ALICE 実験準備状況

志垣賢太()広島大学)

for the ALICE Collaboration

日本物理学会シンポジウム LHC First Collision へ向けた実験準備

2008年3月24日 近畿大学

■ LHC における高エネルギー原子核物理学

- RHICにおける物理成果を踏まえて
 - パートン非閉込相の存在確認
- LHC における物理課題, 意義, 期待される新展開
 - 透過的測定を軸にパートン非閉込相の包括的理解へ
- ALICE の現状,計画
 - 検出器, 解析環境
 - 初期物理戦略, 測定実現性, 成果予見
- まとめ,おわりに

高エネルギー原子核物理学の目的

- 非摂動的 QCD が支配する強場中の素粒子多体系
 - cf. 素粒子単体, 素粒子間素過程
- クォーク閉込によるハドロン質量発現機構
 - cf. ヒッグス機構による素粒子質量発現機構
- 宇宙開闢後~10⁻⁵秒間の物質状態
 - cf. 宇宙開闢後 ~ 10⁻¹² 秒間の粒子生成と相互作用
- LHC (+ ALICE, ATLAS, CMS, LHC-b):
 - 強電弱相互作用の統一的・包括的理解プログラム

LHC: 直面する壁を越えて

■ 到達パートン密度

- より高い横運動量領域でのジェット抑制,変更
- J/Ψ, Υ 抑制/再結合 (熱的生成)
- 到達温度,持続時間,衝突初期の時空発展
 - 熱輻射光子
 - 熱輻射光子 HBT 相関
- カイラル対称性回復, ハドロン質量起源
 - 低質量ベクトル中間子質量状態
- *i.e.* 透過的測定による包括的理解
- LHC → 物理条件による測定実現性の壁を制覇

A Large Ion Collider Experiment

■ LHC 唯一の原子核衝突に特化した実験

日本国内推進体制: ALICE-J

■ 正式参加機関として 2006 年 MoU 調印

- 広島大学
 - 主として光子測定による物理
 - PHOS 検出器開発, 建設
 - "Tier 2" 解析センター
- 東京大学 CNS
 - 主として電子測定
 - TRD 検出器建設
- 筑波大学
 - 主としてハドロン 測定によ
 - TRD 検出器建設
 - CERN 分室開設

ALTCE Collaboration Board

ALICE: "汎用" 原子核衝突測定器

- 中心領域スペクトロメータ: -0.9 < η < 0.9</p>
 - 飛跡検出·粒子同定: 全方位角
 - 特化型検出器 HMPID, PHOS, EMCal: 一部の立体角
- 前方 µ スペクトロメータ: 4 < η < –2.4
- 荷電粒子多重度測定: 3 < η < 5.4

3/24 日本物理学会シンポジウム/LHC First Collision へ向けた実験準備/ALICE 実験準備状況/志垣賢太

ALICE (L3) 電磁石 + 検出器架台

Time Projection Chamber

■ 主飛跡検出器

- **|**η**| < 0.9**, 全方位角
- 88 m³, 全長 10 m, 半径 5.6 m, 570 k チャンネル
- $3 \% X_0$, Ne(86)/60₂ (9.5)/ N₂ (4.5), 0 ~ 1 ppm

2008/03/24 日本物理学会シンポジウム/LHC First Collision へ向けた実験準備/ALICE 実験準備状況/志垣賢太 1

Inner Tracking System

- 飛跡検出 (|η|<1) + 粒子多重度 (|η|<2)</p>
- シリコン・ピクセル、ドリフト、ストリップ
 - 各 2 層; 計 7 % X₀ - rφ 位置分解論論12, 38, 20 μm

Transition Radiation Detector

■ 飛跡検出 + 電子識別

- **|**η**| < 0.9**, 全方位角
- 28 m³, 22 % X₀, Xe (85)/CO₂ (15), 1.2 M チャンネル
- rφ 位置分解能 400 600 μm, z 位置分解能 23 mm
- e/π 分離 > 100 (p_t > 3 GeV/c)

