1日目:12月6日(月)

A室					B室	C室					
OS-2 磁気浮上・磁気軸受・ベアリングレスモータ					OS-4 (1)数値電磁界解析と高密度電磁応用技術	OS-5(1) 電磁現象の生体・医療福祉機器応用					
	オーガナイザー: 岡 宏一(高知工科大学), 上野 哲(立命館大学)			オーガナイザー: 五十嵐 一(北海道大学), 川口 秀樹(室蘭工業大学)				オーガナイザー: 和多田 雅哉(東京都市大学), 増澤 徹(茨城大学)			
		座長:長 真啓(茨木大学)			座長:佐々木秀徳(法政大学)		1	座長:和多田 雅哉(東京都市大学), 增澤 徹(茨城大学)			
10:30		フレキシブルPCB巻線を用いた小型磁気浮トモータの製作調差が	10:30		データフロー・アーキテクチャに基づく 二次元静磁場シミュレー	10:30		大腸がん細胞に対する大気圧低温プラズマ照射培地による細胞障			
,	05-2-1	特性に及ぼす影響の検討)	05-4-1	ション専用計算機の概念設計)	OS-5-1	害の検討			
		猪股諒,栗田伸幸,岡安孝,Wolfgang Gruber	(王農旭、川口秀樹	(03-3-1	奥野菜々子,高橋玄宇,森晃,吉野響太,本田雅貴,篠原克弥,小林千尋,和			
10:45		角放跡,朱田平辛,両女 孝,Wollgalig Gruber	10:45		工展吧,川口芳倒	10:45		多田雅哉			
10:45		単極磁界を用いた5軸能動位置制御型アキシャルフラックスセルフ	10:45		フラクタル構造内電磁波伝播現象に対する三次元経験的モード分	10:45					
,		イアリングモータの開発	,		解を用いた空間周波数解析	,	OS-5-2	大気圧低温プラズマ照射による乳がん細胞への影響の検証			
(03-2-2		((03-3-2	本田雅貴,吉野響太,奥野菜々子,高橋玄宇,森晃,和多田雅哉			
11:00		上野哲,井上諒,間々田和也,趙成岩	11:00		董然,藤田宜久,中村浩章,生野壮一郎	11:00					
11:00			11:00			11:00		Effects of atmospheric low temperature plasma on the rat model			
					電気機器のトポロジー最適化におけるメメティックアルゴリズム			of colorectal cancer			
,	OS-2-3	ローレンツ力を用いた磁気浮上モータの駆動制御の安定化)	OS-4-3	の検討)	OS-5-3	Genu TAKAHASHI, Nanako OKUNO, Kvota YOSHINO, Katsuva			
,		藤井佑貴,岡宏一	,		石曽根蓮,渡邊浩太	,		SHINOHARA, Masaki HONDA, Chihiro KOBAYASHI, Masava			
11:15			11:15		H I I MENAZIAM	11:15		WATADA and Akira MORI			
11:15			11:15			11:15		WATABA BIR AKIR WORL			
11.10			11.10		ボンド磁石の射出成形プロセス連成解析の円筒金型モデルへの適	11.10		大気圧低温プラズマによるヒト肺腺がん細胞に対する治療効果の			
2	OS-2-4	体内埋込型全置換人工心臓のためのラジアル型磁気浮上モータ	7	OS-4-4	用	7	OS-5-4	検討			
		川口哲平,增澤徽,長 真啓			北村塔也,平田勝弘,宮坂史和,植松耀平,山本哲,伊藤正敏,川添政宜			吉野響太,與野菜々子,本田雅貴,高橋玄宇,和多田雅哉,森晃			
11:30			11:30			11:30					
11:30		交流磁気浮上を用いた遠心血液ポンプの開発 (第二報 磁心材	11:30			11:30		腹部大動脈瘤早期発見を目的とした超音波画像での最大径自動推			
,		料の検討))	OS-4-5	車上位置検知センサの寸法が検知感度に与える影響)		定法の検討			
		彦根克哉,古林柘真,水野毅,高崎正也,石野裕二	(00 4 5	大森湧也,近松具樹,佐藤光秀,水野勉,金子亮,關淳史,中山雄一郎	(00 0 0	勇永哲志,森晃,和多田雅哉,高橋玄宇			
11:45		多议元成,日怀担吴,小野教,同粤正也,但野市—	11:45			11:45		为小百心,林光,似少四准成,同假五丁			
11:45			11:45		付加製造とめっき技術によるコルゲートホーンアンテナの形状最	11:45		手術ロボット用指先装着型デバイスの力覚提示のための力覚検出			
,			,	OS-4-6		١,	06 2 6	機構の開発			
((1807に 渡部雄太,桑原聡,小林隆一,滝沢耕平,竹村昌太,藤原康平	(03-5-0	快報の開発 中野雄斗,和多田雅哉			
12:00			12:00		汉即唯本,宋/示%,(1°作性 ,用/////十,门们自本,除原原十	12:00		丁 が 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一			

