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introduction

「レーザープラズマ科学のための
最先端シミュレーションコードの
開発・共用に関する研究会」

レーザー核融合
EUV光源開発
中性子源
レーザーアブレーション

etc..

1次元, 2次元統合コードを開発する

流体
状態方程式
熱伝導
輻射輸送
レーザー伝播
原子過程

MHD
Nonlocal

etc..

PIC

Monte-Carlo

MD

DSMC

2016年と同じスライド
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star1d

star2d (CIP version)

star2d (HLLC version)

Langevin MD

DSMC
SPH

star2d (HLLC-semi-Lagrangian version)

今年は二次元コードで1μsレベルの計算が
できるようにしたい  + MHD

改良型QEOSテスト

今年こそバグとり職人を脱却したい（論文を書くぞ！）

2016年と同じスライド



2003

2005

2010

2015

2017

star1d

star2d (CIP version)

star2d (HLLC version)

Langevin MD

DSMC
SPH

star2d (HLLC-semi-Lagrangian version)

今年は二次元コードで1μsレベルの計算が
できるようにしたい  + MHD

改良型QEOSテスト

今年こそバグとり職人を脱却したい（論文を書くぞ！）

2017年のスライド

2016 star2d (Bug fix. Laser raytrace)
Maxwell solver

ALE化 核反応



Star2Dへのレーザー光線追跡ルーチンの導入
まだ x-y, r-zのみ

対応

F - number = 10
r(HWHM)=170μm
＠x=500μm

170μm

Ray 100本

axis symmetry



電子密度



レーザー吸収
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• Star2Dにlaser raytraceルーチンを導入した
x-y, r-z（円柱座標）のみ

•  r-θ (球座標)についても近日完成予定

• 斜め入射部分については　straight line近似と　
raytraceでは計算結果が大きく異なる

まとめ

• Star1Dに続き、Star2Dについても本格的に
使って頂きたく候

• ALE, MHD



Diffusion of external magnetic fields                 
into the cone-in-shell target in the fast ignition

Atsushi Sunahara

Institute for Laser Technology
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magnetic field

◉

×

Au cone  (Conductor)

coil

J

B

imploded 
core

Motivation

Magnetic guiding of fast electrons is very important in our fast ignition scheme.

We will simulate the diffusion of externally applied magnetic field into the 
interior of the cone target.

LFEX laser

fast electrons

We observed
1 to 3keV Te

by LFEX heating
with magnetic guiding
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Summary

In order to simulate the temporal evolution of magnetic field, 
we developed Maxwell solver in  the cylindrical coordinates.

We calculated the electrical conductivity of gold in the range from 
0.4 to 5 eV.

We have simulated the diffusion of externally applied magnetic field 
into the interior of the cone target with 106 S/m.

Magnetic diffusion time is 0.5ns / 40μm thick gold of 106 S/m, which 
is short enough for the fast ignition exp. However, the intensity of 
magnetic field inside cone is reduced by the eddy current.

The surface of the cone can be heated by the eddy current. However 
the bulk of the gold wall remains at the temperature lower than 0.4 eV.

With 104 S/m conductivity, the magnetic field can diffuse so faster and 
the intensity of magnetic field inside the cone is comparable to that 
outside the cone wall.
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2D cylindrial Maxwell equation solver by characteristic line
method

A. Sunahara

May 30, 2016

1 Basic Equation

We start from Maxwell equations in SI unit shown as;

∇×E = −∂B

∂t
(1)

∇×H =
∂D

∂t
+ J (2)

D = ϵE (3)

B = µH (4)

For the cylindrical coordinate(r,φ, z), each component of vector ∇×A can be written
as;

(∇×A)r =
1

r

∂Az

∂φ
−

∂Aφ

∂z
(5)

(∇×A)φ =
∂Ar

∂z
− ∂Az

∂r
(6)

(∇×A)z =
1

r

∂

∂r
(rAφ)−

1

r

∂Ar

∂φ
(7)

Using these transformation, Faraday law can be written as;

−∂Br

∂t
=

1

r

∂Ez

∂φ
−

∂Eφ

∂z
(8)

−
∂Bφ

∂t
=

∂Er

∂z
− ∂Ez

∂r
(9)

−∂Bz

∂t
=

1

r

∂

∂r
(rEφ)−

1

r

∂Er

∂φ
(10)

1

Maxwell equation

Ohm’s law

r

zφ
axis symmetry

・

・ A(r, Φ, z)

Assuming the uniformity in φ direction, ∂
∂φ = 0, they are reduced to be;

∂(µHr)

∂t
−

∂Eφ

∂z
= 0 (11)

∂(µHφ)

∂t
− ∂Ez

∂r
+

1

µ

∂Er

∂z
= 0 (12)

∂(rµHz)

∂t
+

∂

∂r
(rEφ) = 0 (13)

Similarly, Ampere law can be written as;

jr +
∂(ϵEr)

∂t
=

1

r

∂Hz

∂φ
−

∂Hφ

∂z
(14)

jφ +
∂(ϵEφ)

∂t
=

∂Hr

∂z
− ∂Hz

∂r
(15)

jz +
∂(ϵEz)

∂t
=

1

r

∂

∂r
(rHφ)−

1

r

∂Hr

∂φ
(16)

Assuming the uniformity in φ direction, ∂
∂φ = 0, they are reduced to be;

∂(ϵEr)

∂t
+

∂Hφ

∂z
= −jr (17)

∂(ϵEφ)

∂t
+

∂Hz

∂r
− ∂Hr

∂z
= −jφ (18)

∂(rϵEz)

∂t
− ∂

∂r
(rHφ) = −rjz (19)

Finally, we describe Maxwell equation in the cylindrical coordinate as;

∂

∂t

⎡

⎣
µHr

µHφ

µrHz

⎤

⎦ +
∂

∂z

⎡

⎣
−Eφ

Er

0

⎤

⎦+
∂

∂r

⎡

⎣
0

−Ez

rEφ

⎤

⎦ = 0 (20)

