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0. Introduction

Conformal Field Theory

e Representation thoery of co-dim. Lie alg.
(affine Lie alg., Virasoro alg.)
+ Moduli of Riemann surfaces,

Moduli of (G-bundles over Riemann surfaces



CFT and topology

e Tsuchiya-Kanie (1988): Jones representation

= Kohno, Drinfeld: quantum groups

= Witten: Chern-Simons gauge theory

e Categorification of Tsuchiya-Kanie ?

Jones-Witten theory — Khovanov homology



CFT and 4-dim. gauge theory

e Nakajima (1990’s)
Instanton moduli and affine Lie alg.

e Alday-Gaiotto-Tachikawa (2009)

Instanton moduli and Virasoro alg.



Geometric Langlands correspondence

e Non-abelian Class Field Theory
e Wakimoto modules, screening operators

e Kapustin-Witten (2006) 4-dim. gauge theory
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1. Harish-Chandra pairs and D-modules

Representation theory of Lie algebras

e Representations of a Lie algebra g = Lie(G) induced by those

of the Lie group G can be understood geometrically.

e More generally, we study representations of g whose restric-

tions on Lie(K') C g are induced by those of K.



Harish-Chandra pair (g, K)

Example G: Lie group, g = Lie(G), K C G
Def. If K: Lie group, g: Lie algebra with a K-action with
K-equivariant embedding Lie(K) C g,

(g, K) is called Harish-Chandra pair.



(g, K)-modules Representation theory of HC pairs

Def. V: (g, K)-module
(1) V: K-module
(2) g — End(V): K-equivariant
e To study (g, K )-modules geometrically,

we needs the language of sheaf,



Structure sheaf

X: complex manifold
Example U C X open set

O x (U) = {holomorphic functions on U}

Ox :U v+ Ox(U) structure sheaf of X

10



Definition of sheaf

Def. F:U+—— F(U) sheaf on X

p12 = pUcly - F(U2) = F(U1),  p13 = p12p23

FUUa) = 11 F(Ua) =[] F(UaNUg) exact

F(U) set, abelian group, C-vector space, C-algebra, . ..
F(U) =T, F)

Fr=1lim  F(U) stalkatx e X
—U>x
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Examples of sheaves

(1) V: C-vector space

Vx : connected U —— V' constant sheaf
(2) F : Ox-module

F(U): Ox(U)-module + compatibility
(3) ©x(U) = {holomorphic vector fields on U}

(4) Q% (U) = {holomorphic g-forms on U}
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Sheaf DX

Dx(U) C Endc(Ox(U))

the C-algebra generated by Ox (U), © x(U)

Oy left Dy-module

(X)

Ky = Qiém canonical sheaf, right Dy -module

Lic(w) = Le(fw) (f €0y, €0x, we Kx)
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Vector bundles with flat connections

(E, V): vector bundle with a flat connection over X

& sheaf of local sections of F/
Oy 3&— (Vg &= &), V[&n] = [Vg, Vn]

—> &: left Dy -module

M: left Dx-module, F), M C F), 1M,

Vg(Fp./\/O C Fp+1(./\/l)
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Harish-Chandra pair (g, K) (over C)

K: Lie group, g: Lie algebra with a K-action,

Lie(K) C g: K-equivariant embedding

Def. V: (g, K)-module

V. K-module, g — End¢(V): K-equivariant
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(g, K)-action

Z: complex manifold with a K -action
Lie(K) C g — ©4 K-equivariant, compatible
a

For example, Z is a K-invariant open subset of a (G-space.

Setting
m: /Z — S principal K-bundle

a: Oy Qg — Oy surjective
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Localization functor

A : (g, K)-mod — Dg-mod

A(V) = (m«(Dg ®yg V)

the left adjoint of I : Dg-mod — (g, K)-mod
M) =T(Z, m*M)

Homp (A(V), M) = Homg(V, I'(M))

17



Terminology

(1) a:g— Oy induces Ug — Dy,

(2) w: Z — S, F: sheaf on Z, M: sheaf on S,
(mF)(U) = F(r~1(U)) direct image
(r7IM), = M () inverse image

TM=1"M®, 1p, Oy
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Coinvariants

