
Extrinsic Symmetric Spaces

Jost Eschenburg (University of Augsburg, Germany)∗

July 5, 2017

Contents

1. Submanifolds with ∇α = 0 are extrinsic symmetric. 1
2. Extrinsic symmetric spaces (ESS) split extrinsically. 2
3. The indecomposable ESS. 3
4. ESS are certain isotropy orbits of symmetric spaces. 5
5. How to classify ESS. 7
6. ESS are real forms of hermitian symmetric spaces. 8
7. ESS are midpoint components between center elements. 10
8. Maximal tori of ESS are products of planar circles. 12
9. Isometries of ESS are extrinsic. 14
10. ESS have a noncompact transformation group. 16
11. ESS contain their noncompact duals. 18
12. ESS in symmetric spaces come from ESS in euclidean space. 19

1. Submanifolds with ∇α = 0 are extrinsic symmetric.

The local invariant which distinguishes Riemannian from euclidean geometry is the cur-
vature tensor R of a Riemannian manifoldM . Therefore, spaces where R is “constant”
(∇R = 0) are of fundamental importance for Riemannian geometry. These are the lo-
cally symmetric spaces: for any x ∈M , the geodesic symmetry sx : expx(v) 7→ expx(−v)
(reversing every geodesic γ with γ(0) = x) is an isometry near x. In fact, due to
∇R = 0, the Jacobi equation for geodesic variations of γ has constant coefficients with
respect to a parallel frame along γ. Therefore a Jacobi field J along γ with J(0) = 0 is
odd, J(−t) = −J(t), and hence the differential (sx)∗ with (sx)∗J(t) = J(−t) preserves
the length of vectors.
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Vice versa, if the geodesic reflection sx happens to be a local isometry, then (sx)∗∇R =
(sx)

∗∇R (where ∇R : (TxM)⊗4 → TxM), but (sx)
∗∇R = ∇R since (sx)

∗ changes sign
in each of the four slots of ∇R while (sx)∗∇R = −∇R. Thus ∇R = 0.

If a Riemannian manifoldM is isometrically immersed into euclidean space V = R
n,

its second fundamental form α : TM⊗TM → NM is like a square root of R, according
to Gauss equations R = α ∧ α. From this view point, spaces where this “square root”
is constant, submanifolds with ∇α = 0, seem even more fundamental. Obviously,
∇α = 0 implies ∇R = 0, but in fact much more is true:
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Theorem 1. [27] Let M ⊂ V = R
n be a complete submanifold. Then ∇α = 0 if and

only if M is extrinsic symmetric: It is invariant under the reflections rx along each of
its affine normal space Nx + x of M .

Proof. The proof due to Strübing [27]1 is similar to the argument above, but now we
have an ODE not just for geodesic variation fields J but for every single geodesic γ with
γ(0) = x. We choose parallel tangent and normal orthonormal frames E = (ET , EN) =
(e1, . . . , em, em+1 . . . , en) along γ with γ′ = e1. Then E satisfies a first order linear ODE
with constant coefficients of the type

E ′ = EA (1)

where A contains the coefficients of α, expressed in the parallel basis E. Due to
∇α = 0, the matrix A is constant, and morever A = ( C

B ) for some constant linear
map B : T → N (given by Bei =

∑
β〈α(e1, ei), eβ〉eβ), where −C : N → T is the

transposed of B. We claim

rxE(t) = E(−t)S (2)

where S =
(
−I

I

)
. Let us put Ẽ(t) = E(−t). Then from (1),

Ẽ ′ = −ẼA. (3)

Now we see that both sides of (2), rxE and ẼS, satisfy the same ODE (1):

(rxE)
′ = rxE

′ (1)
= rxEA = (rxE)A,

(ẼS)′ = Ẽ ′S
(3)
= −ẼAS = (ẼS)A

since S =
(
−I

I

)
and A = ( C

B ) anticommute. Moreover, both sides have the same
initial value at t = 0, so they agree. In particular, for e1 = γ′ we have rxγ

′(t) = −γ′(−t)
and by integration, rxγ(t) = γ(−t). Thus rx(M) = M , and rx|M is the geodesic
reflection sx at x in M .

Vice versa, an extrinsic symmetric submanifold M satisfies ∇α = 0 : since rx is an
extrinsic isometry for any x ∈ M , we have (rx)∗∇α = (rx)

∗∇α where ∇α : TM⊗3 →
NM . But (rx)∗∇α = ∇α (the values of ∇α are in Nx) while (rx)

∗∇α = −∇α (all
three slots of ∇α receive a minus sign), thus ∇α = 0.

2. Extrinsic symmetric spaces (ESS) split extrinsically.
Since the mean curvature vector H = trace α is parallel, its shape operator2 AH is
also parallel and [AH , Aξ] = 0 for any ξ ∈ NM , due to the Ricci equation.3 Thus the
eigenspaces of AH form parallel Aξ-invariant distributions Ei on M with α(Ei, Ej) = 0
for i 6= j. Thus (using Moore’s theorem) we obtain an extrinsic splitting where the
tangent bundles of the factors are the distrubutions Ei. The factor M0 corresponding
the kernel of AH is minimal, hence it is an affine subspace of V , by the subsequent
Lemma 1. Thus we have shown:

1See also [2] for a general reference.
2For any ξ ∈ NxM , the shape operator Aξ is defined by 〈Aξv, w〉 = 〈α(v, w), ξ〉 for all v, w ∈ TxM .
3The curvature tensors RT of the tangent bundle TM and RN of the normal bundle NM both are
related to the second fundamental form, RT

abcd = αadαbc − αacαbd (Gauss equation) and RN
ξ,η =

−[Aξ, Aη] (Ricci equation). Since H is parallel, we have RN
ξ,H = 0 for any ξ ∈ N , thus [Aξ, AH ] = 0.



Theorem 2. Extrinsic symmetric spaces M ⊂ V = R
n split as

M = V0 ×M1 × . . .×Ms (4)

where V = V0 ⊕ V1 · · · ⊕ Vs and Mi ⊂ Vi is extrinsic symmetric. Further, H =
∑

iHi

where Hi is the mean curvature vector of Mi ⊂ Vi, and AHi
= λiI for some λi 6= 0.

Lemma 1. Let K/K+
∼= M ⊂ V extrinsic symmetric and minimal. Then M is an

affine subspace.

Proof. Consider the equivariant map (Gauss map) τ : x 7→ TxM :M → Gm(V ) where
Gm(V ) is the Grassmannian of m-planes in V , m = dimM . We may assume that M
is indecomposable and full (no extra codimension). If M ⊂ V is an affine subspace,
M = V τ maps M onto the single element V ∈ Gm(V ). Otherwise, τ is an equivariant
immersion and hence an isometry (up to some dilatation) on each irreducible local
factor of M since there is only one K+-invariant metric on an irreducible factor of
the tangent space. But τ(M) ⊂ Gm(V ) is invariant under all the symmetries sτ(x),
x ∈ M , of Gm(V ) and hence it is totally geodesic.4 In particular, M has sectional
curvature ≥ since each irreducible local factor is totally geodesically immersed into the
symmetric space Gm(V ) of compact type. But on the other hand, M ⊂ V is a minimal
submanifold which implies that M has some negative sectional curvatures unless it is
an affine subspace, see Lemma 2 below. This finishes the proof.

Lemma 2. The scalar curvature of a minimal submanifold M ⊂ V is nonpositive and

it is everywhere zero only if M is an affine subspace.

Proof. Fix some x ∈M . Let (ξα) be an orthonormal basis of the normal space N at x
and put Aα = Aξα with matrix coefficients Aα

ij = 〈Aαei, ej〉 for some orthonormal basis
of the tangent space T at x. We compute the scalar curvature via the Gauss equation:

s =
∑

i<j

〈R(ei, ej)ej, ei〉 =
∑

α

∑

i<j

(
Aα

iiA
α
jj − (Aα

ij)
2
)
.

For any α we choose a different orthonormal basis (ei) of T , consisting of eigenvectors

of Aα. Denoting by λαi the eigenvalues of Aα and putting ~λα = (λα1 , . . . , λ
α
m), the right

hand side simplifies:

s =
∑

α

∑

i<j

λαi λ
α
j =

∑

α

ǫ2(~λ
α)

where ǫ2 denotes the second elementary symmetric polynomial. SinceM is minimal, we
have trace Aα = 0, thus the first elementary symmetric polynomial vanishes, ǫ1(~λ

α) =∑
i λ

α
i = 0. But (ǫ1)

2 = π2 + 2ǫ2 where π2(~λ) =
∑

(λi)
2. Thus

ǫ2(~λ
α) = −π2(~λα)/2 ≤ 0 ,

and equality happens only if all λαi = 0, this means all Aα = 0 and thus M is an (open
part of an) affine subspace.