∂

∂t

⎡

⎣
ϵEr

ϵEφ

rϵEz

⎤

⎦ +
∂

∂z

⎡

⎣
Hφ

−Hr

0

⎤

⎦+
∂

∂r

⎡

⎣
0
Hz

−rHφ

⎤

⎦ =

⎡

⎣
−jr
−jφ
−rjz

⎤

⎦ (21)

Also, we think the Ohm law as j = σE + j′. Here we assumed that collision and
acceleration due to eE/me are dominant terms in the electron equation motion. This Ohm
law is simplified and other terms such as Hall effect are included in j′, which is neglected in
the simplified simulation. j′ can be regarded as the current source j′(x), and in such a case
σ should be 0 if skin effect is ignored. Using Ohm law, the last equation can be written as;

∂

∂t

⎡

⎣
ϵEr

ϵEφ

rϵEz

⎤

⎦ +
∂

∂z

⎡

⎣
Hφ

−Hr

0

⎤

⎦+
∂

∂r

⎡

⎣
0
Hz

−rHφ

⎤

⎦ =

⎡

⎣
−σEr − j′r
−σEφ − j′φ
−rσEz − rj′z

⎤

⎦ (22)
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Assuming the uniformity in φ direction, ∂
∂φ = 0, they are reduced to be;

∂(µHr)

∂t
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∂Eφ

∂z
= 0 (11)

∂(µHφ)

∂t
− ∂Ez

∂r
+

1

µ
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+
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∂t
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−
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Assuming the uniformity in φ direction, ∂
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Finally, we describe Maxwell equation in the cylindrical coordinate as;

∂

∂t

⎡

⎣
µHr

µHφ
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⎤
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∂

∂z

⎡

⎣
−Eφ

Er

0

⎤

⎦+
∂

∂r

⎡

⎣
0

−Ez

rEφ

⎤

⎦ = 0 (20)

∂
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ϵEr

ϵEφ

rϵEz

⎤

⎦ +
∂

∂z

⎡

⎣
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0

⎤
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⎡
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⎤
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Also, we think the Ohm law as j = σE + j′. Here we assumed that collision and
acceleration due to eE/me are dominant terms in the electron equation motion. This Ohm
law is simplified and other terms such as Hall effect are included in j′, which is neglected in
the simplified simulation. j′ can be regarded as the current source j′(x), and in such a case
σ should be 0 if skin effect is ignored. Using Ohm law, the last equation can be written as;

∂

∂t

⎡

⎣
ϵEr

ϵEφ

rϵEz

⎤

⎦ +
∂

∂z

⎡

⎣
Hφ

−Hr

0

⎤

⎦+
∂

∂r

⎡

⎣
0
Hz

−rHφ

⎤

⎦ =

⎡

⎣
−σEr − j′r
−σEφ − j′φ
−rσEz − rj′z

⎤

⎦ (22)

2

Maxwell equation in cylindrical coordinate is solved 
by the directional split method

∂φ
∂

≡ 0

Assuming the uniformity in φ direction, ∂
∂φ = 0, they are reduced to be;

∂(µHr)

∂t
−

∂Eφ

∂z
= 0 (11)

∂(µHφ)

∂t
− ∂Ez

∂r
+

1

µ

∂Er

∂z
= 0 (12)

∂(rµHz)

∂t
+

∂

∂r
(rEφ) = 0 (13)

Similarly, Ampere law can be written as;

jr +
∂(ϵEr)

∂t
=

1

r

∂Hz

∂φ
−

∂Hφ

∂z
(14)

jφ +
∂(ϵEφ)

∂t
=

∂Hr

∂z
− ∂Hz

∂r
(15)

jz +
∂(ϵEz)

∂t
=

1

r

∂

∂r
(rHφ)−

1

r

∂Hr

∂φ
(16)

Assuming the uniformity in φ direction, ∂
∂φ = 0, they are reduced to be;

∂(ϵEr)

∂t
+

∂Hφ

∂z
= −jr (17)

∂(ϵEφ)

∂t
+

∂Hz

∂r
− ∂Hr

∂z
= −jφ (18)

∂(rϵEz)

∂t
− ∂

∂r
(rHφ) = −rjz (19)

Finally, we describe Maxwell equation in the cylindrical coordinate as;

∂

∂t

⎡

⎣
µHr

µHφ

µrHz

⎤

⎦ +
∂

∂z

⎡

⎣
−Eφ

Er

0

⎤

⎦+
∂

∂r

⎡

⎣
0

−Ez

rEφ

⎤

⎦ = 0 (20)

∂

∂t

⎡

⎣
ϵEr

ϵEφ

rϵEz

⎤

⎦ +
∂

∂z

⎡

⎣
Hφ

−Hr

0

⎤

⎦+
∂

∂r

⎡

⎣
0
Hz

−rHφ

⎤

⎦ =

⎡

⎣
−jr
−jφ
−rjz

⎤

⎦ (21)

Also, we think the Ohm law as J = σE + J′. Here we assumed that collision and
acceleration due to eE/me are dominant terms in the electron equation motion. This Ohm
law is simplified and other terms such as Hall effect are included in J′, which is neglected
in the simplified simulation. J′ can be regarded as the current source J′(x), and in such
a case σ should be 0 if skin effect is ignored. Using Ohm law, the last equation can be
written as;

2

We have developed 2D cylinder Maxwell solver.
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melting

boiling

Conductivity of gold

b.p. 3129K

m.p.1337.33K

The conductivity of gold abruptly decreases after 
boiling point. It is good for magnetic diffusion.

solid liquid gas/plasma
ρ, T - dependent

106 S/m

102 kelvin 103 kelvin 104 kelvin

104 S/m

The conductivity of gold abruptly decreases after the 
boiling is reached. This helps the magnetic diffusion.