		A室			B室			C ©		
		* ***								
OS-3 回転機・モータドライブ			OS-4 (2)数値電磁界解析と高密度電磁応用技術				OS-5(2) 電磁現象の生体・医療福祉機器応用			
		オーガナイザー:百目鬼 英雄(東京都市大学)	オーガナイザー: 五十嵐 一(北海道大学),川口 秀樹(室蘭工業大学)				オーガナイザー: 和多田 雅哉(東京都市大学), 増澤 徽(茨城大学)			
		座長:百目鬼 英雄(東京都市大学)			座長:川口秀樹(室蘭工業大学)		J			
13:00	OS-3-1	ケージレス方式の自己始動形永久磁石同期モータの特性 加藤史也,津田敏宏	13:00	OS-4-7	分布データを活用した深層学習のモータトルク特性推定精度向上 に関する検討 佐々木秀徳	13:00	OS-5-7	自走式車いすの段差乗り越え機構の検討 谷本悠起,和多田雅哉		
13:15		ハイブリッドロータを用いたコンデンサモータのトルク特性の検	13:15		HTS内遮蔽電流密度解析に現れる連立一次方程式の高速数値解法:	13:15		小児用人工心臓用磁気浮上モータの異なる制御軸数における磁気		
)	OS-3-2)		H行列に基づく前処理の適用)		支持性能と電力特性の評価		
13:30		北川貴崇,甲斐 祐一郎	13:30		齋藤歩	13:30		山下俊大,增澤徽,長真啓,巽英介,西中知博		
13:30			13:30			13:30				
₹	OS-3-3	温度場と磁場の連成に基づく熱磁気モータの回転動作解析 田中壮汰,中村正行	₹	OS-4-9	EFG型鞍点問題に対する高性能ソルバーの開発:改良型変数低減法 神谷淳,高山彰優,齋藤歩	≀	OS-5-9	経皮電力伝送システムから発する電界が周囲の人へ及ぼす生体影響 送電コイル用共振コンデンサを3個にした場合の電界の解析 加藤翔 柴建次		
13:45			13:45			13:45		加靡州、米灶人		
13:45	OS-3-4	EV トラクションモータ用12/10 ヘキサゴン結線SRM の開発 竹村望,平田勝弘,新口昇,鈴木寛典	13:45	OS-4-10	深層学習による回転機の最大応力推定とトポロジー最適化への応用 - 基礎的検討 青柳泰我.五十嵐一	13:45	OS-5-10	補助人工心臓用経皮電力伝送システムが2個近距離に存在する場合 の電磁界の相互干渉 一出力電圧と体内電界の解析一 影逸飛、柴津次		
14:00			14:00		月 99° 3℃, 1.4 1 / 周。	14:00		少丛/以,不是久		
14:00	OS-3-5	非線形磁気回転ばね試作機実験による固有局在モードの再現 Lee Sanggook,李相国,加藤雅之,平田勝弘	14:00	OS_1_11	機械学習によるモータ固定子の力学特性の推定 谷川賢剛五十嵐一	14:00		電界強度の低減一		
14:15			14:15			14:15		上地翔大,柴建次		
14:15			14:15		超伝導リニア加速システムのFEMシミュレーション:多目的最適	14:15				
₹			₹		化による電磁石形状の決定	₹				
14:30			14:30		高山彰優,山口敬済,齋藤歩,神谷淳	14:30				