3. The indecomposable ESS.
Theorem 3. The list of indecomposable extrinsic symmetric spaces is as follows.5

4 In fact, if P is a symmetric space and Q ⊂ P invariant under all symmetries sq, q ∈ Q, then Q
is totally geodesic: if β denotes the second fundamental form of Q ⊂ P at some point q ∈ Q, we
have (sq)∗β(v, w) = β((sq)∗v.)sq)∗w) for all v, w ∈ TqQ, but (sq)∗ = −I, so the left hand side is
−β(v, w) while the right hand side is +β(v, w). Thus β = 0, that is Q ⊂ P is totally geodesic.

5This list can be found at several places, see e.g. [2, p.311] or [11].



- hermitian (Kähler) symmetric spaces,
- classical groups SOn, Un, Spn,
- real and quaternionic Grassmannians Gp(R

n), Gp(H
n),

- real and quaternionic structures on C
n, Un/On and Un/Spn/2,

- spheres and twisted sphere products (Sp × S
q)/±, q ≥ 0,

- four exceptional examples: (SU8/Sp4)/Z2, S
1 · E6/F4, G2(H

4)/Z2, OP
2.

As explained before, a symmetric space M is a Riemannian manifold where the scalar
multiplication by −1 on every tangent space TxM extends to a global isometry sx. A
hermitian symmetric space M = G/H is a Kähler manifold6 where the scalar multipli-
cation on T = TxM by any complex unit scalar (not just by −1) extends to a global
isometry on M . Thus we obtain a circle group S

1
x ⊂ Gx = H acting on T by complex

multiples of the unit matrix. These commute with the action of any h ∈ H on T (see
footnote 6), hence S

1
x belongs to the center of H.7 Let x̂ ∈ h ⊂ g be the canonical

generator of S1
x. The extrinsic symmetric embedding (standard embedding) is the map

M ∋ x 7→ x̂ ∈ g =: V . This is G-equivariant where G acts on g by the adjoint rep-
resentation Ad. The decomposition g = T + N into tangent and normal spaces of M
with T = [g, x] and N = [g, x]⊥ = {ξ : [x, ξ] = 0} = h equals the Cartan decomposition
g = m+ h corresponding to the symmetric space M = G/H. The extrinsic symmetry
is the Cartan involution σ which is the adjoint action by the symmetry sx at x = eH.
Further, Jx := adx̂ is the complex structure on T = m and it vanishes on N = h.8 Here
are the hermitian symmetric spaces:

– Grassmannians of oriented real 2-planes G+
2 (R

n+2) = quadric in CP
n+1,

– complex Grassmannians Gp(C
n),

– complex structures on R
2n and H

n, SO2n/Un and Spn/Un,
– two exceptional examples: E7/(S

1 · E6), E6/(S
1 · Spin10).

The extrinsic symmetric embeddingsM ⊂ V for the non-hermitian examples are as
follows. The groups SOn, Un, Spn are contained in their corresponding matrix spaces
V = K

n×n for K = R,C,H. The elements of Grassmannians are K-linear subspaces of
K

n, and replacing any subspace E by the orthogonal projection πE onto E, we embed
the Grassmannian into the space V = S(Kn) of symmetric or hermitian matrices over
K = R or K = H.9 Real and quaternionic structures on C

n are certain elements
(those which square to ±I) of the vector space V of complex-antilinear maps which are
symmetric or antisymmetric, respectively. The twisted sphere products (Sp×S

q)/± are
embedded into V = R

p+1⊗R
q+1 as the subset Sp⊗S

q; note that (−v)⊗ (−w) = v⊗w.
6A Kähler manifold is a Riemannian manifold M with an orthogonal almost complex structure J
on TM (making each tangent space TxM a complex vector space) which is parallel, ∇J = 0. Each
isometry maps J onto another parallel complex structure, but if M is irreducible, there are just J
and −J (only exception: hyper-Kähler manifolds, but those are never symmetric), thus the identity
component of the isometry group consists of holomorphic isometries.

7 In fact by Schur’s lemma, S1x equals the center of H when P is irreducible.
8All this can be seen nicely in the example M = S

2 ⊂ R
3 = so3 where Jxv = x× v = adx v.

9Essentially the same holds also for K = C. In fact, reflections are hermitian matrices, and the Lie
algebra un of Un also consists of hermitian matrices, up to a factor i. Let M = Gp(C

n) = Un/(Up×
Un−p) be the Grassmannian of p-dimensional subspaces of Cn with its standard embedding into un.
Consider a subspace E ∈ Gp(C

n). We have T = TEM = ( ∗
∗ ) ∩ un and N = NEM = ( ∗ ∗ ) ∩ un

with respect to the decomposition C
n = E + E⊥, for any E ∈ M . The generator J = JE of the

circle group S
1
E is the complex structure on T and zero on N , and this is J = ( i

0
) = iπE , acting on

un by ad. Even for the octonions K = O, this embedding by projections survives for OP
2 = G1(O

3),
see next footnote 10.



The four exceptional examples are embedded in the Lie triples (see footnote 11) V = p

corresponding to the exceptional symmetric spaces P = E7/SU8, E7/U1E6, E6/Sp4,
E6/F4, respectively.
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4. ESS are certain isotropy orbits of symmetric spaces.
Let M ⊂ S

n−1 ⊂ V = R
n be an indecomposable ESS. The extrinsic isometry group

K̂ = {A ∈ On : A(M) =M} and its connected component K = K̂o act transitively on
M . HenceM is the orbit of an orthogonal representation of K on V . According to Dirk
Ferus [14], this is a so called s-representation, the isotropy representation of another
symmetric space P = G/K. In other words, V carries the structure of a Lie triple,11

and M is an orbit of the connected component K of its automorphism group. More
precisely, M = AdK x for some x ∈ V with (adx)

3 = − adx. Ferus used the theory of
Jordan triple systems; here we sketch a more elementary argument taken from [12, 17].

Given a K-orbit M ⊂ V with x ∈M , let T = TxM and N = NxM = T⊥. The Lie
algebra k of K decomposes as k = k+ ⊕ k− where k+ is the Lie algebra of the isotropy
group K+ = {k ∈ K : kx = x} and k− an AdK-invariant vector space complement. As
usual, k− can be identified with T using the differential of the map k 7→ kx, restricted
to k− . We choose an AdK-invariant inner product on k with k+ ⊥ k− and such that the
isomorphism k− → T is an isometry.12 Now for any x, y ∈ V we define a “Lie bracket”
[x, y] ∈ k by its inner product with any A ∈ k:

〈A, [x, y]〉 := 〈Ax, y〉 . (5)

So far we haven’t used that the orbit M = Kx is extrinsic symmetric. But we have
to show the Jacobi identity for this “Lie bracket”, the vanishing of the expression
Jac(x, y, z) := [[x, y], z] + [[y, z], x] + [[z, x], y].13 For this we will use that T and N are
preserved by k+ and reversed by k−,

k+ = ( ∗
∗ ) ∩ k, k− = ( ∗

∗ ) ∩ k (6)

This is a direct consequence of the definition of an extrinsic symmetric space: the ex-
trinsic symmetries rx, x ∈ M reverse parallel tangent vector fields along any geodesic
γ with γ(0) = x, while parallel normal fields along γ are preserved. Thus the transvec-
tions kt = ryrx for y = γ(t/2) shift the parameter of γ by t and act as tangent and
normal parallel displacements along γ.

yx

s xξ ξ ξN

T

γ

y x

x

xw

s sw w

yss

s

10 In the last case we have V = S(O3), the space of hermitian 3 × 3-matrices over O, and M ⊂ V is
the subset of idempotents with trace one, like projections onto one-dimensional subspaces.

11A Lie triple is a euclidean vector space V = p with a Lie triple product, that is a symmetric
curvature tensor R : V ⊗3 → V ; “symmetric” means the additional property that R(v, w) : V → V
is a derivation of R for any v, w ∈ V . Élie Cartan observed that any Lie triple extends to a Lie
algebra g = p⊕ k where k is the Lie algebra of derivations of R and the Lie bracket on g for v, w ∈ p

and A ∈ k is given by [A, v] = Av and [v, w] = ∓R(v, w) while k ⊂ g is a subalgebra. Then g is a
Lie algebra and (g, k) a symmetric pair corresponding to a symmetric space P = G/K.

12Such metric exists for sure when M is symmetric and K its transvection group. Then k+ = [k−, k−]
and the metric on k+ is again defined by 〈A, [x, y]〉 = 〈Ax, y〉 for all A ∈ k+ and x, y ∈ k−, cf. [17].