7



 z 

σ=1.0e6 S/m
r

r

1000μm

70
0μ

m

symmetry

Conductor with 106 S/m

ideal current source

40μm

flat top

time0

current
 106  [A]
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 z 

|B|
(Tesla)

magnetic field B(r, z)
(μm)

(μm)

σ=1.0e6 S/m
r

r

 z 

Magnetic field (Bz, Br) diffuse into the cone 
target through 40micron thickness wall
with 106 S/m conductivity.
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|B|
(Tesla)

magnetic field B(r, z)
(μm)

(μm)

σ=1.0e6 S/m

 z 

r

r

 z 

Magnetic field (Bz, Br) diffuse into the cone 
target through 40micron thick wall with 106 
S/m conductivity.
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500ps 600ps 700ps 800ps
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|B|
(Tesla)

magnetic field diffusion ~500ps

Magnetic diffusion time is 0.5ns / 40μm thickness, which is 
short enough for the fast ignition exp. However, the intensity 
of magnetic field inside cone is reduced by the eddy current.

1kT

0.04kT

B(r, z)
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EΦ
（V/m)

electric field
(μm)

(μm)

σ=1.0e6 S/m

Electric field Eθ is generated by the temporal 
change of magnetic field (Bz, Br).

 z 

r

r

 z 
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Te
（eV)

eddy current heating
(μm)

(μm)

σ=1.0e6 S/m

Surface of the cone can be heated to 1eV by 
the eddy current. However the bulk of gold wall 
remains at the temperature lower than 0.1 eV.

 z 

r

r

 z 
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 z 

σ=1.0e4 S/m
r

r

1000μm

70
0μ

m

symmetry

Conductor with 104 S/m

ideal current source

40μm

flat top

time0

current
 106  [A]
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|B|
(Tesla)

magnetic field B(r, z)
(μm)

(μm)

σ=1.0e4 S/m

Magnetic field (Bz, Br) diffuse into the cone 
target through 40micron thick wall with 104 
S/m conductivity.
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|B|
(Tesla)

magnetic field B(r, z)
(μm)

(μm)

σ=1.0e4 S/m

Magnetic field (Bz, Br) diffuse into the cone 
target through 40micron thick wall with 104 
S/m conductivity.
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magnetic field diffusion ~60ps

B(r, z)

With 104 S/m conductivity, magnetic diffusion 
time through 40micron thick gold is about 60ps.

2.5kT

2.0kT
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4

磁界の誘導方程式

• オームの法則 を に代入すると,

• さらに， で，変位電流（Eの時間微分項)が

• 小さいとすると, より，

• このベクトル演算を を利用して変形すると

• 磁場の移流拡散方程式が得られる。

K � u �E V B j
t

w
 ��u

w
B E

� � � �
t

K Kw
 ��u � u �  �u u �

w
B V B j V B j

0
0

1
t

H
P

w
�u  �

w
EB j

0P�u  B j 0P �uj B

� � � � 0t
K K Pw

?  �u u �  �u u � �u�u
w
B V B j V B B

0��  B

� � 2
0t

K Pw
 �u u � �

w
B V B B

electrical conductivity

⬅　displacement current is omitted.

P−1
2

[
Eφ

rHz

]n+1

+

⎡

⎣
− 1√

µ(ϵ+σ∆t)
0

0 1√
µ(ϵ+σ∆t)

⎤

⎦
n+1

∆t
∂

∂r

{
P−1
2

[
Eφ

rHz

]∗}
(80)

= P−1
2

[
E∗

φ − j′n+1
φ ∆t

(ϵ+σ∆t)n+1

rH∗
z

]
+∆t

⎡

⎢⎢⎣

∂
∂r

(
r(ϵ+σ∆t)√
µ(ϵ+σ∆t)

)n+1

E∗
φ

1

2
√

µ(ϵ+σ∆t)n+1

∂
∂r

(
r(ϵ+σ∆t)√
µ(ϵ+σ∆t)

)n+1

E∗
φ

1

2
√

µ(ϵ+σ∆t)n+1

⎤

⎥⎥⎦

P−1
3

[
rEz

Hφ

]n+1

−

⎡

⎣
− 1√

µ(ϵ+σ∆t)
0

0 1√
µ(ϵ+σ∆t)

⎤

⎦
n+1

∆t
∂

∂r

{
P−1
3

[
rEz

Hφ

]∗}
(81)

= P−1
3

[
rE∗

z −
rj′n+1

z ∆t
(ϵ+σ∆t)n+1

H∗
φ

]
−∆t

⎡

⎢⎢⎣

∂
∂r

(
ϵ+σ∆t

r
√

µ(ϵ+σ∆t)

)n+1

rE∗
z

1

2
√

µ(ϵ+σ∆t)n+1

∂
∂r

(
ϵ+σ∆t

r
√

µ(ϵ+σ∆t)

)n+1

rE∗
z

1

2
√

µ(ϵ+σ∆t)n+1

⎤

⎥⎥⎦

[
Er

]n+1
=

[
Er

]∗
+

∆t

(ϵ+ σ∆t)n+1

[
−j′r

]n+1
(82)

[
Hr

]n+1
=

[
Hr

]∗
(83)

c =
1

√
µ0ϵ0

(84)

µ0 = 4π × 10−7 (85)

ϵ0 = 8.8542× 10−12 (86)
∆t√
µ0σ∆t

1

µ0σ
∇2B (87)
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diffusion term

Speed of light :
Permeability:
Permittivity:

P−1
2

[
Eφ

rHz

]n+1

+

⎡

⎣
− 1√

µ(ϵ+σ∆t)
0

0 1√
µ(ϵ+σ∆t)

⎤

⎦
n+1

∆t
∂

∂r

{
P−1
2

[
Eφ

rHz

]∗}
(80)

= P−1
2

[
E∗

φ − j′n+1
φ ∆t

(ϵ+σ∆t)n+1

rH∗
z

]
+∆t

⎡

⎢⎢⎣

∂
∂r

(
r(ϵ+σ∆t)√
µ(ϵ+σ∆t)