■ ref. 渡辺健悟 24aZV12, 佐野正人 24aZV13, 高原明久 24aZV14

■ 2/4 モジュール設置完了; 運転調整中

2008/03/24 日本物理学会シンポジウム/LHC First Collision へ向けた実験準備/ALICE 実験準備状況/志垣賢太 13

Time of Flight

- ハドロン識別
- MRPC
 - |η| < 0.9, 全方位角; 飛行距離 3.7 m
 - 時間分解能~50 ps, 160 k チャンネル

■ 4/8 モジュール設置完了; 運転調整中

2008/03/24 日本物理学会シンポジウム/LHC First Collision へ向けた実験準備/ALICE 実験準備状況/志垣賢太 14

High Momentum PID

リング・イメージング・チェレンコフ

- **|**η**|** < 0.6, ∆φ = 58°
- γ_{th} = **1.57; Csl** カソード読出し, **11** m², **16.1** k チャンネル

■ 設置完了; 運転調整中

Photon Spectrometer

■ 高分割,高精度電磁カロリメータ

- 詳細後述

2008/03/24 日本物理学会シンポジウム/LHC First Collision へ向けた実験準備/ALICE 実験準備状況/志垣賢太 1/

Electro-Magnetic Calorimeter

- 鉛シンチレータ・サンプリング・カロリメータ
 - $|\eta| < 0.7$, $\Delta \phi = 107^{\circ}$
 - APD 読出, 13 k チャンネル
 - エネルギー分解能 σ/E ~ 10 %/√E
 - ジェット・タギング

■ 2009 年設置開始; 2011 年完成予定/1

R 540

Forward (di-)µ spectrometer

- 前方領域でのクォーコニア,重フレーバ測定
 - **2.4** < η < **4.0**
 - 質量分解能: < 70 MeV (J/Ψ), < 100 MeV (Υ)
 - 運動量カットオフ4 GeV/c

2008/03/24 日本物理学会シンポジウム/LHC First Collision へ向けた実験準備/ALICE 実験準備状況/志垣賢太 18/34

トリガ,データ収集,オフライン処理

- 1.2 GB/s (当初 500 MB/s); 2.5 PB/y
- 階層型トリガ
 - 中央トリガ・プロセッサ LO, L1, L2
 - 高次トリガ
 - 1 K CPU; 20 K CPU まで増強可能な設計
- GRID
 - 2007 年 12 月検出機試験に伴いデータ処理試験
 - 全取得データの系統的再構成
 - 再構成データ **18 TB** の世界的共有
 - 4 大陸, 65 サイト, 7.5 K CPU, 1 PB ディスク

日本物理学会シンポジウム/LHC First Collision へ向けた実験準備/ALICE 実験準備状況/志垣賢太 2008/03/24 19/34

LHC 計算機グリッド広島 "Tier 2"

■ 稼働準備最終段階; WLCG サイト証明取得中

- Xeon 5160/5355 × 2 CPU × 90 /-F > 400K Sl2K
- RAID ディスク 42 TB
- 1~2年内にディスク拡充予定

2008/03/24 日本物理学会シンポジウム/LHC First Collision へ向けた実験準備/ALICE 実験準備状況/志垣賢太 20/34

境界条件 #1: LHC 立上 · 運転計画

- LHC 立上日程
 - 2008/04 加速器, 実験閉鎖
 - 2008/06 ビーム調整 (p+p, √s = 10 TeV ?)
 - 2009 p+p, \sqrt{s} = 14 TeV, 10³² cm⁻²s⁻¹
 - 引続き? Pb+Pb, √s_{NN} = 5.5 TeV, 5×10²⁵ cm⁻²s⁻¹
- 当初数年間に期待される実験条件
 - p+p \sqrt{s} = 14 TeV, 10³¹ cm⁻²s⁻¹ (ALICE), 10⁷ s/年

 \sqrt{s} = 5.5 TeV, 10³¹ cm⁻²s⁻¹, 10⁶ s/年×1年

- Pb+Pb $\sqrt{s_{NN}}$ = 5.5 TeV, 10²⁷ cm⁻²s⁻¹, 10⁶ s/年
- p+Pb $\sqrt{s_{NN}}$ = 8.8 TeV, 10²⁹ cm⁻²s⁻¹, 10⁶ s/年×1年
- Ar+Ar $\sqrt{s_{NN}}$ = 6.3 TeV, 10²⁹ cm⁻²s⁻¹, 10⁶ s/年×1年

境界条件 #2: ALICE 建設 立上計画

2008/03/24 日本物理学会シンポジウム/LHC First Collision へ向けた実験準備/ALICE 実験準備状況/志垣賢太 22/34

初期戦略 #1: p+p 衝突の物理

Pb+Pb 衝突 三対 の基準別定
 - 未踏エネルギー領域における素過程測定
 s, c, b, クテーコニア, ...

