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= Converging Shock

* Hyper-Spherical Converging & Diverging Shock
* Noh Problem

* RT Growth of Ablating Thin Foil



Guderley’s self-similar solution (1942)
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Time and spatial properties

Spherical case v =15/3
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We propose new geometries corresponding to v > 3

zZ (a) Trumpet target

NS +y2 =tanf- 7"

/3(x2 +y2)+z2 =7

y/x=tan¢

p>1 v=1+2p

— In the limit of 6—0, the shock propagation in the matter embedded
in these targets is expected to reduc to one-dimensional problem.




After a single round-trip of shock, density compression rate
amounts as high as 400 times the solid density with y = 7/5.
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Growth of Surface Perturbation of Converging shock
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First order system for the perturbation
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Eigenfunctions for spherical converging shocks

y=5/3; £=30

Perturbed radial velocity (imaginary part in blue, real part in red)




Cut-off modes exist, over which converging shock waves
are stabilized even without conduction and viscosity.

M. Murakami et al, Phys. Plasmas 22, 072703 (2015)
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The classic spherical Noh solution?
(reminder)
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Initial density and velocity profiles are flat and spherically symmetric:
pP=p,and v=-y,
After the shock reflection from the center, the density is increased 16x
adiabatically before the shock front and 4x in the shock wave, total 64x
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1W. F. Noh, J. Comput. Phys. 72, 78 (1987). 10



Expanding-shock flows in cylindrical
geometry: precursors and neutron

insftte of production at stagnation
aser Engineering NRL PPD

- Precursor column formation
| observed end-on in M. Cuneo’s
| L experiment on Z with a 20 mm
tungsten cylindrical wire array.

There is evidence that the peak
of a Z-pinch x-ray emission
power? and DD neutron
production3 up to 4x10%3 is
achieved in Noh-like stagnation
via a shock wave. Generalization
of the classic Noh solution might
be needed for analysis.*

Precursor column Deuterium gas puff Z-pinch: simulations
C. Jennings, experiment on Z P. Knapp, Sandia

1S. V. Lebedev et al., Wire Array Workshop, Colorado Springs, CO, May 2003.
2Y. Maron et al., PRL 111, 035001 (2013).
3C. A. Coverdale et al., Phys. Plasmas 14, 022706 (2007); ibid., 14, 056309 (2007).

4E. P. Yu et al., Phys. Plasmas 21, 082703 (2014); this conf. invited talk UI3.00002, Thursday 2:30 pm. .
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Separation of variables and normalized

Insﬁiuieo’f perturbation amplitUdesl
NRL PPD
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Cylindrical

Spherical
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Dimensionless perturbation amplitudes of density G, (1), pressure P, (2), radial velocity V4
(3) and transverse divergence of transverse velocity D, (4).

Self-similar coordinate |§ = F/(Vsl‘) :

IM. Murakami, J. Sanz, and Y. Iwamoto, Phys. Plasmas 22, 072703 (2015).
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Dispersion equations and the

| eigenfunctions
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Density perturbation map generated in a
numerical solution of the cylindrical 2D

instiute of Noh problem (cont.)
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Numerical pressure variation for spherical
3D Noh decays with time as ~t%/3, slower
insfitute of than any of the eigenmodes

Laser Engineering NRL PPD
< S _ — 128
S o1f | S 01 [\, — 192 |
© © C — 256 4
© © — 384
> > —512
g _ g _;68 a5 |
| | =128 ] | NUNSNONANONG L =z L N | e ower - |
% — 192 %
G 0.01L _ggg S 001L
n F | —— 512 2
= [ | —— 768 =
o [ o’
1 1 1 1 1 11 ll 1 1 1 1 1 1 | B | 1 1 1 1 1 11 ll [ | 1 1 1 1 1 I.-l'
10 10° 10" 10° 10’ 10°
Time Normalized time
2
N
o\ _ LE iy
Ds [ aus N “\ p, With the time normalized as t/t, the

time histories of 0p for all resolutions
Sum over all cells behind the shock front. collapse onto the same line ~t4/>

16



Spherical coordinate system
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Self-consistent growth rate of the Rayleigh-Taylor instability in an ablatively
accelerating plasma
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The linear stability of an ablating plasma is investigated as an eigenvalue problem by assuming the
plasma to be at the stationary state. For various structures of the ablating plasma, the growth rate
is found to be expressed well in the form y = a\/kg — Skv,, where @ = 0.9, B=3-4, and v, is the
flow velocity across the ablation front, and is found to agree well with recent two-dimensional
simulations in a classical transport regime. Short-wavelength lasers inducing enhanced mass
ablation are suggested to be advantageous to stable implosion because of the ablative stabilization.

Profile for stationary solution (Takabe '83)
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Conclusions

insfiluie of
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NRL PPD

* An analytic solution has been obtained for the small-
amplitude perturbation analysis of the classic Noh problem
— General (/, m) modes for the spherical geometry
— Filamentation (k = 0, m) modes for the cylindrical geometry

— Dispersion equations and the eigenfunctions are all given by explicit
analytic formulas

* All the perturbation modes decay with time as powers of
time, indicating stability of the Noh solution
— Oscillatory decay for most eigenmodes, monotonic for some

e Use of the new solutions for 2D/3D code verification is

possible but challenging because the eigenfunctions might
decay faster than the numerical noise

22
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