)n+1

E∗
φ

1

2
√

µ(ϵ+σ∆t)n+1

∂
∂r

(
r(ϵ+σ∆t)√
µ(ϵ+σ∆t)

)n+1

E∗
φ

1

2
√

µ(ϵ+σ∆t)n+1

⎤

⎥⎥⎦

P−1
3

[
rEz

Hφ

]n+1

−

⎡

⎣
− 1√

µ(ϵ+σ∆t)
0

0 1√
µ(ϵ+σ∆t)

⎤

⎦
n+1

∆t
∂

∂r

{
P−1
3

[
rEz

Hφ

]∗}
(81)

= P−1
3

[
rE∗

z −
rj′n+1

z ∆t
(ϵ+σ∆t)n+1
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traveling time

L

diffusion time scale
Δt = μ0 σ L2

L = 40 micron, 
σ＝106S/m  ----->  2ns

L = 40 micron, 
σ＝104S/m  ----->  20ps

600ps

60ps

simulatedestimated

Actually, the conductivity is not constant.
It is function of density and temperature.
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3 ! 104 K based on the Ziman theory and two-component model of
mediumwith variable ion charge. Kuhlbrodt et al. [4] employed the
partial ionized plasma model and the linear response theory (LRT)
to calculate the transport properties of dense transition metal
plasmas in the ranges of 10"3e2 g cm"3 and 104e3 ! 104 K.
Although the detailed composition of the various particles has been
taken into account, the ignorance of the excited energy level, the
higher ionization energy, and the quantum effect would result in
the discrepancies compared with the experimental data.

In the light of aforementioned statement, these different experi-
mental and theoretical works show the challenge for researching the
electrical conductivity of tungsten plasma in theory. In the paper, we
investigate the electrical conductivity of tungsten plasma by the
nonideal Saha equation and a linear mixture rule considering elec-
trons with electrons, atoms, and ions. Zaghloul [22] had successfully
applied the method to calculate the electrical conductivity of copper
plasma in the warm dense matter regime. Nevertheless, a fixed con-
stant value of the electron-neutral cross section was adopted in the
calculation of copper plasma, which is not useful for the tungsten
plasma. In order to obtain an appropriate electron-neutral cross sec-
tion, a fit for the electron-neutral cross section is adopted in the pre-
sent calculation, which is based on the study of Desjarlais [18] for the
electrical conductivity of aluminum and copper plasma. Hence, the
electrical conductivity of tungsten plasma is calculated by the
nonideal Saha equation and a linear mixture rule taking into account
the interaction of electronseelectrons, electronseatoms, and elec-
tronseions, combining a function for the electron-neutral mo-
mentum transfer cross section.

2. Computational method

2.1. Plasma composition calculation

For characterizing the plasma state, the coupling and the de-
generacy parameters are used. The ioneion coupling parameter Gii
is the ratio of the mean electrostatic potential energy to the mean
kinetic energy of the ions and Gee corresponds to the electrone
electron coupling parameter [23e25]. The degeneracy parameterQ
is the ratio of the thermal energy to the Fermi energy, which de-
termines the Fermi degenerate region, by estimating the impor-
tance of quantum statistical effects [1,25e28],

Gii ¼
Z2
effe

2

4pε0kBT

 
4p
P
i¼ 1

ni

3

!1
3

;

Gee ¼ e2
4pε0kBT

!
4pne
3

"1
3
;

Q ¼ 2me

kBTZ2
#
3p2ne

$"2
3;

(1)

and kB is the Boltzmann constant, T is the temperature, ε0 is the
permittivity of vacuum, ni is the particle number density of i-fold
ions, ne is the particle number density of free electrons. me is the
electron mass, and Z is the Planck constant. Zeff is the effective
charge number of positive ions [29e31]. As usual, plasma for
Gii << 1 is the nearly ideal plasma, Gii $ 1 is the weakly coupled
plasma, and Gii > 1 is the strongly coupled plasma [1,26]. Q < 1 and
Q > 1 shows the system is in the degenerate and partially or
nondegenerate regime, respectively [26].

As the single elemental species plasma in local thermodynamic
equilibrium, the Saha equation is shown as

nine
ni"1

¼ 2
Ui

Ui"1

%
2pmekBT

h2

&3=2
exp

 

"
Ieffi
kBT

!

; ði¼ 1;.; ZÞ (2)

In Eq. (2), Ui is the internal partition functions of i-fold ions, and
h is the Planck constant. The effective ionization energy Ieffi ¼ Ii"DIi
corresponds to the ionization process i/ (i þ 1) in which DIi is the
ionization potential depression.

In this model, the ionization potential depression is

DIi ¼
ðiþ 1Þe2

4pε0R*i
; (3)

where e is the electronic charge, i is the charge state of the ion, and
R*i is the characteristic radius for the Debye length (lD) [32] and the
ion-sphere radius ai [22],

R*i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l2D þ
(
2
3
ai

)2
s

; (4)

where the Debye length lD and the ion-sphere radius ai being
defined as, respectively,

lD ¼

2

64 kBTε0

e2nH

(
Zavþ
PZ

i¼ 1
ai!i2

)

3

75

1
2

;

ai ¼
h

3ðiþ1Þ
4pnHð1þZavÞ

i1
3
:

(5)

where Zav is the average ionization state and also the ionization
degree. nH is the particle number density of heavy particles, and
ai ¼ ni/nH is the molar fraction of i-fold ions.

The plasma satisfies conservation of charge and particle number,

PZ

i¼0
ai ¼ 1;

PZ

i¼0
iai ¼ Zav:

(6)

By these equations, Zav and ai are obtained which are essential
for the calculation of the electrical conductivity.

The internal partition function Ui is expressed as

Ui ¼
XN

i¼1
giexp

(
" Ei
kBT

)
; (7)

where gi is the statistical weight and Ei is the ith excitation energy. If
for the computation is to converge, the excitation energy needed is
terminated by the relation Ei $ Ieffi ¼ Ii " DIi. A large set of exci-
tation energy levels for tungsten has been used in the computations
of the internal partition function. These electronic excited state
data comes from the database compiled by the National Institute of
Standards and Technology [33].