		A室			B室			C室	
	OS-6 非破壊検査・逆問題 オーガナイザー:福岡 克弘(大阪産業大学) 座長:甲斐 ・ 祐一郎(鹿児島大学)				OS-4 (3)数値電磁界解析と高密度電磁応用技術	OS-5(3) 電磁現象の生体・医療福祉機器応用			
				オーガナ	イザー: 五十嵐 一(北海道大学), 川口 秀樹(室蘭工業大学)	オーガナイザー: 和多田 雅哉(東京都市大学), 増澤 徹(茨城大学) 座長:和多田 雅哉(東京都市大学), 増澤 徹(茨城大学)			
					座長:渡部雄太(東京都立産業技術研究センター)				
14:45			14:45		融雪を目的とした導波管スロットアンテナ用レドームの解析と設	14:45		2線アルキメデス螺旋コイルを用いた完全体内埋込型人工心臓用経	
₹	OS-6-1	無接点給電における伝送場の金属異物検出について	}	OS-4-13	計 海底は、水内であるよりは多点を出てしませんを基本とを存取が	?		皮エネルギー伝送システムへのプッシュプルE級増幅器の適用	
15:00		北出敏大,十河憲夫	15:00		伊藤桂一,飛沢瑠伽,丸山珠美,中津川征士,中村尚彦,村本充,奈須野裕, 大島巧三,山本綱之,大宮学,玉山泰宏	15:00		沖永友輝,山本隆彦	
15:00		オーステナイト系ステンレス鋼孔食に対する渦電流探傷試験の確	15:00		交流電流による誘導加熱の渦電流-熱伝導連成解析に関する初期検	15:00			
≀	OS-6-2	率論的きず検出性評価のための複数信号特徴量を用いた複数きず パラメータa/a法の検討	}	OS-4-14	高寸	₹	05-5-13	磁界ばく露による実験用小動物の影響 中田悠乃,山本隆彦,山田大輔,斎藤顕宜	
15:15		冨澤拓真,宋海成,兪帆緯,遊佐訓孝	15:15		杉本振一郎	15:15			
15:15	OS-6-3	Comparison among detection capabilities of eddy current probes against corro-sion pits on stainless steel cladding by receiver operating characteristic curves Fanwei VU, Haicheng SONG, Takuma TOMIZAWA, Noritaka	15:15	OS-4-15	メッシュスムージングによる人体内電界解析の高精度化 武居周,野村政宗	15:15	OS-5-14	電気インビーダンストモグラフィに向けた筋肉等価ファントムの 開発 豊田聖弥,山本隆彦	
15:30		YUSA	15:30			15:30			

	OS-7 材料の劣化損傷検出と材料評価 オーガナイザー: 総田 雄二(大分大学), 菊池 弘昭(岩手大学) 座長: 総田 雄二(大分大学)		
15:45	OS-7-1 磁束収束効果を利用した高周波加熱による加熱領域制御法の検討	15:45	15:45
	甲斐祐一郎		
16:00 ≀ 16:15	OS-7-2 ベルクハウゼンノイズ計測を利用した2軸ひずみ推定方法 	16:00	16:00
16:15	のS-7-3 炭素鋼の繰返し応力下における磁化安定性に関する検討	16:15	16:15
	安部正高、松井そら、三戸慎也、宮澤 和紀		