13 If this “Lie bracket” V ⊗V → k is viewed as a curvature tensor (see footnote 11), the Jacobi identity
becomes the first Bianchi identity.



The generator of this transvection group (“infinitesimal transvection”) is the derivative
of parallel tangent or normal fields which has zero tangent or normal component, and
the surviving part of the derivative is the second fundamental form: For v = γ′(0) we
have d

dt

∣∣
t=0

kt = Sv, where

Svw = α(v, w), Svξ = −Aξv (7)

(see footnote 2) for all v, w ∈ T and ξ ∈ N . Obviously, the infinitesimal transvections
reverse T and N and they form a complement k− to k+. Moreover we have seen that
k− is closely related to the second fundamental form: k− = {Sv : v ∈ T}, and the linear
map v 7→ Sv: T → k− is an isomorphism with inverse map Sv 7→ Svx = −Axv = v.

For the “Lie bracket” this means [T, T ] ⊂ k+, [N,N ] ⊂ k+, [T,N ] ⊂ k− since
〈k+, [T,N ]〉 = 〈k+T,N〉 = 〈T,N〉 = 0 and similar for the other cases. More precisely,
for any v, w ∈ T and ξ, η ∈ N we have

[v, w] = [Sv, Sw] ∈ k+ ,
[v, ξ] = SAξv ∈ k− ,
[ξ, η] = −[Aξ, Aη] ∈ k+ .

(8)

In fact, for any A ∈ k+ we have:14

〈A, [v, w]〉 = 〈Av,w〉 = 〈SAv, Sw〉 = 〈[A, Sv], Sw〉 = 〈A, [Sv, Sw]〉 ,
〈Sw, [v, ξ]〉 = 〈Swv, ξ〉 = 〈α(w, v), ξ〉 = 〈w,Aξv〉 = 〈Sw, SAξv〉 ,
〈[ξ, η]v, w〉 = 〈[ξ, η], [v, w]〉 = 〈[ξ, η], [Sv, Sw]〉 = 〈[Sv, Sw]ξ, η〉 = −〈[Aξ, Aη]v, w〉.

Thus the Jacobi identities on T and N follow from the identies for the matrices Sv and
Aξ. The remaining Jacobi identities, 〈Jac(v, w, ξ), η〉, 〈Jac(v, ξ, η), w〉 = 0 follow from

〈S(Aξv)η, w〉 = −〈AηAξv, w〉 = −〈Aξv, Aηw〉 = −〈Svξ, Swη〉 = 〈SwSvξ, η〉.

In fact:

〈[v, w]ξ, η〉+ 〈[w, ξ]v, η〉+ 〈[ξ, v]w, η〉 = 〈[Sv, Sw]ξ, η〉+ 〈SAξwv, η〉 − 〈SAξvw, η〉
= 〈([Sv, Sw]− SvSw + SwSv) ξ, η〉 = 0

It remains to show (adx)
3 = − adx. Note first that T = [k, x] and hence ξ ∈ N ⇐⇒

0 = 〈[k, x], ξ〉 = 〈k, [x, ξ]〉 ⇐⇒ [x, ξ] = 0. Thus ker adx ∩V = N while ker adx ∩k = k+.
Their complements T and k− are mapped isomorphically onto each other by adx, more
precisely, for all v ∈ T we have

adx Sv = −Svx = Axv = −v , adx v
(8)
= −SAxv = Sv .

Thus (adx)
2 = −I on k−+T and adx = 0 on k++N . It follows that adx has eigenvalues

±i and 0 which is equivalent to (adx)
3 = − adx. We have proved:

Theorem 4. Extrinsic symmetric spaces M = K/K+ lie in an orthogonal Lie triple
V = p which belongs to as symmetric space P = G/K. They are orbits AdK x of the
connected automorphism group K of the Lie triple p, and the Lie triple structure can
be chosen such that

(adx)
3 = − adx . (9)

14We also use that the mapping v 7→ Sv: T → k− is K+-equivariant, Skv = kSvk
−1, and consequently

SAv = [A,Sv] for every A ∈ k+.



5. How to classify ESS.
The classification uses the condition (9). Lie triples p containing elements x with
ad3

x = − adx have been investigated and classified already 1964 by Kobayashi and
Nagano [18]. This is not difficult if we use the root system of p. Let P = G/K be a
symmetric space with Lie triple p. Recall: for any maximal abelian subalgebra a ⊂ p

(that is [a, a] = 0), the skew adjoint linear maps ada : g → g, a ∈ a commute and thus
have simultaneous eigenvalues iα(a) (where i =

√
−1) for some real linear form α on

a; these linear forms are called roots of p, the corresponding simultaneous eigenspaces
gα ⊂ g⊗C are the root spaces. Since ada is a real endomorphism, its eigenvalues come
in conjugate pairs, thus roots come in pairs ±α. There is a subset α1, . . . , αr (called
simple roots such that for any root α there are nonnegative integers n1, . . . , nr with
α =

∑
i niαi (“positive roots”) or −α =

∑
i niαi (“negative roots”). There is one root

δ, called highest root, all of whose coefficients ni(δ) are maximal, that is ni(δ) ≥ ni(α)
for any root α and all i ∈ {1, . . . , r}.

Let x ∈ p with (9). Hence i, 0,−i are the only eigenvalues of adx. We may assume
x ∈ a and that αi(x) ≥ 0 for i = 1, . . . , r. On gα we have adx = iα(x). Thus α(x) ∈
{0,±1}. In particular this holds for the highest root, hence δ(x) =

∑
i ni(δ)αi(x) = 1.

Since all ni(δ) ≥ 1, the element x must be a dual root x = ξj for some j ∈ {1, . . . , r}
with nj(δ) = 1, that is αj(x) = 1 and αi(x) = 0 for all i 6= j. Below we display the
Dynkin diagrams of the simple root systems with the numbers nj(δ) attached to αj

[24, p. 65]. The extrinsic symmetric elements x are dual to simple roots with weight 1.

nC
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An E

E

E

6

8

F

G

Dn

7

2

4

1

1

...
1 1 1 1

2 4 6 5 4 3 2

2

3

2 3 4 3 2 1

2

1 2 123

2 3 4 2

32

...
1 2 2 2 2

...
2 2 2 2 1

...
1 22 2

Theorem 5. The following table lists M , G, K, K+ where K/K+
∼= M ⊂ p is

indecomposable extrinsic symmetric and p is the Lie triple of the symmetric space
P = G/K, see [2, p. 311], [11].

M G K K+

SOn SO2n/(±) (SOn × SOn)/± ∆SOn/±
Un U2n/S

1 (Un × Un)/∆S
1 ∆Un/S

1

Spn Sp2n (Spn × Spn)/± ∆Spn
Gp(R

n) SUn SOn/± S(Op ×On−p)/±
Gp(H

n) SU2n Spn/± (Spp × Spn−p)/±
Un/On Spn Un/± On/±
U2n/Spn SO4n U2n/± Spn/±
(Sp × S

q)/± SOp+q+2 (SOp+1 × SOq+1)/(±) S(Op ×Oq)/(±)
(SU8/Sp4)/Z2 E7 SU8/Z4 Sp4/±
(S1 · E6)/F4 E7 (S1 × E6)/∆Z3 F4

G2(H
4)/Z2 E6 Sp4/± Sp2 × Sp2

OP
2 E6 F4 Spin9



Example. Consider M = SOn ⊂ R
n×n. Though R

n×n is a Lie algebra, this is not the
Lie triple system we are using. Instead, we embed R

n×n into R
2n×2n by X 7→

(
−XT

X

)
.

The image is the Lie triple p corresponding to Gn(R
2n with the isotropy representation

of K = SOn×SOn. ThenM = Kx with x =
(

−I
I

)
, henceM = {

(
−gT

g

)
: g ∈ SOn}.

Note that x commutes with
(

−A
A

)
and anti-commutes with ( S

S ) and
(
S

−S

)
where

AT = −A and ST = S. Thus adx = 0 on TxM and (adx)
2 = −I on NxM which shows

ad3
x = − adx.

6. ESS are real forms of hermitian symmetric spaces.

In section 3 we have seen that any hermitian symmetric space M̂ is extrinsic symmetric.
Then the Lie triple p is a Lie algebra g with its adjoint representation AdG, and
M̂ = AdG x for some x ∈ g with (adx)

3 = − adx. Thus (adx)
2 = −I on m := im adx =

[g, x] = T̂ (tangent space of the orbit M̂) and adx = 0 on h = ker adx = N̂ which is the
Lie algebra of the isotropy group H = {g ∈ G : gx = x}. Hence Jx := adx is a complex
structure on T̂ and 0 on N̂ , and τ = eπ adx = Adexp(π adx) is the extrinsic symmetry.

