tool
 - large direct photon rate up to ~ 100 GeV
 - large neutral meson ("background") suppression

- ALICE Photon Spectrometer -

- Calorimeters in Relativistic Heavy Ion Exp. -

- working environments
 - high particle multiplicity
 - high particle spatial density
 - possibly in (high) magnetic field
- performance requirements
 - high two-cluster separation capability with high granularity
 - high energy resolution
 - energy range from ~ 100 MeV to ~ 100 GeV
- best scintillation crystal and readout device candidates
 - PbWO₄ (PWO)
 - short radiation length
 - small Moliere radius
 - avalanche photo diode (APD)
 - magnetic-field resistance
 - compactness

- Basics of PbWO₄ Crystals -

- dense, fast, radiation-hard inorganic scintillator
 - density: 8.28 g/cm³
 - radiation length: 0.89 cm (shortest as known inorganic scintillator)
 - Moliere radius: 2.2 cm (smallest as known inorganic scintillator)
 - suitable for high-granularity calorimeter
 - refractive index: 2.3
- only a few manufacturers available
 - Furukawa (Japan), North Crystal (Russia), RI&NC (Belarus), ...
- optical and scintillating properties investigated
 - transmittance
 - scintillation light yield
 - temperature dependence
 - scintillation decay time
 - ditto

- Japanese PbWO₄ Crystals -

100

80

manufactured by Furukawa, Co.

Y-doped PbWO₄

density 8.28 [g/cm³] radiation length 0.89 [cm] Moliere radius 2.2 [cm] refractive index 2.3

- PbWO₄ Crystals from Other Manufacturers -

- RI&NC Co. in Minsk, Belarus
 - adopted by CMS
 - investigated; similar properties as Furukawa's
 - *ref.* graduation thesis by K.Yokoyama (available only in Japanese)
- North Crystal Co. in Apatity, Russia
 - adopted by ALICE-PHOS
 - further tests at Hiroshima being prepared

- Avalanche Photo Diode Readout System -

- advantages over conventional PMT readout
 - magnetic-field resistance
 - compactness
 - low power consumption
 - high quantum efficiency
- ALICE-PHOS choices
 - APD: Hamamatsu S8664 (short wavelength enhanced type)
 - basic properties investigated
 - breakdown voltage
 - inverse current
 - pre-amplifier: Bergen/Hiroshima design
 - final decision on rise time and power consumption soon

May 4, 2004

- PbWO₄ EMC 1st Stage Prototypes -

- base prototypes 3×3 assemblies
 - purposes
 - basic properties of PbWO₄ crystals
 - R&D of APD readout system
 - components

- PbWO₄ crystals: Furukawa (Japan) / RI&NC (Belarus)
- PMT: Hamamatsu R1450
- APD: Hamamatsu S8664
- pre-amplifier: Hiroshima ver.1/2
- tests in Japan
 - Tohoku-LNS (2002); photons at 0.8 1.2 GeV
 - Hiroshima-REFER (2003); electrons at 150 MeV
 - KEK-PS (planned in May/June, 2004); electrons at 1 3 GeV

- PbWO₄ EMC Basic Properties -

- energy resolution $\sigma_{\rm E}/{\rm E} = 2.5 \ \%/{\rm VE}$ [GeV] $\oplus 1.3 \ \%$ with PMT
- position resolution $\sigma_x = 2.3 \text{ mm}/\sqrt{E}$ [GeV] with PMT
- noise problem with APD at room temperature

- PbWO₄/APD EMC 2nd Stage Prototype -

- second stage prototype 16×16 assembly
 - purposes
 - ALICE-PHOS performance evaluation and final design
 - components
 - PbWO₄ crystal: North Crystal (Russia)
 - APD: Hamamatsu S8664
 - pre-amplifier: Hiroshima ver.2
 - 64 channels in fast timing mode
 - 192 channels in low power consumption mode
 - cooled and stabilized at -25 ± 0.1 °C
 - tests at CERN
 - PS/SPS (2003): electrons and hadrons at 0.6 180 GeV
 - more tests at PS/SPS (planned in June November, 2004)

- ALICE-PHOS Performance Evaluation -• $\sigma_E/E = 1.3 \%/E [GeV] \oplus 3.6 \%/\sqrt{E} [GeV] \oplus 1.1 \% at - 25 °C$

- Neutral Meson Measurement Capabilities -

- hadron beams at 30 70 GeV/c
- copper target of 6 cm thickness
- invariant mass resolution $\sigma_m/m = 7$ % for π^0 , 3 % for η^0

- Summary and Outlook -

- high-granularity high-resolution electromagnetic calorimeter
 - PbWO₄ scintillating crystal with smallest Moliere radius
 - APD compact and magnetic-field resistant readout
- properties of key components investigated
- several prototypes fabricated/tested in Japan/Europe
 - energy resolution $\sigma_E/E \sim 3 \%/\sqrt{E}$ [GeV]
 - clear π^0 and η^0 peaks observed
- first (out of 5) ALICE-PHOS module in 2005
 - 56×64 Russian PbWO₄ crystals + Japanese APD readout system
 - various R&D/design/production work in progress
 - assembly/commissioning/tests planned in 2005

ALICE at LHC starting in 2007

- ALICE-PHOS Collaboration -

- CERN
- China
- Czech Republic (Prague)
- Germany
- France (Nantes)
 - Japan (Hiroshima)
 - R.Kohara, K.Hirashita, K.Homma, K.Shigaki, T.Sugitate, D.Toyoda, Y.Tsuchimoto, K.Yokoyama

(Beijing, Wuhan, Wuhan)

Norway

(Bergen, Oslo)

(Münster)

- Poland (Warsaw)
- Russia (Dubna, Moscow, Protovino, Sarov)