2日目:12月7日 (火)

9:15 9:15 0S-8-1 0S-8-1 1 2 9:30 9:30 2 2 3 2 4 0S-8-1 4 0S-8-1 5 0S-8-1 6 0S-8-1 7 0S-9-1 8 0S-9-1 9 9 9 0S-9-1	OS-9 (1)環境発電 金沢大学), 小松崎 俊彦 (金沢大学), 田中 義和 (広 島大学) 長:田中 義和 (広島大学) 式振動発電デバイスの最適設計 7敏幸小松崎俊彦 3を備えた磁歪式振動発電デバイスの出力電圧周波数		
OS-8-1 図の検討 2	予敏幸,小松崎俊彦		
	は、供えまが不予に動み曲ぎょくさの山も無圧用効数		
9:45 9:45 9:45 9:45 南谷保.北翔:			
9:45	8におけるストッパを利用した広帯域化効果の実験的 骨敏幸		
/ OS-8-4 法の基礎検討	引いた永久磁石エラストマー振動発電 体悠宏,井門康司,出口朋枝,藤井泰久,山本日登志		
	有する永久磁石エラストマーの機械的特性および磁 &宏,井門康司,出口朋枝,藤井泰久,山本日登志		
A\text{\$\tilde{\text{\$\exitt{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\exitt{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\exitt{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\exitt{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\exitt{\$\text{\$\exitt{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\exitt{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\exitt{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\exitt{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\exitt{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\exitt{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\exitt{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\exittit{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\texitt{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$	C室		

		A室			B室			C室
		OS-1 超電導とその応用・低温利用 ヴナイザー:小森 望充(九州工業大学), 寺尾 悠(東京大学) 長:村上岩範(群馬大学),加藤 博久(山口東京理科大学)		オーガ	OS-8 (2)次世代アクチュエータ ナイザー: 矢野 智昭(岡山大学), 古谷 克司(豊田工業大学) 座長: 矢野 智昭(岡山大学)	オーカ	ゴナイザー	OS-9 (2)環境発電 :上野 敏幸(金沢大学) , 小松崎 俊彦 (金沢大学) , 田中 義和 (広島大学) 座長:上野 敏幸(金沢大学)
10:45	OS-1-1	バルク超伝導磁気浮上を用いた搬送装置のレール磁石配置 二村宗男,大畑翔	10:45	OS-8-6	3相駆動2自由度球面アクチュエータの姿勢制御 栗林隼輔,部矢明,平田勝弘,栗田峰生	10:45	OS-9-6	円柱型エナジーハーベスターの基礎実験 下條一稀,田中義和,加藤隆一,大西裕樹
11:00	OS-1-2	超電導永久電流をバイアス浮上力とした磁気浮上装置の1軸制御特性 小森望充,簑田輝,根本薫,浅海賢一	11:00	OS-8-7	習の検討 房安浩嗣,部矢明,平田勝弘	11:00	OS-9-7	環境磁界発電モジュールのコアの形状および材質と発電量の関係 石黒裕之,田代晋久,脇若弘之,石河範明
11:15	OS-1-3	ゼロパワー制御を用いた磁気軸受の 温度補償 加藤博久、小森望充,浅海賢一,永田寅臣	11:15	OS-8-8	ギヤシフト用リニアアクチュエータのセンサレス位置制御 阪本脩斗,部矢明,平田勝弘,新口昇,栗田峰生	11:15	OS-9-8	ワイヤレス伝送に適したアンテナモジュールの検討 梅田仙司,十河憲夫
11:30	OS-1-4	高温超電導体配置によるピンニング特性 村上岩範,櫻井 駿斗,田代達大,安藤嘉則	11:30	OS-8-9	磁性エラストマー粒子を用いた片ロッド型2室式粒状体セミアク ティブダンバーの減衰力特性 鈴木悠太,井門康司,岩本悠宏,豊内敦士	11:30	OS-9-9	Key Factors for Improving the Electrical Performance from a Hybrid Piezo/Triboelectric Generator Ede Mehta Wardhana,Hidemi Mutsuda,Yoshikazu Tanaka,Takuji Nakashima,Taiga Kanehira,Shuhei Maeda and Masaaki Yamauchi
11:45			11:45	OS-8-10	永久磁石直動機構の特性評価 村上岩範,関孝峻,小野将来	11:45		