What about the other extrinsic symmetric spaces? In the general case we have a
symmetric space P = G/K with Cartan decomposition g = k⊕ p and M = AdK x ⊂ p

for some x ∈ p ⊂ g with (adx)
3 = − adx. Obviously, the K-orbit M is contained in the

G-orbit M̂ = AdG x which is hermitian symmetric. But even more is true: M ⊂ M̂
is a reflective submanifold, a fixed point component of an isometric involution. The
reflection is ρ = −σ where σ ∈ Aut(g) is the Cartan involution of the symmetric pair
(g, k), that is ρ = I on p and ρ = −I on k. In fact, ρ fixes x ∈ p and leaves M̂ invariant
since τ(Adg x) = −σ(Adg x) = −Adσg σx = Adσg x. Thus T̂ = TxM̂ splits into the

ρ-eigenspaces, T̂ = T̂ ∩ p⊕ T̂ ∩ k, and T̂ ∩ p = T . Hence the fixed point component of
ρ through x is tangent to T = TxM which shows that M is a fixed point component
of ρ.

Lemma. ρ|M̂ is anti-holomorphic.

Proof. We have Jgx = adgx for all g ∈ G where gx means Adg x. Thus for any v ∈ T̂ =

TxM̂

ρ(Jgxgv) = ρ([gx, gv]),
Jρgx(ρgv) = [ρgx, ρgv] = σ([gx, gv]) = −ρ([gx, gv]),

hence for all y = gx ∈ M̂ and w = gv ∈ TyM̂ we have ρ(Jyw) = −Jρyρw.

In particular, ρ|T̂ is complex antilinear with respect to the complex structure J = adx

on T̂ . In particular, dimM = 1
2
dim M̂ since J interchanges the ±1-eigenspaces of ρ.

Such submanifold M ⊂ M̂ is a real form of the hermitian symmetric space M̂ , that is
a reflective submanifold with respect to an antiholomorphic involution.

Vice versa, real forms M of hermitian symmetric spaces M̂ are reflective, fixed com-
ponent of an involution on M̂ . Reflective submanifolds of extrinsic symmetric spaces
are extrinsic symmetric, see the subsequent Lemma. Thus we have seen:

Theorem 6. (Takeuchi [28]) Extrinsic symmetric spaces are precisely the real forms
of hermitian symmetric spaces.



More precisely, the hermitian symmetric spaces have the following real forms [16].

Hermit. sym. space restrictions real forms

G+
2 (R

n+2) n = p+ q (Sp × S
q)/±

Gp(C
n) n = 2p Up

none Gp(R
n)

p, n even Gp/2(H
n/2)

SO2n/Un none SOn

n even Un/Spn/2
Spn/Un n even Spn/2

none Un/On

E7/S
1 · E6 (SU8/Sp4)/Z2

S
1 · E6/F4

E6/S
1 · Spin10 G2(H

4)/Z2

OP
2

Example 1. (Sp × S
q)/± ⊂ G+

2 (R
n+2). The embedding assigns to each pair (x, y) ∈

S
p×S

q the oriented plane with basis ±(x, y). This corresponds to [x+iy] ∈ CP
n+1 when

G+
2 (R

n+2) is considered as the quadric Q = {[w] ∈ CP
n+1 :

∑
w2

i = 0}. Apparently,

(Sp × S
q)/± is the set of those oriented planes on which the reflection S =

(
Ip

−Iq

)

has the same effect as the involution κ mapping any plane E = Span (x, y) onto itself
while changing the orientation from (x, y) into (x,−y). This map κ is just complex
conjugation [v] 7→ [v̄] on Q ⊂ CP

n+1. In other words, (Sp × S
q)/± is the fixed set of

the involution τ : E 7→ κ(SE) which is an anti-holomorphic involution on G+
2 (R

n+2).

Example 2. Up ⊂ Gp(C
2p). The embedding of Up into the Grassmannian Gp(C

2p)

assigns to each A ∈ Up its graph EA = {(x, y) ∈ C
p ⊕ C

p : y = Ax}. In other
words, E ∈ Up for some E ∈ Gp(C

2p) iff for any x ∈ C
p there is a (unique) y ∈ C

p

with (x, y) ∈ E, and further 〈x, u〉 = 〈y, v〉 for all ( x
y ) , ( u

v ) ∈ E. Equivalently, the

matrix S =
(

Ip
−Ip

)
turns E into E⊥ since 〈S ( x

y ) , ( u
v )〉 = 〈x, u〉 − 〈y, v〉 = 0. Thus

Up ⊂ Gp(C
2p) is the fixed space under the involution τ : E 7→ −SE. Recall that

Gp(C
2p) is embedded into the Lie algebra u2p by E 7→ irE where rE is the reflection

along E (with (±1)-eigenspaces E and E⊥). Then rE⊥ = −rE. Thus in this model, τ
is the map rE 7→ −rSE = −SrES−1 which is the conjugation with iS ∈ U2p. Since irE
defines the complex structure on Gp(C

2p), the involution τ is antiholomorphic since it
maps rE to −rSE.

Lemma. Every reflective submanifold M ⊂ M̂ is totally geodesic. If M̂ is extrinsic

symmetric then so is M .

Proof. A Reflective submanifold M ⊂ M̂ (a fixed component of some involution ρ on
M̂) is totally geodesic: every geodesic in M is also a geodesic in M̂ . This follows from
the uniqueness of small geodesic segments γ̂ in the ambient space M̂ with end points
in M , see figure.

γ
M

M

ρ
γρ( )



Now let M̂ ⊂ V̂ be extrinsic symmetric. As we will see in section 9, any isometry ρ
of M̂ extends to an isometry ρ̃ of the ambient vector space V (the argument is easy
when M̂ is Kähler symmetric). Let F ⊂ V be the fixed space of ρ̃. Then M = M̂ ∩F .
We show that M ⊂ F is extrinsic symmetric. For any x ∈ M let rx be the extrinsic
symmetry of M̂ at x. Since ρ̃ is an extrinsic isometry of M̂ , it conjugates the extrinsic
symmetries: ρ̃rxρ̃

−1 = rρ̃x. But ρ̃x = x since x ∈ F . Thus rx commutes with ρ̃ and
thus keeps the eigenspace F of ρ̃ invariant, defining an extrinsic reflection for M ⊂ F .

V
rx

ρ

M

F

M

~

x

7. ESS are midpoint components between center elements.
Since V = p is a Lie triple, it is the tangent space ToP of a symmetric space P = G/K
which we may choose to be compact and simply connected. For any x ∈ M ⊂ V
we consider the geodesic γx in P which starts from o = eK ∈ P with γ′x(0) = x.
Thus we define an m-parameter geodesic variation (m = dimM) whose variational
vector fields (Jacobi fields) along γx (when expressed in a parallel orthonormal basis
along γx) solve the ODE J ′′ + RxJ = 0 with Rxv := R(v, x)x. For any v ∈ TxM
we have R(v, x)x = −[[v, x], x] = −(adx)

2v = v since from (adx)
3 = − adx we obtain

(adx)
2 = −I on TxM . Using the initial condition J(0) = 0 (all geodesics of the

variation start at o), we obtain J(t) = (sin t)v. Hence Mt := expo(tM) is equivariantly
diffeomorphic to M for all t ∈ (0, π), and expo(πM) is a single point p which is thus
fixed by the action of K. We consider the midpoint set M ′ := Mπ/2. This is totally
geodesic [20, 25] as we shall see below.

x

v J

o

P

γx p

M=Kx

M’

The set of points p ∈ P which are fixed by K is called the center15 of (P, o). This is the
orbit of o under the normalizer group N = {g ∈ G : gKg−1 = K}. Since the symmetry
so at o commutes with any k ∈ K, conjugation with so preserves N .16 Thus so descends
from P = G/K to P̌ := G/N making P̌ a symmetric space covered by P , the so called
bottom space for P . Let π : P → P̌ be the covering map. It maps the center of (P, o) to
the single point ǒ = π(o), and π ◦ γx : [0, π] → P̌ is a closed geodesic. The submanifold
M̌ := π(M) ⊂ P̌ consists of the midpoints of geodesic segments starting and ending
at ǒ ; their midpoints are obviously fixed by the symmetry sǒ. Fixed point components

15 If P is a compact Lie group G with unit e, the center of (G, e) is the center in the sense of group
theory, the set of c ∈ G commuting with any g ∈ G. In fact, the isotropy group K at e is G itself,
acting on G by conjugation, and an element c ∈ G is fixed under conjugation with g ∈ G iff gc = cg.

