6 透過型 X 線移相子による偏光制御

放射光リングからのX線は、電場ベクトルが水平面内にある直線偏光ビームである.この偏光状態を縦方向の直線偏光にしたり、円偏光にしたりと、偏光状態を制御する素子が**移相子** (Phase Retarder) である. E > 4 keV ($\lambda < 3 \text{ Å}$)のエネルギー(波長)領域におけるX線移相子では、完全に近い結晶を透過する際の複屈折^{*120})を利用する.この現象は、X線が完全結晶で Bragg の回折条件を満たし、結晶中で Bragg 反射を起こしながら透過するとき、特に顕著になる.このとき、結晶中ではX線の多重散乱が起こっており、結晶中にX線の波動場が形成される^{*121}).そして、散乱面と垂直な方向に振動する波(σ偏光)と、平行な方向に振動する波(π偏光)とで、波数ベクトルにわずかな差が生じる(屈折率に差がでる)ため、波動場が結晶中を伝播するにつれて、σ偏光の波

6.1 基本原理

6.1.1 σ **偏光と** π **偏光の位相差**

結晶を X 線が透過するときの配置を図 6.1 および図 6.2 に示す. 移相子結晶を透過するときの経路の長さを t, Bragg 角を $\theta_{\rm B}$ とするとき,透過した X 線の σ 偏光に対する π 偏光の位相差は次のように表される [41].

$$\delta = -\frac{At}{\theta - \theta_{\rm B}} \tag{6.1}$$

図 6.1: 移相子の軸の定義. ビームの進む方向を z 軸 の正方向にとり,鉛直上向きに x 軸,水平面内に y 軸 をとる.入射 X 線の電場ベクトル ε_0 は y 軸と平行で ある.移相子結晶での Bragg 反射の散乱面を y'z 面と し,散乱面と垂直な方向を x' 軸とする.したがって, この移相子結晶においては,y' 軸と平行な偏光成分が π , x' 軸と平行な偏光成分が σ である. 図 6.2: y'z 散乱面内で Bragg 反射が起こるときの様子 を図 6.1 の x' 方向から見たもの。例えば、ダイヤモン ドの 111 反射を利用する場合、結晶表面は (100) 面であ り、図の c_1 が [100] 方向、 c_2 が [011] 方向、 $\alpha = 35.264^\circ$ である。図の向きに θ を回転させると、反射面に対し て低角入射から高角入射、つまり $\theta < \theta_{\rm B}$ から $\theta = \theta_{\rm B}$ を経て、 $\theta > \theta_{\rm B}$ へと変化する。

*120) 光の偏光方向によって屈折率が異なる現象.

*121) 周期的な誘電率の場, Bloch 波ができる. ある結晶面で Bragg 反射された X 線が次の結晶面に対する入射波となり,結晶中で次々と反射が起こる. このような現象を扱う回折理論を**動力学的回折理論**という [40].

ここで,係数 A は

$$A = \frac{\pi}{2} \left[\frac{r_{\rm e}^2 \operatorname{Re}(F_{hkl}F_{\bar{h}\bar{k}\bar{l}})\lambda^3 \sin(2\theta_{\rm B})}{\pi^2 V^2} \right]$$
(6.2)

と表される.ここで、 $r_{\rm e}$ は古典電子半径、 λ は波長、Vは単位格子の体積、 F_{hkl} と $F_{\bar{h}\bar{k}\bar{l}}$ はhkl反射と $\bar{h}k\bar{l}$ 反射の結晶構造因子である.ただし、実際の実験ではAtをパラメータとして扱い、解析に用いる.