V: (g, K)-module
a: Oy R¢g— Oy surjective
Veoinv = 0z ® V/Ker(a) - OzQV

Veoiny = Dy ®ug V' Dz-module
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CFT case (1)

O=C[]], K=C(z)=0["]

Der(K) = C((2)0z, Der(0) = 2C[[]]0:
Aut(0) = {z— a1z +az> + - | ag #0}
(Der(K), Aut(O)): Harish-Chandra pair

C: compact Riemann surface, pe C

H'(C, ©¢) = Oc(C ~ {p})\Der(Kp) /Derg(Op)
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CFT case (2)

G- reductive algebraic group, g = Lie(G)
(g(K), G(O)): Harish-Chandra pair
P — C principal G(C)-bundle

H'(C, gp) = T(C ~ {p}, 5p)\8(Kp)/8(Op)
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CFT case

D g-module structure on A(V)

Knizhnik-Zamoldchikov connection
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2. Families of stable curves

Stable curves

Let g, n be non-negative integers such that 2g — 2 +n > 0,
and I = {1, 2, ..., n}. An n-pointed, or /-pointed stable
curve of genus g over a scheme B is a proper flat morphism
7 : C' — B together with n sections s; = (s; : B — C);< such

that
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(i) The geometric fibers Cp, of m at b € B are reduced and
connected curves with at most ordinary double points.

(ii) Cp is smooth at s;(b).

(iii) s;(b) # s;(b) for i # j.

(iv) Each non-singular rational component of (, has at least 3

points which are sections or intersections with other components.

(v) dimHY(Cy, O¢,) = g. O
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Stabilization

let 7 = {1,2,...,n}, It = I U{n +1}. An I-pointed
stable curve X = (7 : C — B, s; = (s;);ey) and another
section s,,.1 : B — C are given. A pair (X, f) of an I7-
pointed stable curve X = (7 : C* — B, 3; = (s )ier+)

and a morphism f : C* — C over B is called a stabilization if
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(i) fs; =si(iel”)

(ii) There are two possible cases for a geometric fiber C’gr:

a) If Cy is smooth at s,,,1(b) and s,1(b) # s;(b) (i € I),
Iv: C[j — ('} is an isomorphism.

b) If not, there is a rational component E of Cgr such that

SZH(b) € F and fi(E) = {s,41(b)} and f : C[j N FE —

Cp~ {sp.1(b)} is an isomorphism. ]
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Remark

The stabilization (X, f) is unique up to isomorphisms for

X? Sn41-
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Tower

For an [-pointed stable curve X = (7 : C' — B, s7 = (8;)ie1),
the first projection on the fiber product
X2 =(p1:CxpC—C, sy = (7"s)ics)

is an /-pointed stable curve over ('
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We define an I "-pointed stable curve
X2 = (x2: 0@ 5 ¢, 5P
over C' as the stabilization of X' for the diagonal section

A:C—CxpgC.

Similarly we define (n + k — 1)-pointed stable curve

k) _ (k). ~(k k—1) (k)
xk) = (z(k) . ok) _, olk=1), S](k)>

over C1F=1) as x(k) — (y(k—=1))(2)
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Regular family

An [-pointed stable curve (7 : C' — B, sj) is a regular family
if
(1) C, B: non-singular
(2) The image of 7 of singular points in the fibers is a set of

normal-crossing divisors in 5.
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Proposition

For a regular family (7 : C' — B, sj),

the variety C2) s also non-singular.
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Deformation theory

Let (m: C'— B, sy = (s);c7) be a regular family. We put

St = Uier si(B),
™0 p =71 105 R0, Oc,
F'=Homo,(—, Oc(—57)).

We apply a left exact functor 74 o I’ to the short exact sequence

O—>7T*QB—>Qc—>QC/B—>O.
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Since 7 is propetr,

Tx O F(T‘_*QB> — W*HOmOC(T‘-*QBD OC<_SI>)

— HOM@B(QB, OB) = @B-
We obtain an exact sequence

0 — mOc/p(—S1) = mOc(—=51) — Op

5 R'(m 0 F)Q0yp — R' (10 F)Q0 — 0.

The map pp is called a Kodaira-Spencer map.
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3. Vertex algebras and chiral algebras

Taylor expansions

0217 ey 2m — CHZ]_, e e ey Zn]]

Pay 2o = (21 — 29) 1O [(21 — 22) 1]

We have a decomposition of O,,-modules,

Oz, zl(21 — ZQ)_l] =Pz, 20 B Oz, 2.
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The first projection pi : Oy 2 |(21 — 22)_1] — P, 2

s given by

N (f( > Z 1. 0% f(22) >i< kQ)

(21 — 22) — (21 — 2

forn e N, f(2), g(z2) € O,.