16For all n ∈ N and k ∈ K we have sonsok = sonkso = sok
′nso = k′sonso where k′ = nkn−1 ∈ K,

hence sonso ∈ N .



of the symmetry at ǒ are called poles of ǒ if they are isolated points, and polars of ǒ if
they have positive dimension. A polar is reflective, hence totally geodesic. Thus the
preimage M under the local isometry π is also totally geodesic.17

The construction can be reversed: midpoints between center elements belong to
extrinsic symmetric spaces. In fact, let P = G/K be a symmetric space with base point
o and let p be a point in the center of (P, o). Consider the set of midpoints m = γ(1)
for all shortest geodesics γ : [0, 2] → P from o to p. Each of its connected components
M is a K-orbit Kv with γv(1) = m for some m ∈ M . Note that expo : Kv → M is
a diffeomorphism since a shortest geodesic from o to p is uniquely determined by its
mid point. Under the projection π : P → P̌ we have ǒ = p̌ and π(M) = M̌ is a fixed
component for the symmetry sǒ, hence a polar for ǒ. Then expǒ : Kv → M̌ is a local
diffeomorphism. This implies that Kv ⊂ ToM is extrinsic symmetric, see the following
lemma, applied to P̌ in place of P .

Lemma. Let P = G/K be a symmetric space with G,K connected and o = eK ∈ P
its base point. Let M = K expo v ⊂ P be a polar for o such that expo : Kv → M is a

local diffeomorphism. Then Kv ⊂ ToP is extrinsic symmetric.

Proof. The polar M is a fixed component of the symmetry so. Through any m =
expo v ∈ M there is a perpendicular reflective submanifold M⊥ ⊂ P called meridian:
the fixed set component of smso through m. The geodesic γv(t) = expo(tv) is closed
since it is reversed by so which fixes m = γv(1). It is also reversed by sm, hence it is
preserved by smso, thus it belongs to M

⊥, and in particular, d(smso)o fixes v.

M

m

o

Mv

m

o v

γs
sm
o

v

Further, exp := expo is equivariant with respect to isometries of P fixing o, that is
f ◦exp = exp ◦ dfo for each such isometry f . Differentiating at some v ∈ ToP we obtain

dfexp v ◦ d expv = d expdf.v ◦ dfo. (10)

We apply this equality to f := smso fixing m = exp v and restrict it to Tv(Kv) ⊂ ToP .
Since dfov = v, we have

dfm ◦ d expv = d expv ◦ dfo
On the left hand side we have dfm = −I on TmM = d expv(Tv(Kv)). Since d expv

is injective on Tv(Kv), we obtain also on the right hand side dfo = −I on Tv(Kv).
Thus the (±1)-eigenspaces of dfo contain in To(M

⊥) and Tv(Kv), respectively, and
since the dimensions of these subspaces of ToP are complementary, these are precisely
the eigenspaces. Hence Kv is extrinsic symmetric with extrinsic symmetry f at m =
exp v.

We have proved:

17 In fact, also M ⊂ P is reflective, see the remark below.



Theorem 7. Extrinsic symmetric spaces M lie in a Lie triple V = p = ToP , and
M can be embedded into P via expo as midpoint components of shortest geodesic from
o to center of (P, o). In fact this component is unique [20], so there is a one-to-one
correspondence between extrinsic symmetric spaces and center elements.

A particular case is when p is a center element of order 2, that is γ(2π) = o where γ|[0,π]
is a shortest segment from o to p as above. Then p is an isolated fixed point of so, a
pole, andM ′ is called a centriole, see [6]. The corresponding extrinsic symmetric spaces
M ⊂ p are precisely those with −M = M , sometimes called self-dual [5]. E.g. among
the Grassmannians only those of half-dimensional subspaces are self-dual. Chains of
centrioles play a crucial role in the proof of the Bott periodicity theorem, see [21]. In
fact, the points in centrioles are in one-to-one correspondence to shortest geodesics
between poles, and when non-minimal geodesics have high index, the set of minimal
geodesics may replace the full path space for low-dimensional homotopy.

Remark. A midpoint componentM between center elements is not a polar; it becomes
a polar only after applying the projection π : P → P̌ . But we can still show that M
itself is reflective as follows. This isometry ř = sm̌sǒ is covered by δsosm for any deck
transformation δ of π : P → P̌ , that is δ ∈ G with π◦δ = π. We will choose a particular
δ. The geodesic π◦γ is closed, and since π is a finite covering, the extension of γ is also
closed (with k-fold period). Let δ ∈ G be the deck transformation of order k sending
o to p by translating γ. We claim that r := δsosm fixes γ : S1 → P pointwise. In fact,
all three isometries δ, so, sm keep γ invariant,18 but so and sm act by reflections while δ
acts by rotation on S

1, shifting the parameter. The “rotation angle” (parameter shift)
is twice the distance between o and m, hence δ = smso along γ which proves our claim.

p omγ
δ sm so

In particular, r keeps o fixed, hence r ∈ K. It also fixes m, and since it descends to
the extrinsic symmetry ř of M̌ ⊂ P̌ at m̌, the differential of r at m ∈M looks as that
of ř at m̌ : it is −I on TmM and +I on NmM (= the normal space of M ⊂ P ). Thus
M is a fixed component of sm ◦ r.

8. Maximal tori of ESS are products of planar circles.
Which symmetric spaces allow extrinsic symmetric embeddings? Ottmar Loos [19] has
given the following characterization: precisely those whose maximal torus is isometric
to a product of circles. In fact, a little more is true [10]: maximal tori of extrinsic
symmetric spaces are again extrinsic symmetric and hence an extrinsic product of
planar circles, by the following lemma:

Lemma. [14, Thm. 3] Let F ⊂ V be extrinsic symmetric and full and a flat r-
dimensional torus with respect to the induced metric. Then F splits extrinsically as

F = C1× . . .×Cr where Ci ⊂ Vi ∼= R
2 are planar circles and V is the orthogonal direct

sum of the Vi, i = 1, . . . , r.

Proof. Since the torus F is flat, there exists a basis of parallel tangent vector fields Xa,
a = 1, . . . , r, and thus αab = α(Xa, Xb) are parallel normal fields spanning the normal

18Clearly so, sm preserve γ. Also the deck transformation δ preserves γ since δ maps the tangent
vector of γ at o to that at p, this is because γ covers γ̌, and hence the tangent vectors of γ at o and
p are both projected to the tangent vector of γ̌ at ǒ = p̌.



bundle NF . The shape operators Aαab
are parallel too, and they commute because of

the Ricci equation [Aξ, Aη] = −RN
ξ,η which vanishes when ξ is parallel. Thus the Aαab

have a parallel common eigenspace decomposition TF = E1⊕· · ·⊕Er, and in particular
α(Ei, Ej) = 0 for i 6= j. We claim that there is a corresponding extrinsic decomposition
F = F1 × . . .× Fr with Fi ⊂ Vi and V = V1 ⊕ · · · ⊕ Vr. In fact, α(Ei, Ei) ⊥ α(Ej, Ej)
for any i 6= j since 〈α(Ei, Ei), α(Ej , Ej)〉 = |α(Ei, Ej)|2 = 0 by Gauss equations (using
that F is flat). Hence 〈∂vα(Ei, Ei), w〉 = −〈α(Ei, Ei), α(v, w)〉 = 0 whenever v or w
are perpendicular to Ei. In particular, the linear subspace Vi = Ei ⊕α(Ei, Ei) satisfies
∂Vi ⊂ Vi and hence it is constant, that is independent of x ∈ F .

It remains to show that Fi ⊂ Vi is a circle in a plane. In fact, by definition of Ei

we have Aαab
= λiabI on Ei for some real constant λiab. Hence for v, w ∈ Ei we have

〈α(v, w), αab〉 = 〈Aαab
v, w〉 = λiab〈v, w〉. Thus α(v, w)/〈v, w〉 does not depend on v, w

which shows that α(v, w) = 〈v, w〉ηi for some ηi ∈ α(Ei, Ei) ⊂ N and all v, w ∈ Ei. In
particular, Fi has codimension one in Vi. Thus Fi is a sphere of radius 1/|ηi|: Note that
Aηi = −|ηi|2I and hence for the position vector x we have ∂v(x+ tAηi) = v− t|ηi|2v = 0
for t = 1/|ηi|2. Thus the point c = x + ηi/|ηi|2 is constant along Fi: this is the center
of the sphere. Since Fi is flat, it must be one-dimensional, a circle.

Unfortunately, we cannot show directly that the maximal torus F ⊂M (the “flat”)
is an extrinsic symmetric subspace of M . But we find an extrinsic symmetric subspace
M ′ ⊂ M with yet the same maximal torus F such that M ′ is intrinsically a metric
product of a torus F ′ with some round spheres Si, and for such M ′ it is easy to show
that the maximal torus is itself extrinsic symmetric.