2.2. Electrical conductivity

The electrical conductivity is calculated by using a linear
mixture rule in which the electroneelectron and electroneion
coulomb effect as well as the electroneatom interaction are
considered [1,2,31]. The linear mixture rule can be given by
Ref. [31,34]

1
s

¼ 1
sei

þ 1
sen

; (8)

where sei and sen are the electrical conductivities associated with
the electroneion and electron-neutral collisions, respectively.

Z. Fu et al. / High Energy Density Physics 9 (2013) 781e786782

Saha equation

3 ! 104 K based on the Ziman theory and two-component model of
mediumwith variable ion charge. Kuhlbrodt et al. [4] employed the
partial ionized plasma model and the linear response theory (LRT)
to calculate the transport properties of dense transition metal
plasmas in the ranges of 10"3e2 g cm"3 and 104e3 ! 104 K.
Although the detailed composition of the various particles has been
taken into account, the ignorance of the excited energy level, the
higher ionization energy, and the quantum effect would result in
the discrepancies compared with the experimental data.

In the light of aforementioned statement, these different experi-
mental and theoretical works show the challenge for researching the
electrical conductivity of tungsten plasma in theory. In the paper, we
investigate the electrical conductivity of tungsten plasma by the
nonideal Saha equation and a linear mixture rule considering elec-
trons with electrons, atoms, and ions. Zaghloul [22] had successfully
applied the method to calculate the electrical conductivity of copper
plasma in the warm dense matter regime. Nevertheless, a fixed con-
stant value of the electron-neutral cross section was adopted in the
calculation of copper plasma, which is not useful for the tungsten
plasma. In order to obtain an appropriate electron-neutral cross sec-
tion, a fit for the electron-neutral cross section is adopted in the pre-
sent calculation, which is based on the study of Desjarlais [18] for the
electrical conductivity of aluminum and copper plasma. Hence, the
electrical conductivity of tungsten plasma is calculated by the
nonideal Saha equation and a linear mixture rule taking into account
the interaction of electronseelectrons, electronseatoms, and elec-
tronseions, combining a function for the electron-neutral mo-
mentum transfer cross section.

2. Computational method

2.1. Plasma composition calculation

For characterizing the plasma state, the coupling and the de-
generacy parameters are used. The ioneion coupling parameter Gii
is the ratio of the mean electrostatic potential energy to the mean
kinetic energy of the ions and Gee corresponds to the electrone
electron coupling parameter [23e25]. The degeneracy parameterQ
is the ratio of the thermal energy to the Fermi energy, which de-
termines the Fermi degenerate region, by estimating the impor-
tance of quantum statistical effects [1,25e28],
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and kB is the Boltzmann constant, T is the temperature, ε0 is the
permittivity of vacuum, ni is the particle number density of i-fold
ions, ne is the particle number density of free electrons. me is the
electron mass, and Z is the Planck constant. Zeff is the effective
charge number of positive ions [29e31]. As usual, plasma for
Gii << 1 is the nearly ideal plasma, Gii $ 1 is the weakly coupled
plasma, and Gii > 1 is the strongly coupled plasma [1,26]. Q < 1 and
Q > 1 shows the system is in the degenerate and partially or
nondegenerate regime, respectively [26].

As the single elemental species plasma in local thermodynamic
equilibrium, the Saha equation is shown as
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In Eq. (2), Ui is the internal partition functions of i-fold ions, and
h is the Planck constant. The effective ionization energy Ieffi ¼ Ii"DIi
corresponds to the ionization process i/ (i þ 1) in which DIi is the
ionization potential depression.

In this model, the ionization potential depression is

DIi ¼
ðiþ 1Þe2

4pε0R*i
; (3)

where e is the electronic charge, i is the charge state of the ion, and
R*i is the characteristic radius for the Debye length (lD) [32] and the
ion-sphere radius ai [22],
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where Zav is the average ionization state and also the ionization
degree. nH is the particle number density of heavy particles, and
ai ¼ ni/nH is the molar fraction of i-fold ions.

The plasma satisfies conservation of charge and particle number,

PZ

i¼0
ai ¼ 1;

PZ

i¼0
iai ¼ Zav:

(6)

By these equations, Zav and ai are obtained which are essential
for the calculation of the electrical conductivity.

The internal partition function Ui is expressed as

Ui ¼
XN

i¼1
giexp

(
" Ei
kBT

)
; (7)

where gi is the statistical weight and Ei is the ith excitation energy. If
for the computation is to converge, the excitation energy needed is
terminated by the relation Ei $ Ieffi ¼ Ii " DIi. A large set of exci-
tation energy levels for tungsten has been used in the computations
of the internal partition function. These electronic excited state
data comes from the database compiled by the National Institute of
Standards and Technology [33].

2.2. Electrical conductivity

The electrical conductivity is calculated by using a linear
mixture rule in which the electroneelectron and electroneion
coulomb effect as well as the electroneatom interaction are
considered [1,2,31]. The linear mixture rule can be given by
Ref. [31,34]

1
s

¼ 1
sei

þ 1
sen

; (8)

where sei and sen are the electrical conductivities associated with
the electroneion and electron-neutral collisions, respectively.
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ne   electron number density

= integral of gn exp(-En/kbT) 
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conductivity model EOS (heat capacity) model
19



We calculated the electrical conductivity*) of gold                           
at liquid density and in the 0.4 to 5eV temperature range.