					会場:oVice			
13:00					ボスターセッション 13:00~13:20 ショットガン発表 13:20~14:20 ボスター発表			
		CO2レーザによる牡蠣の新しい殺菌方法開発 田中玄太,中口義次,藤田萩乃		PS-2	空芯偏平型経皮トランスから発生する電磁界の生体影響 - 送電・ 受電用コイルの層数を変化させた場合の体内電界の解析 - 上地翔大柴建次		PS-3	立体スパイラルコイルを用いた海中非接触給電におけるコイル間 角度と伝送効率 山本稜,元谷卓,道木加絵,鳥井昭宏
	PS-4	小型移動ロボットへのATAC方式を用いた非接触給電におけるLCの 設計 大竹修平,元谷卓,道木加絵,鳥井昭宏		PS-5	フレキシブルブリントコイルを用いた磁界共振結合方式の伝送効 率 石川凌大,元谷卓,道木加絵,鳥井昭宏			磁気ギアのトルク変換効率向上の検討 青木健人,鈴木憲吏
	DO 7	Damper Torque of Semiactive Rotary Particle Damper Using Magnetic Particles Under External Magnetic Field Allah RAKHI, Yasushi IDO, Yuhiro IWAMOTO and Atsushi TOYOUCHI		PS-8	タグチメソッドを用いたIPM モータのトルク最適設計 高田晃多,石川赴夫,橋本誠司,鈴木伸		PS-9	永久磁石とスパイラルコイルを用いた電磁衝撃力発生装置の最適 化 三輪大貴,上野哲,趙成岩
		両側式機磁束型フラックスリバーサルリニアモータの形状の検討 松澤慎,鈴木憲吏		PS-11	突極型ディスクを用いた渦電流プレーキの基礎検討 堀健太郎,横山哲也,菊池良已,脇若弘之,曽根原誠,佐藤敏郎	-	PS-12	LCR並列型電磁シャントダンパを有する超電導磁気浮上系の非古典的モード解析 武田朋也, 藤田 健太郎, 杉浦 壽彦
		超電導磁気浮上系におけるジャイロダンバによる振動の抑制 13 仲谷 優佑,早瀬 元李,杉浦 壽彦	PS-14	小型磁気浮上装置の制御コントローラのPSoC(プログラマブル SoC)への実装 薮田陽介,松岡俊佑,川口秀樹	PS-15	PS-15	大腸内環境における走行を実現するカプセル型内視鏡の自走機構 の提案 河瀬弘樹,和多田雅哉	
		柔軟指先を持つロボットハンド NGUYENTHE HOANG,村上岩範,PHAMNAM PHONG	ı	PS-17	永久磁石エラストマーリッジの磁場に対する応答 村瀬智彦,岩本 悠宏,井門 康司,石井大佑,桑田力真,川口貴弘,秋葉悠 慎,出口朋枝,藤井泰久,山本日登志	PS-18		永久磁石エラストマーを用いたセンサ開発に向けた衝撃応答調査 美奈川拓真,岩本悠宏,井門康司,張斐之,菅野重樹,亀崎允啓
14:20		ダイレクトモータで構成した水平パラレルリンクロボットの連続 軌跡追従制御の検討 比嘉ファン,鈴木憲吏						

14:20	ا ا
>	閉会の挨拶 at oVice
14:30	ه ا