The main technical tool is the observation that reflective submanifolds of extrinsic
symmetric spaces are extrinsic symmetric, see Lemma in section 6. This can be used
first to show that the maximal torus of M ′ is a product of circles, using the reflections
along a point or a great circle in every single sphere factor.19 But the same argument
proves also the reduction from M to M ′. We claim that the so called meridians are
extrinsic reflective submanifolds of M containing a maximal torus of M .

Recall that reflective submanifolds in a symmetric space M appear in orthogonal
pairs: If P1 ⊂M is reflective, a fixed component of a reflection τ , there is an orthogonal
reflective submanifold M1 through any p ∈ P1 which is a fixed component of spτ . In
particular, if P1 is a polar, that is a positive-dimensional fixed component of a symmetry
τ = sx of M , then M1 is called a meridian, cf. [6]. Consider a shortest geodesic γ from
x to P1 with end point p ∈ P1. Then γ meets P1 perpendicularly at p, hence it belongs
to M1. The geodesic γ extends beyond p to a geodesic segment starting and ending
at x with midpoint p. Let F be a maximal torus of M with γ ⊂ F . Since sx keeps
F invariant, p is a pole or an element of a polar for x also in F . But a flat torus
cannot have polars,20 hence p is an isolated fixed point of sx in F , a pole. In other
words, sp = sx along F . Thus F belongs to the fixed component of spsx through

19The fixed set of the reflection along a great circle Ci in one of the sphere factors Si of M ′ is the
product of Ci with the remaining factors. Repeating this process for the fixed set we end up with
the maximal torus F = C1×. . .×Cr×Fo of M

′. But why is this reflection extrinsic? This is obvious
only if ni = dimSi is odd since the reflection along a plane in R

ni+1 has positive determinant (and
thus lies in the transvection group) iff ni is odd. But if ni is even, we can use the point reflection
in Si (which is now a transvection); its fixed component is the product omitting the factor Si.
However, we will see in section 9 that all isometries are extrinsic.

20The shortest geodesics from x to a polar Px meet the totally geodesic subspace Px perpendicularly,
hence the corresponding Jacobi fields vanishing at x have zero derivative at Px which is impossible
in a flat space.



p : this is the meridian M1. Repeating the process by taking meridians of meridians
M ⊃M1 ⊂M2 ⊃ . . . , we end up with an extrinsic symmetric space Mk =M ′ without
a polar.

We claim first that every totally geodesic semisimple21 subspace of M ′ is simply
connected. Otherwise, such subspace M ′′ ⊂ M ′ had a nontrivial covering π : M̃ ′′ →
M ′′. Let γ̃ be a shortest geodesic connecting two preimages x̃1, x̃2 of x ∈ M ′′ and p̃
its midpoint. Then p = π(p̃) is the midpoint of the geodesic γ = π ◦ γ̃ in M ′′ starting
and ending at x. Thus p is a pole or an element of a polar of x. But if it were a pole,
all Killing fields (infinitesimal isometries) vanishing at x would also vanish at p and p
were a conjugate point for x. This is excluded since the lift γ̃ is shortest beyond p̃.
Thus p lies in a polar to x in M ′′ ⊂M ′ which was excluded. This proves our claim.

Now we know that any semisimple totally geodesic subspace M ′′ ⊂ M ′ is simply
connected. Then in a maximal torus F ′′ of M ′′, the unit lattice Γ = {v ∈ TxF

′′ :
expx v = x} is spanned by the inverse roots δ̌ = 2δ∗/〈δ, δ〉 where δ runs through the
root system of M ′′ for the maximal abelian subalgebra a = TxF

′′ (see section 5) and
where δ∗ ∈ a is the root vector, 〈δ∗, v〉 = δ(v) for all v ∈ a. In particular, δ(δ̌) = 2,
and when δ is a root of maximal length, there is another root α with α(δ̌) = 1 as we
read off from the root systems of rank ≤ 2.

A2
α

δ

G2

δα

δ

BC2

α
α

, BC1,2C

Along the closed geodesic γ(t) = exp tδ̌, t ∈ [0, 1], some Jacobi fields J with J(0) = 0
vanish at t = 1

2
, others only at t = 1 (when J ′(0) lies in the root space of δ or

α, respectively), and therefore the midpoint γ(1
2
) belongs to a polar. Since this was

excluded, the root system of M ′′ must be A1 × . . . × A1, and since M ′′ is simply
connected, it is a product of spheres. We have proved:

Theorem 8. The maximal torus of a compact extrinsic symmetric space is the extrinsic
product of planar circles.

9. Isometries of ESS are extrinsic.
By definition of an extrinsic symmetric space M , all isometries which are generated by
symmetries extend to the ambient space, in particular all transvections. But we claim
more: all isometries of M extend to the ambient space.

For hermitian symmetric spaces this is not difficult to prove, see [9]. Such a space
M̂ = G/H is embedded into the Lie algebra g of its own transvection group G as an
adjoint orbit AdG x, where x ∈ g is the canonical generator of the center S1

x of H = Gx,
see section 3. Let f be any isometry of M̂ . Replacing f by g ◦ f for some g ∈ G if
necessary, we may assume f(x) = x. The conjugation g 7→ fgf−1 defines an orthogonal

x Px

21A symmetric space is called semisimple if it has no flat local factor.



automorphims φ of the full isometry group and of its connected component G, and φ
preserves also the isotropy subgroup H of x since fhf−1x = x for all h ∈ H. Thus its
differential φ∗ is an orthogonal automorphism of g with φ∗x = ±x since φ preserves
S
1
x. Further,

φ∗(gx) = φ∗ Adg x = Adφ(g) φ∗x = ±Adφ(g) x ,
f(gx) = fgf−1x = φ(g)x = Adφ(g) x .

This shows that ±φ∗ : g → g keeps M̂ ⊂ g invariant with ±φ∗|M̂ = f .

One should be able to extend this proof to a non-hermitian extrinsic symmetric space
M since this is a real form of a hermitian symmetric space M̂ . However, we cannot
show directly that any isometry of M extends to an isometry of M̂ ; this follows only
afterwards as a consequence of our theorem that all isometries are extrinsic.

We start as before. Given an isometry f of K/K+
∼= M = AdK x ⊂ p fixing the base

point x, we define an automorphism φ of K preserving K+ (the isotropy group of x) by
putting φ(k) = fkf−1. But now φ∗ does not act on the ambient space p but on k. In
fact we show that f can be extended to the ambient space p if and only if φ∗ extends
to an automorphism of g = k + p. This extension exists when K is the transvection
group of an extrinsic symmetric space in p as we have shown by a careful case-by-case
study [11]. A classification-free argument is still missing.

Let us discuss just one example: the space M of real structures on C
n, n ≥ 3, embed-

ded in the space V = p of symmetric C-antilinear maps on C
n. We have M = K/K+

with K = Un/± and K+ = On/±, and P = G/K with G = Spn/±. We look for all
automorphisms φ of K which preserve K+ (“admissible automorphisms”) and ask if φ∗

extends to g. First we consider the covering group K̃ = SUn×S
1. The automorphisms

of K̃ have the form φ̃ = (φ1, φ2) with φ1 ∈ Aut(SUn) and φ2 ∈ Aut(S1). The Dynkin
diagram of SUn is the string An−1 (see section 5) which has two diagram automor-
phisms, the identity and the reflection. Thus there are two classes of automorphisms
of SUn modulo inner automorphisms, represented by the identity id and the complex
conjugation κ. Further, S1 has only one nontrivial automorphism, complex conjugation
κ. But in Un the circle S

1 = {λI : |λ| = 1} intersects the subgroup SUn at its center
Z = {ζkI : k = 1, . . . , n} where ζ = e2πi/n. Hence φ̃ = (φ1, φ2) descends to Un/± if
and only if φ1(ζI) = ±φ2(ζ).
Case 1. When φ1 is inner, the center is kept fixed, which forces φ2(ζ) = ±ζ. Thus
φ2 = id and φ is inner, except in the case n = 4 (ζ = i) where φ2 = κ is possible.
Case 2. When φ1 = κ modulo inner automorphisms, we must have φ2(ζ) = ±ζ̄, hence
φ2 = κ and φ = κ (unless n = 4 when also φ2 = id is possible).
Inner automorphisms extend to any larger group, here to G = Spn/±, and also κ
extends to Spn/± via the conjugation by jI. Alternatively, we may construct the
extension of κ to the ambient space p directly as the conjugation X 7→ κXκ for any
X ∈ p where p is the space of symmetric antilinear maps on C

n.
Yet in the case n = 4 there are “mixed” automorphims on U4/±, namely φ : ±A 7→

±A/
√
detA and its composition with κ. In fact, φ1 = id on SU4 and φ2 = κ on S

1 since
det(φ(A)) = det(A)/

√
det(A)4 = 1/ detA = κ(detA). But φ is not admissible, since it

does not preserve K+ although it does preserve its identity component Ko
+ = SO4/±.