Review

Electrical conductivity of warm dense tungsten

Zhijian Fu a,b,*, Lijun Jia c, Xiaowei Sun d, Qifeng Chen e

aChongqing Key Laboratory of Micro/Nano Materials Engineering and Technology, Chongqing 402160, People’s Republic of China
b School of Electrical and Electronic Engineering, Chongqing University of Arts and Sciences, Chongqing 402160, People’s Republic of China
cChongqing University of Arts and Sciences Library, Chongqing 402160, People’s Republic of China
d School of Mathematics and Physics, Lanzhou Jiaotong University, Lanzhou 730070, People’s Republic of China
eNational Key Laboratory of Shock Wave and Detonation Physics, Institute of Fluid Physics, CAEP, P.O. Box 919-102, Mianyang,
Sichuan 621900, People’s Republic of China

a r t i c l e i n f o

Article history:
Received 5 April 2013
Received in revised form
29 September 2013
Accepted 7 October 2013
Available online 15 October 2013

Keywords:
Nonideal Saha equation
Linear mixture rule
Electrical conductivity
Tungsten

a b s t r a c t
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composition is calculated by the nonideal Saha equation. The interesting regime for tungsten plasma
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The electrical conductivity calculated is in reasonable agreement with the exploding wire experiments
and other theoretical models. The present result demonstrates that the theoretical model is valid for the
electrical conductivity of tungsten plasma in the warm dense matter regime.
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1. Introduction

The electrical conductivity of warm dense plasma is a funda-
mental quantity for characterizing the plasma state. The plasma
state widely exists in multiplicate systems, such as, the astro-
physical bodies, industry, and the high density and temperature
environment of laboratory [1e4]. Tungsten has many applications
in industry and scientific fields, for example, in X-ray tubes, elec-
tron microscopes, electron microprobes, inertial confinement
fusion, and the study of planetary interiors [5e7]. Scientific in-
vestigations on the transport properties, particularly the electrical
conductivity, have been performed experimentally [8e11] and
theoretically [4,12e16]. DeSilva et al. [17] measured the electrical
conductivity of tungsten plasma by rapid wire vaporization in a
water bath, in the range of 0.02e0.5 g cm!3 and 104e3 " 104 K for
which data were obtained successfully. Saleem et al. [9] obtained
the electrical conductivity via vaporizing the thin tungsten wires in
a glass capillary, which obtained the experimental results for the
particle densities of the order of 1022 cm!3 and in the temperature
ranges of 104e2.2 " 104 K. Sheftman et al. [8] investigated the
electrical conductivity of tungsten plasma by the underwater

electrical wire explosion experiment in the density and tempera-
ture ranges of 0.1e20 g cm!3 and 0.03e8 eV. Sasaki et al. [5]
evaluated the electrical conductivity using exploding wire
discharge in water in the density rage of 8.5 " 10!4e2.7 g cm!3 at
5000 K. The early calculations were based on the theories of Spitzer
[13] and Ziman [14]. Spitzermodel was valid for the plasmawithout
neutral atoms in the low density range while Ziman model was
suitable for strongly coupled plasma in the high density range.
However, there still were coarse in themoderate density region due
to the neglect for the interaction of electrons with electrons in the
Spitzer and Zimanmodel. The LeeeMoremodel [12] came from the
relaxation time approximation by solving a Boltzmann transport
equation, which is appropriate for arbitrary degeneracy. But the
LeeeMore model also ignored the electroneelectron scattering, as
a result, the model yielded an overestimated result compared with
the experiments on the whole. In order to obtain a good accuracy,
the LeeeMore model was modified by Desjarlais (LMD) [18] in
which a fit for the electron-neutral cross section was adopted and
the application for aluminum and copper was in good agreement
with experimental data. Ichimaru [19,20] investigated the electrical
conductivity of the transition metal plasma by one component
plasma model, however, the only average electron density consid-
ered was not enough for obtaining the detailed and accurate in-
formation of the transport properties. Apfelbaum [21] calculated
the electrical conductivity of the tungsten in 0.64e7.7 g cm!3 at
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1. Introduction

The electrical conductivity of warm dense plasma is a funda-
mental quantity for characterizing the plasma state. The plasma
state widely exists in multiplicate systems, such as, the astro-
physical bodies, industry, and the high density and temperature
environment of laboratory [1e4]. Tungsten has many applications
in industry and scientific fields, for example, in X-ray tubes, elec-
tron microscopes, electron microprobes, inertial confinement
fusion, and the study of planetary interiors [5e7]. Scientific in-
vestigations on the transport properties, particularly the electrical
conductivity, have been performed experimentally [8e11] and
theoretically [4,12e16]. DeSilva et al. [17] measured the electrical
conductivity of tungsten plasma by rapid wire vaporization in a
water bath, in the range of 0.02e0.5 g cm!3 and 104e3 " 104 K for
which data were obtained successfully. Saleem et al. [9] obtained
the electrical conductivity via vaporizing the thin tungsten wires in
a glass capillary, which obtained the experimental results for the
particle densities of the order of 1022 cm!3 and in the temperature
ranges of 104e2.2 " 104 K. Sheftman et al. [8] investigated the
electrical conductivity of tungsten plasma by the underwater

electrical wire explosion experiment in the density and tempera-
ture ranges of 0.1e20 g cm!3 and 0.03e8 eV. Sasaki et al. [5]
evaluated the electrical conductivity using exploding wire
discharge in water in the density rage of 8.5 " 10!4e2.7 g cm!3 at
5000 K. The early calculations were based on the theories of Spitzer
[13] and Ziman [14]. Spitzermodel was valid for the plasmawithout
neutral atoms in the low density range while Ziman model was
suitable for strongly coupled plasma in the high density range.
However, there still were coarse in themoderate density region due
to the neglect for the interaction of electrons with electrons in the
Spitzer and Zimanmodel. The LeeeMoremodel [12] came from the
relaxation time approximation by solving a Boltzmann transport
equation, which is appropriate for arbitrary degeneracy. But the
LeeeMore model also ignored the electroneelectron scattering, as
a result, the model yielded an overestimated result compared with
the experiments on the whole. In order to obtain a good accuracy,
the LeeeMore model was modified by Desjarlais (LMD) [18] in
which a fit for the electron-neutral cross section was adopted and
the application for aluminum and copper was in good agreement
with experimental data. Ichimaru [19,20] investigated the electrical
conductivity of the transition metal plasma by one component
plasma model, however, the only average electron density consid-
ered was not enough for obtaining the detailed and accurate in-
formation of the transport properties. Apfelbaum [21] calculated
the electrical conductivity of the tungsten in 0.64e7.7 g cm!3 at
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3 ! 104 K based on the Ziman theory and two-component model of
mediumwith variable ion charge. Kuhlbrodt et al. [4] employed the
partial ionized plasma model and the linear response theory (LRT)
to calculate the transport properties of dense transition metal
plasmas in the ranges of 10"3e2 g cm"3 and 104e3 ! 104 K.
Although the detailed composition of the various particles has been
taken into account, the ignorance of the excited energy level, the
higher ionization energy, and the quantum effect would result in
the discrepancies compared with the experimental data.