- ref_{HM}洞(日,拓摩<mark>-25,07B1</mark>.0
- p+p 衝突固有の物理
 - 未踏亚ネルギー領域における粒子生成機構
 - 生成粒子多重度,2バリオン*トランスポート,.p.(GeV/c)^{10²}
 - ALICE 検出器の利点
 - 運動量 < 100 MeV/c (X_T < 10⁻⁵) から > 100 GeV/c を網羅
 - 優れた粒子識別
 - ミニマム・バイアス, 粒子多重度, その他のトリガ
- 高多重度 p+p 衝突事象の物理

PHOS 製作状況, 設置計画

- 2006 年 1 号基製作,ビーム試験(CERN PS/SPS)
 - ALICE データ収集系による読出

2008/03/24 日本物理学会シンポジウム/LHC First Collision へ向けた実験準備/ALICE 実験準備状況/志垣賢太 25/34

光子測定による物理 #2: pQCD 光子

- RHIC における直接生成光子測定: pQCD と無矛盾
 - p+p 衝突の単純重合との差異に有意な制限不可
 - 原子核内パートン構造関数変化に有意な制限不可

光子測定による物理#3:熱輻射光子

- RHIC/PHENIX: 仮想光子による間接測定
 - 300~500 MeV の熱輻射成分存在を示唆
- LHC/ALICE: 高精度直接測定
 ref. 鳥井溪行 25pZB'det Yind' Yind.
 - 高温熱平衡狀態寿命増大
 - クォークのエネルギー損失による背景雑音光子抑制
 - 高性能 PHOS 龄 後出器

直接生成,熱輻射光子測定実現性,

- 期待される信号対背景光子比
 - $-4 \sim 10 \% (3 \text{ GeV/c}) 25 \sim 50 \% (10 \text{ GeV/c})$
- PHOS 検出器による測定の系統誤差見積
 - 8.9 % (2 GeV/c) 5.7 % (10 GeV/c)

3/24 日本物理学会シンポジウム/LHC First Collision へ向けた実験準備/ALICE 実験準備状況/志垣賢太 30

初期(?)戦略#3:重クオーコニア

広い p_t, ラピディティ領域にアクセプタンス

重クォーコニア測定実現性

- e.g. Pb+Pb 運転 10⁶ 秒
 - J/Ψ: 充分な高統計
 - ~ 20 GeV/c まで測定可
 - Ψ': 有意性上の挑戦
 - Y(1s), Y(2s): 有意性良好 ■~8 GeV/cまで測定可
 - Y(3s): 複数年の測定期待

	S[10³]	B[10 ³]	S/B	S/√(S+B)
J /Ψ	130	680	0.20	150
Ψ'	3.7	300	0.01	6.7
Ύ (1S)	1.3	0.8	1.7	29
Ύ (2S)	0.35	0.54	0.65	12
Υ (3S)	0.20	0.42	0.48	8.1

 $\mu^+\mu^-$ after combinatorics subtraction

4 Vi Virgeline Laboratory Hindows Lindowsky, Japan

- 近年の進展(RHIC):パートン非閉込相存在確認
- LHC において期待される新展開
 - パートン非閉込相の性質探求,包括的理解
 - 熱輻射光子測定
 - 重クォーコニアの系統的精密測定
- 実験開始当初から豊潤な物理成果の期待
 - 数か月内の稼働に向け順調に準備進行中
 - ALICE-J: PHOS, TRD 検出器を軸に最重要物理課題に全力傾注
- ALICE: "汎用" 高エネルギー原子核衝突検出器
 - 広範囲の物理課題に対応した設計
 - 未知の現象に対しても高い対応可能性