But K+ has another component K1
+ = {±A : A ∈ O4, detA = −1}, and this is not

preserved by φ as
√
detA is no longer real. Likewise, φγ cannot preserve K+ for any

inner automorphism γ(u) = gug−1 on U4 : otherwise, γ would preserve Ko
+, but then



(being a conjugation in U4) it would also preserve K+, and consequently φγ would not
preserve K+, a contradiction.

Another example is very similar: the half-dimensional real Grassmannians Gn(R
2n) =

K/K+ with K = SO2n/± and K+ = S(On×On)/± where P = G/K with G = U2n/±.
Again n = 4 is problematic since SO8/± has the triality automorphism φ : ±SvSw 7→
±Lv̄Lw where Sv denotes the reflection along the hyperplane v⊥ and Lw is the left
multiplication with the octonion w ∈ R

8 = O. But as before, φ is not admissible. It
preserves the connected component Ko

+ = (SO4 × SO4)/± of K+, but not the other
component K1

+ = {±(A,B) : A,B ∈ O4, detA = detB = −1}. We obtain:

Theorem 9. Every isometry of an extrinsic symmetric space extends to an isometry
of the ambient space.

10. ESS have a noncompact transformation group.
Extrinsic symmetric spaces M ⊂ V have yet another surprising feature: they are so
called R-spaces, allowing for a noncompact transformation group which extends the
isometry group. E.g. for M = S

n ⊂ R
n+1 this is the Moebius group of conformal

transformations, for M = Gp(K
n) ⊂ S(Kn) it is the group of linear transformations

modulo its center, PGL(Kn). What is the relation between this noncompact group
action and the extrinsic symmetric embedding? In the simplest example M = S

n ⊂
R

n+1 this can be visualized.
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Consider the height function fv : Sn → R, fv(x) = 〈x, v〉 for any fixed v ∈ R
n+1, e.g.

v = en+1. Its gradient at any point P ∈ S
n is the projection w of v onto the tangent

plane T = TPS
n (see left figure above). It is well known that the flow of this tangent

vector field w consists of conformal diffeomorphisms of Sn. This can be seen from
the right figure which shows that w after stereographic projection from the north pole
N = v becomes the identical vector field w′(x) = x on H = R

n.22 The flow of this
vector field w′ consists of the homotheties φt(x) = etx. These are conformal maps, and
since stereographic projection preserves conformality, the gradient flow on S

n consists
of conformal transformations too. The choice of v was arbitrary (for general nonzero
v ∈ R

n+1 we choose N = v/|v| as north pole). Thus we obtain an (n + 1)-parameter

22The vector w = ~PR is the orthogonal projection of v onto the tangent hyperplane T at P ∈ S
n.

Stereographic projection Φ from N maps S
n \ {N} onto an affine hyperplane H ⊥ N . We may

assume P ∈ H. Then w′ = Φ∗w is the projection of w onto H along the projection line NP .
Choose O′ = H ∩ RN as the origin of H. Let x = ~O′P . Since the quadrangle NOPQ is a rhomb
(NQ ||OP ), the rectangular triangles PRN and PO′N are congruent, hence |w| = |x|. Since the
projection line NP is perpendicular to the bisector (dotted line) between the tangent hyperplanes
To in N and T in P , we have |w′| = |w|. Thus |w′| = |w| = |x| and hence w′ = x since w′ and x
are pointing to the same direction.



family of nonisometric conformal diffeomorphisms, and together with the orthogonal
group we have n + 1 + 1

2
n(n + 1) = 1

2
(n + 1)(n + 2) parameters; this number is the

dimension of the Moebius group (which is the Lorentz group in R
n+2).

This is true in general [13]: for any extrinsic symmetric spaceM ⊂ p, the gradient flows
of the height functions fv(x) = 〈x, v〉, v ∈ p, generate a noncompact group G∗ ⊃ K
acting on M and extending the K-action, and the Lie algebra of g∗ has the vector
space decomposition g∗ = k⊕ p. However, this is not the Lie algebra g of the group G
introduced in sections 4 and 6 since G∗ is noncompact. In fact, K ⊂ G∗ is the maximal
compact subgroup, and the symmetric space P ∗ = G∗/K is the noncompact dual of
P = G/K where the Lie bracket on p is changed by a sign: [v, w]∗ := −[v, w]. This
new Lie triple will be denoted p∗ or ip (where i =

√
−1).

Let us first describe the action of G∗ on M . Let x ∈ M ⊂ p∗ be fixed. As before,
h∗ := ker adx = k+ + N (where N = NxM is the normal space) is the Lie algebra of
the isotropy group H∗ of x under the adjoint action of G∗ on g∗,

H∗ = {g ∈ G∗ : Adg x = x}. (11)

Moreover, adx maps T = TxM ⊂ p onto k− = k ∩ ( ∗
∗ ) and vice versa, but this time

we have (adx)
2 = I on T + k− (instead of (adx)

2 = −I), due to the sign change of the
Lie bracket on p∗. Thus we have an eigenspace decomposition23

g∗ = n− ⊕ h∗ ⊕ n+ (12)

where adx = ±I on n± and adx = 0 on h∗. Let σ ∈ Aut(g∗) be the involution
corresponding to the symmetric pair (g∗, k) (that is σ = I on k and σ = −I on p∗).
Then σx = −x and hence σn± = n∓ while σh∗ = h∗. Let

Q = {g ∈ G∗ : Adg(x+ n−) = x+ n−}. (13)

Lemma. Q is a subgroup of G∗ with H∗ ⊂ Q, and its Lie algebra q contains h∗ + n−.

Moreover, K ∩Q = K+ where K+ = {k ∈ K : kx = x}.

Proof. Let h ∈ H∗, that is Adh x = x (see (11)). Thus Adh commutes with adx:

Adh adx y = Adh[x, y] = [Adh x,Adh y] = [x,Adh y] = adx Adh y.

Hence Ad(h) preserves the eigenspaces of adx and in particular Adh(x+ n−) = x+ n−.
This implies h ∈ Q, see (13). Hence h∗ ⊂ q. But also n− ∈ q. To show this, we pick
z ∈ n−. Clearly, Adexp z n− = n−, and

Adexp z x = eadzx = x+ adz x+
1

2
(adz)

2x+ · · · = x+ z ∈ x+ n−

since adz x = −[x, z] = z and adz(adz x) = adz z = 0. Thus exp z ∈ Q and z ∈ q.
Further, for all k ∈ K ∩Q we have x+n− = k(x+n−) = kx+kn−, hence kn− = n−

and kx ∈ x + n−. Thus kx− x ∈ p∗ ∩ n− = {0} whence kx = x, so k ∈ K+. We have
shown K ∩Q ⊂ K+. Vice versa, K+ ⊂ K ∩Q since K+ ⊂ H∗ ⊂ Q.

23This was the starting point in the earliest paper on this subject, [18]



We let K ⊂ G∗ act by left multiplication on the coset space M ′ := G∗/Q. Its Lie
algebra is

k = Fix(σ) = h∗ ∩ k+ (n+ + n−) ∩ k = k+ + {v + σv : v ∈ n+} .

Then k+q ⊃ k+h∗+n− = {v+σv : v ∈ n+}+h∗+n− = g∗, hence K ⊂ G∗ is transversal
to Q and thus the K-orbit of eQ ∈ G∗/Q = M ′ is open. But K is compact, therefore
the K-orbit is also closed and K acts transitively on G∗/Q. Its isotropy group at eQ is
K ∩Q = K+ (see the lemma above), thus M ′ = K/K+ =M where eQ ∈M ′ becomes
x ∈M .