In the light of aforementioned statement, these different experi-
mental and theoretical works show the challenge for researching the
electrical conductivity of tungsten plasma in theory. In the paper, we
investigate the electrical conductivity of tungsten plasma by the
nonideal Saha equation and a linear mixture rule considering elec-
trons with electrons, atoms, and ions. Zaghloul [22] had successfully
applied the method to calculate the electrical conductivity of copper
plasma in the warm dense matter regime. Nevertheless, a fixed con-
stant value of the electron-neutral cross section was adopted in the
calculation of copper plasma, which is not useful for the tungsten
plasma. In order to obtain an appropriate electron-neutral cross sec-
tion, a fit for the electron-neutral cross section is adopted in the pre-
sent calculation, which is based on the study of Desjarlais [18] for the
electrical conductivity of aluminum and copper plasma. Hence, the
electrical conductivity of tungsten plasma is calculated by the
nonideal Saha equation and a linear mixture rule taking into account
the interaction of electronseelectrons, electronseatoms, and elec-
tronseions, combining a function for the electron-neutral mo-
mentum transfer cross section.

2. Computational method

2.1. Plasma composition calculation

For characterizing the plasma state, the coupling and the de-
generacy parameters are used. The ioneion coupling parameter Gii
is the ratio of the mean electrostatic potential energy to the mean
kinetic energy of the ions and Gee corresponds to the electrone
electron coupling parameter [23e25]. The degeneracy parameterQ
is the ratio of the thermal energy to the Fermi energy, which de-
termines the Fermi degenerate region, by estimating the impor-
tance of quantum statistical effects [1,25e28],

Gii ¼
Z2
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2

4pε0kBT
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and kB is the Boltzmann constant, T is the temperature, ε0 is the
permittivity of vacuum, ni is the particle number density of i-fold
ions, ne is the particle number density of free electrons. me is the
electron mass, and Z is the Planck constant. Zeff is the effective
charge number of positive ions [29e31]. As usual, plasma for
Gii << 1 is the nearly ideal plasma, Gii $ 1 is the weakly coupled
plasma, and Gii > 1 is the strongly coupled plasma [1,26]. Q < 1 and
Q > 1 shows the system is in the degenerate and partially or
nondegenerate regime, respectively [26].

As the single elemental species plasma in local thermodynamic
equilibrium, the Saha equation is shown as
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In Eq. (2), Ui is the internal partition functions of i-fold ions, and
h is the Planck constant. The effective ionization energy Ieffi ¼ Ii"DIi
corresponds to the ionization process i/ (i þ 1) in which DIi is the
ionization potential depression.

In this model, the ionization potential depression is

DIi ¼
ðiþ 1Þe2

4pε0R*i
; (3)

where e is the electronic charge, i is the charge state of the ion, and
R*i is the characteristic radius for the Debye length (lD) [32] and the
ion-sphere radius ai [22],
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where the Debye length lD and the ion-sphere radius ai being
defined as, respectively,

lD ¼

2

64 kBTε0

e2nH

(
Zavþ
PZ

i¼ 1
ai!i2

)

3

75

1
2

;

ai ¼
h

3ðiþ1Þ
4pnHð1þZavÞ

i1
3
:

(5)

where Zav is the average ionization state and also the ionization
degree. nH is the particle number density of heavy particles, and
ai ¼ ni/nH is the molar fraction of i-fold ions.

The plasma satisfies conservation of charge and particle number,

PZ

i¼0
ai ¼ 1;

PZ

i¼0
iai ¼ Zav:

(6)

By these equations, Zav and ai are obtained which are essential
for the calculation of the electrical conductivity.

The internal partition function Ui is expressed as

Ui ¼
XN

i¼1
giexp

(
" Ei
kBT

)
; (7)

where gi is the statistical weight and Ei is the ith excitation energy. If
for the computation is to converge, the excitation energy needed is
terminated by the relation Ei $ Ieffi ¼ Ii " DIi. A large set of exci-
tation energy levels for tungsten has been used in the computations
of the internal partition function. These electronic excited state
data comes from the database compiled by the National Institute of
Standards and Technology [33].

2.2. Electrical conductivity

The electrical conductivity is calculated by using a linear
mixture rule in which the electroneelectron and electroneion
coulomb effect as well as the electroneatom interaction are
considered [1,2,31]. The linear mixture rule can be given by
Ref. [31,34]

1
s

¼ 1
sei

þ 1
sen

; (8)

where sei and sen are the electrical conductivities associated with
the electroneion and electron-neutral collisions, respectively.
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1. Introduction