P,z = Oz (21 — ZQ)_l]/OZLZQ

is an O, »,-module.
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Vertex algebra

A vertex algebra (V, Y, |0)) is a collection of data:
e a complex vector space V'

e alinear map Y : V — Hom(V, V((2))) written as

Y(a, z) = Z a<n>2_n_1
nez
(a €V, ap) = Res,—(Y(a, 2)z"dz) € End(V))

e a vector |0) € V (called vacuum vector)

satisfying the following conditions:
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e (Locality) Y(a, z), Y (b, w) are mutually local for any a, b €
V. In other words, there exists a linear map

V2. V@V — Hom(V, V[[z w|][z~", w D[z — w)™ Y
such that

Y(a, 2)Y (b, w) = excY(a, b; z, w),

Eoo(z — w E whe L

n>0
Y (b, w)Y(a z) = oY ?(a, b; 2, w),

eo(z —w an —n—l

n<(
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e (Vacuum) Y (a, 2)|0) € V|z]], Y(a, 2)|0)|,—0 = a (a € V).

In other words, a(_1) = a, a(,,)|0) =0 (n = 0).
e (Translation) There exists a linear map T : V' — V such that

T0) =0, T, Y (a, z)] =0.Y(a, z) (a€V).
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D-module

@Zla“'azn — ;L:]. 0217“'727162@'
Dy, ..z, the C-algebra generated by O,, . ., 0, . ...

The ring Oy, .. . isaleft D, . . -module.

n

The projection g @ Oz, »|(21 — 22)_1] — Pz, 2

is a homomorphisms of left D, .,-modules.
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The Lie algebra ©,, . . acts on
Wi, .o, 2n — Ozl, ...,zndzl ANRREAN6 b
by Lie derivative. It makes w;, . . aright D, . . -module.

The map
,ug{ : OZl,ZQ[('Zl — 22)_1}(1,21 ® dzg — le,Zdel A dzo

induced by 11 is a homomorphism of right D, .,-modules.
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Jacobi identity

-1 -1 _—1
O = Ozl,ZQ,ZQ — CHZL <9, 23]][21 y £y <3 ]
tii = (z; — z-)_l.
J L J
Since t;t 1. = tijtip + ity for distinct ¢, j, k, we deduce

Oltij, ti, tjkl = Oltij, tix] + Oltir, tk].
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Hence the natural maps
Oltij, til  Oltij, tigs L]
Ot Olti, k]
Oltij, tig] ~ Oltij, tig, ]
Olti;] + Oltix] Oltig, tir] + Oty

are isomorphisms.
Let

Olt19, t13, to3]

: Olt19, t13, 1 ’
Hp23) + Oltrz, 113, tas] Olt12, t13] + Oltog)

be the projection.
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> Olt12, t13, tog]
Olt12, t13] + Oltog]

:u[12]37 /12[13] : O[t127 t137 t23}

are the compositions

_ Olti, t13, tog]
Olt13, tag] + O[t12)]
~ O[tlg, t23] ~ O[t127 13, t23}
Olt19] + Oltas]  Olt1a, t13] + Oltag]’
_ Olt1a, t13, t23]
Olt12, to3] + Olt13]
~ Olt13, tos)] ~ Olt12, t13, t23]

7

Olt13] + Oltag]  Olt1o, t13] + Oltog]

Olt19, t13, tog)

Olt19, t13, to3]
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i3] = K23 Mopiz) = 0 on Oltia, tas),
H1jo3) = Hof13) Mg = 0 on Olt13, 193],

Therefore 111]93) = 11913 + Hof13]
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Chiral algebra

C': compact Riemann surface

A: right D-module

AN A(c0A) — AjA: D-module hom
unit: ()~ — A compatible with puq
skew-symmetry: [t = —0190 (L O 019

Jacobi identity: f1[23] = H[12]3 T H2[13]
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