Now we show that this action of G∗ on M is generated by the negative gradient
flows of the height functions fv. Let v ∈ p∗ and x ∈ M ⊂ p∗. We have v = vN + vT
with vN ∈ N = p∗ ∩ h∗ and vT ∈ T = p∗ ∩ (n+ + n−). Using σ = −I on p∗ we can
put vT = v+ − σv+ for some v+ ∈ n+. Let us denote w.x := d

dt

∣∣
t=0

exp(tw)x for any
w ∈ g∗ and x ∈ M (infinitesimal action). Then v.x = (v+ − σv+).x = (v+ + σv+).x
since vN ∈ h∗ ⊂ q and σv+ ∈ n− ⊂ q. But v+ + σv+ ∈ k and hence (v+ + σv+).x =
[v+ + σv+, x] = − adx(v+ + σv+) = −(v+ − σv+) = −vT . Thus

v.x = −vT = −∇fv(x). (14)

There is yet another model for this G∗-action, see [7] for details. The symmetric
space P ∗ = G∗/K is a Hadamard manifold (simply connected, sectional curvature ≤ 0)
which can be compactified by the Eberlein-O’Neill boundary. The ideal boundary
points (points at infinity) are the equivalence classes [γ] = γ(∞) of geodesic rays γ
where two geodesic rays are called equivalent when they have bounded distance. The
set of all ideal points is called the ideal boundary P ∗(∞) on which the isometry group
G∗ of P ∗ acts naturally. For any p ∈ P ∗ and every ω ∈ P ∗(∞) there is exactly
one geodesic ray γ with γ(0) = p with γ(∞) = ω. This defines a homeomorphism
ψp : SpP

∗ → P ∗(∞) (where SpP
∗ is the unit sphere in TpP

∗) sending v ∈ SpP
∗ to

γv(∞), and ψp is equivariant with respect to the isotropy group G∗
p ⊂ G∗. In particular

this is true for the base point o = eK where G∗
o = K. Further, ξ = ψo(x) ∈ P ∗(∞) is

fixed by Q = H∗N− with N− = exp(n−). Since g
∗ = k+h+n− = k+q (with k∩q = k+)

and G∗ = KQ, the orbits G∗ξ and Kξ on P ∗(∞) are the same, G∗ξ = KQξ = Kξ.24

Theorem 10. Let M ⊂ p be extrinsic symmetric with transvection group K. Let G∗

be the (noncompact) Lie group containing K and with Lie algebra g∗ = k + ip. Then
there is an action of G∗ on M extending the action of K, and this action is generated
by the (negative) gradient flows of the height functions on p.

Problem. For every extrinsic symmetric space M , describe the non-metric geometry

on M whose automorphism group is G∗.

For M = S
n this is conformal geometry, for M = RP

n it is projective geometry. The
non-metric geometry has been used in [5] for surface theory on M . General answers
have been given in [29, 15, 4].

11. ESS contain their noncompact duals.
The hyperbolic plane has two classical models: Poincaré and Klein. In both cases, the
underlying set is the open unit disk D

2, but while in the Klein model the geodesics are

24This is true even for arbitray ξ ∈ P ∗(∞) by the Iwasawa decomposition of G∗.



line segments, in the Poincaré model they are orthocircles, circular arcs perpendicular
to the boundary circle.

Klein Poincare

There is a deeper reason for the two models: The hyperbolic plane H2 is dual to
two different extrinsic symmetric spaces: projective plane RP

2 and the sphere S
2.

According to a theorem of Nagano [22], every extrinsic symmetric space M contains
its noncompact dual space M∗, and the isometry group of M∗ becomes a subgroup of
the noncompact transformation group G∗ on M . Thus H2 is embedded as D2 ⊂ R

2 ⊂
RP

2 into RP
2 (Klein model) and as the upper hemisphere into S

2 with its conformal
group preserving circles and angles (Poincaré model). Nagano’s equivariant embedding
M∗ ⊂M can be easily seen as follows.

Let M = K/K+ ⊂ p be extrinsic symmetric where p belongs to the symmetric space
P = G/K. The Lie algebra of G decomposes as

g = k+ p = k+ + k− + T +N

where adk+ leaves all four summands invarant, and k−, T and N are Lie triples with
brackets in k+ while [T,N ] ⊂ k− and [T, k−] ⊂ N , see (6), (8) in section 4. Further, adx

vanishes on k+ +N , and it interchanges k− and T with (adx)
2 = −I on k− + T . Since

adx is a derivation, it follows for all v, w ∈ T

[adx v, adxw] = adx[v, adxw]− [v, (adx)
2w] = [v, w]

since [v, adxw] ∈ [T, k−] ⊂ N ⊂ ker adx. Therefore k+ + T is a subalgebra isomorphic
to k (while k+ + N = h is the Lie algebra of the isotropy group H of the hermitian
symmetric space AdG x).

The large symmetric space P = G/K has the dual space P ∗ = G∗/K where the Lie
algebra of G∗ is g∗ = k + ip. Let k∗ = k+ + iT ⊂ g∗ and K∗ ⊂ G∗ the connected
subgroup with Lie algebra k∗. Then M∗ = K∗/K+ is the dual space of M . This is
embedded into M = Kx = G∗x as K∗x ⊂ G∗x, and K∗x is an open subset in M since
Tx(K

∗x) = k∗.x ∼= k∗/k+ has the same dimension as TxM = k.x ∼= k/k+. Thus:

Theorem 11. Let M = K/K+ be an extrinsic symmetric space with noncompact
transformation group G∗. Then there is an K∗-equivariant embedding M∗ ⊂ M as an
open subset.

Conjecture. K∗ = {g ∈ G∗ : g(M∗) =M∗}.
The conjecture is true for conformal and projective geometry.

12. ESS in symmetric spaces come from ESS in euclidean space.
Let P be any Riemannian symmetric space. A submanifold M ⊂ P is called extrinsic
symmetric if for any x ∈ M there is an isometry rx of P fixing x such that (rx)∗
on TxP is the reflection along NxM and rx(M) = M . Totally geodesic extrinsic



symmetric subspaces are just reflective subspaces. For the non-totally geodesic ones
the case rank(P ) = 1 is different, see [1] and the references within. For higher rank,
the non-totally geodesic extrinsic symmetric spaces have been classified in [23] for the
compact case and in [3] for the noncompact case.

Theorem 12. Let P be an irreducible symmetric space of rank ≥ 2. If P is compact
and M ⊂ P extrinsic symmetric but not totally geodesic, then M is congruent to
expoMo for some extrinsic symmetric space Mo ⊂ p = ToP . If P is noncompact, there
is an analogous result, but allowing also for noncompact M .

The proof uses a series of long papers by Naitoh, see references in [23, 1]. Here we
sketch only a partial case with a short classification-free proof [8]. IfM ⊂ P is extrinsic
symmetric and rx the extrinsic reflection at some x ∈M , there is a reflective subspace
M ′ ⊂ P through x with TxM

′ = TxM . It is the fixed point component through x of
the involution sxrx where sx denotes the symmetry of P at x. We make the additional
assumption that M ′ is irreducible of rank ≥ 2 (or all its local factors have rank ≥ 2).
Then we can use the following consequence of Berger-Simons’ holonomy theorem [2]:

Lemma. Every irreducible holonomy group H is a maximal subgroup of some linear

group which acts transitively on the unit sphere.

Proof. If (V,R,H) is a holonomy system, that is R is an algebraic curvature tensor
on some euclidean vector space V with R(v, w) ∈ h for all v, w ∈ V , then (V,R,H ′)
is again a holonomy system for any compact linear group H ′ ⊃ H on V . If H acts
irreducibly, then so does H ′, and if H ′ does not act transitively on SV , then according
to Simons’ theorem, (V,R,H ′) is a symmetric holonomy system which means that H ′

preserves the curvature tensor R. Then (V,R) is a Lie triple system, R(v, w) = [v, w].
We have {[v, w] : v, w ∈ V } ⊂ h ⊂ h′, but if A ∈ h′ is perpendicular to all [v, w], then
0 = 〈A, [v, w]〉 = 〈Av,w〉 for all v, w ∈ V and therefore A = 0. Thus h = h′.

Now we observe that the curvature tensor RP of the ambient space which is parallel for
the connection D on P is also parallel for the induced connection ∇ on TM . In fact, if
we consider parallel tangent vector fields a, b, c, d along some curve onM , the derivative
of the expression 〈RP (a, b)c, d〉 vanishes since 〈RP (a, b)c, d〉′ = 〈RP (a′, b)c, d〉 + . . .
where a′ denotes the D-derivative along the curve. By ∇-parallelity, a′ is normal and
hence 〈RP (a′, b)c, d〉 = 0 since the restriction of RP to TxM is a Lie triple (it is the
curvature tensor of M ′). The same holds for the omitted three terms. Let H and H ′

be the identity components of the isotropy groups (= holonomy groups) of M and M ′.
Since RP |TM is ∇-parallel, it is fixed under H. Thus H ⊂ H ′ since H ′ is the identity
component of the automorphism group of RP |TxM . Using our rank assumption and the
lemma above we obtain H = H ′ and thus RM = λRP |TxM for some constant λ 6= 0.
Thus the Gauss equations RM − RP = α ∧ α look essentially like the euclidean ones,
RM = α ∧ α. A similar argument holds for Codazzi and Ricci equations. Using the
existence theorem for submanifolds we thus obtain an equivariant embedding Mo of
M into the euclidian space p = ToP which is extrinsic symmetric. Comparing the
parameters we see from the congruence theorem in P that M ∼= expo(tMo) for some t.
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