The electrical conductivity of warm dense plasma is a funda-
mental quantity for characterizing the plasma state. The plasma
state widely exists in multiplicate systems, such as, the astro-
physical bodies, industry, and the high density and temperature
environment of laboratory [1e4]. Tungsten has many applications
in industry and scientific fields, for example, in X-ray tubes, elec-
tron microscopes, electron microprobes, inertial confinement
fusion, and the study of planetary interiors [5e7]. Scientific in-
vestigations on the transport properties, particularly the electrical
conductivity, have been performed experimentally [8e11] and
theoretically [4,12e16]. DeSilva et al. [17] measured the electrical
conductivity of tungsten plasma by rapid wire vaporization in a
water bath, in the range of 0.02e0.5 g cm!3 and 104e3 " 104 K for
which data were obtained successfully. Saleem et al. [9] obtained
the electrical conductivity via vaporizing the thin tungsten wires in
a glass capillary, which obtained the experimental results for the
particle densities of the order of 1022 cm!3 and in the temperature
ranges of 104e2.2 " 104 K. Sheftman et al. [8] investigated the
electrical conductivity of tungsten plasma by the underwater

electrical wire explosion experiment in the density and tempera-
ture ranges of 0.1e20 g cm!3 and 0.03e8 eV. Sasaki et al. [5]
evaluated the electrical conductivity using exploding wire
discharge in water in the density rage of 8.5 " 10!4e2.7 g cm!3 at
5000 K. The early calculations were based on the theories of Spitzer
[13] and Ziman [14]. Spitzermodel was valid for the plasmawithout
neutral atoms in the low density range while Ziman model was
suitable for strongly coupled plasma in the high density range.
However, there still were coarse in themoderate density region due
to the neglect for the interaction of electrons with electrons in the
Spitzer and Zimanmodel. The LeeeMoremodel [12] came from the
relaxation time approximation by solving a Boltzmann transport
equation, which is appropriate for arbitrary degeneracy. But the
LeeeMore model also ignored the electroneelectron scattering, as
a result, the model yielded an overestimated result compared with
the experiments on the whole. In order to obtain a good accuracy,
the LeeeMore model was modified by Desjarlais (LMD) [18] in
which a fit for the electron-neutral cross section was adopted and
the application for aluminum and copper was in good agreement
with experimental data. Ichimaru [19,20] investigated the electrical
conductivity of the transition metal plasma by one component
plasma model, however, the only average electron density consid-
ered was not enough for obtaining the detailed and accurate in-
formation of the transport properties. Apfelbaum [21] calculated
the electrical conductivity of the tungsten in 0.64e7.7 g cm!3 at
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! 2013 Elsevier B.V. All rights reserved.

1. Introduction

The electrical conductivity of warm dense plasma is a funda-
mental quantity for characterizing the plasma state. The plasma
state widely exists in multiplicate systems, such as, the astro-
physical bodies, industry, and the high density and temperature
environment of laboratory [1e4]. Tungsten has many applications
in industry and scientific fields, for example, in X-ray tubes, elec-
tron microscopes, electron microprobes, inertial confinement
fusion, and the study of planetary interiors [5e7]. Scientific in-
vestigations on the transport properties, particularly the electrical
conductivity, have been performed experimentally [8e11] and
theoretically [4,12e16]. DeSilva et al. [17] measured the electrical
conductivity of tungsten plasma by rapid wire vaporization in a
water bath, in the range of 0.02e0.5 g cm!3 and 104e3 " 104 K for
which data were obtained successfully. Saleem et al. [9] obtained
the electrical conductivity via vaporizing the thin tungsten wires in
a glass capillary, which obtained the experimental results for the
particle densities of the order of 1022 cm!3 and in the temperature
ranges of 104e2.2 " 104 K. Sheftman et al. [8] investigated the
electrical conductivity of tungsten plasma by the underwater

electrical wire explosion experiment in the density and tempera-
ture ranges of 0.1e20 g cm!3 and 0.03e8 eV. Sasaki et al. [5]
evaluated the electrical conductivity using exploding wire
discharge in water in the density rage of 8.5 " 10!4e2.7 g cm!3 at
5000 K. The early calculations were based on the theories of Spitzer
[13] and Ziman [14]. Spitzermodel was valid for the plasmawithout
neutral atoms in the low density range while Ziman model was
suitable for strongly coupled plasma in the high density range.
However, there still were coarse in themoderate density region due
to the neglect for the interaction of electrons with electrons in the
Spitzer and Zimanmodel. The LeeeMoremodel [12] came from the
relaxation time approximation by solving a Boltzmann transport
equation, which is appropriate for arbitrary degeneracy. But the
LeeeMore model also ignored the electroneelectron scattering, as
a result, the model yielded an overestimated result compared with
the experiments on the whole. In order to obtain a good accuracy,
the LeeeMore model was modified by Desjarlais (LMD) [18] in
which a fit for the electron-neutral cross section was adopted and
the application for aluminum and copper was in good agreement
with experimental data. Ichimaru [19,20] investigated the electrical
conductivity of the transition metal plasma by one component
plasma model, however, the only average electron density consid-
ered was not enough for obtaining the detailed and accurate in-
formation of the transport properties. Apfelbaum [21] calculated
the electrical conductivity of the tungsten in 0.64e7.7 g cm!3 at
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melting

boiling

Conductivity of gold

b.p. 3129K

m.p.1337.33K

The conductivity of gold abruptly decreases after 
boiling point. It is good for magnetic diffusion.

solid liquid gas/plasma
ρ, T - dependent

106 S/m

102 kelvin 103 kelvin 104 kelvin

104 S/m

We will calculate the magnetic diffusion with exact 
density and temperature.
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Summary / Conclusion

We will calculate EOS of warm dense matter and simulate 
the magnetic diffusion with hydro-motion in the next step.

In order to simulate the temporal evolution of magnetic field, 
we developed Maxwell solver in  the cylindrical coordinates.

We calculated the electrical conductivity of gold in the range from 
0.4 to 5 eV.

We have simulated the diffusion of externally applied magnetic field 
into the interior of the cone target with 106 S/m.

Magnetic diffusion time is 0.5ns / 40μm thick gold of 106 S/m, which 
is short enough for our fast ignition exp. However, the intensity of 
magnetic field inside cone is reduced by the eddy current.

The surface of the cone can be heated by the eddy current. However 
the bulk of the gold wall remains at the temperature lower than 0.4 eV.

With 104 S/m conductivity, the magnetic field can diffuse so faster and 
the intensity of magnetic field inside the cone is comparable to that 
outside the cone wall.
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