ダイヤモンドの 111 反射の場合例として、ダイヤモンドの 111 反射の場合を考えてみる。格子定数は 3.567 Å であるから、111 反射に対する逆格子ベクトル τ_{111} の大きさは 3.051 Å⁻¹ である。ちょうど $\tau = k' - k$ の Bragg 条件が満たされるとき、Bragg 回折が起こり、 $\tau = 2k \sin \theta_{\rm B}$ の関係を満たす。Ce の L_3 吸収端 5.724 keV の X 線 では、 $\theta_{\rm B} = 31.727^{\circ}$ となる。したがって、 $\gamma = 35.264 - 31.727 = 3.537^{\circ}$ となり、ビームに対して角度 γ だけ結晶 を回したとき、ちょうど Bragg 条件が満たされる。このときの Bragg ピークを、移相子の軸に取り付けられた専 用の検出器で検出し、移相子の条件出しをする。

6.1.2 移相子としての働き

σ と π のあいだに位相差を生じさせるという働きを最もわかりやすくみることができるのは、 $\chi = -45^{\circ}$ のとき である. このとき、入射 X 線の偏光ベクトル ε_0 は、移相子での散乱面 y'z に対して 45° の角度をなしており、 $x'(\sigma)$ 成分も $y'(\pi)$ 成分も等しく、同位相である. つまり、移相子の x'y' 座標系でみると、入射する X 線は 45° 直線偏光 の状態にある. ベクトル表記すれば、 $(\varepsilon_{x'}, \varepsilon_{y'}) = (1/\sqrt{2}, 1/\sqrt{2})$ である. 移相子を透過すると、式 (6.1) にしたがっ て、 σ に対して π に δ の位相差が生じる. 今、y' 成分が π であることに注意すると、 $(\varepsilon_{x'}, \varepsilon_{y'}) = (1/\sqrt{2}, e^{i\delta}/\sqrt{2})$ となる^{*122)}. つまり、 $\delta = \pi/2$ であれば右円偏光、 $\delta = -\pi/2$ であれば左円偏光である. さらに、 $\delta = \pm \pi$ であれば、x'y' 系でみると $(\varepsilon_{x'}, \varepsilon_{y'}) = (1/\sqrt{2}, -1/\sqrt{2})$ 、つまり、 -45° 直線偏光になる. 図 6.1 でみるとわかると思う が、x'y' 系で -45° 直線偏光ということは、xy 系でいえば、偏光ベクトルは x 方向を向いているということであり、水平偏光から垂直偏光に変わったということができる.

図 6.3: At = 0.03 (rad·deg.) のときの, $\theta - \theta_{\rm B}$ に対する 位相差 δ/π の変化. $\chi = -45^{\circ}$ の場合, $\delta/\pi = 1/2$ のと き右円偏光, $\delta/\pi = -1/2$ のとき左円偏光, $\delta/\pi = \pm 1$ のとき垂直偏光になる.

図 6.4: At = 0.03 (rad·deg.), $\chi = -45^{\circ}$ のときの, $\theta - \theta_{\rm B}$ に対する Stokes パラメータ P_2 , P_3 の変化. $\chi = \pm 45^{\circ}$ のときは, 常に $P_1 = 0$ である.

^{*122)} ここでの疑問は「 σ 偏光に対して π 偏光に位相差 δ がつく」という言葉の説明が ($\varepsilon_{x'}, \varepsilon_{y'}$) = $(1/\sqrt{2}, e^{i\delta}/\sqrt{2})$ を意味するのか, ($\varepsilon_{x'}, \varepsilon_{y'}$) = $(1/\sqrt{2}, e^{-i\delta}/\sqrt{2})$ を意味するのか, どちらなのかである。いくつかの文献で確認しようとしたが,はっきりしなかった。理論的には決まるはずのものであるが,動力学的回折理論を使いこなす力もないので,最終的には何らかの実験で確認する必要がある。したがって,本稿での右 円偏光と左円偏光 (P_2 の符号) はまだ逆転する可能性が残っている。

xy系において,垂直偏光 (x 方向)を σ ,水平偏光 (y 方向)を π と定義すれば,放射光リングからの入射 X 線が完全に水平偏光であるとき,Stokesパラメータは (P_1, P_2, P_3) = (0,0,-1) である.移相子結晶の $\theta & \theta < \theta_B$ から正方向に回し, $\theta = \theta_B$ の状態を経て, $\theta > \theta_B$ のほうへ回していくと,位相差 δ は図 6.3 のように変化する. このとき, $\chi = -45^{\circ}$ であれば,最初 $P_3 = -1$ であったのが,徐々に P_2 が混じってきて, $\delta = \pi/2$ になったとき に P = (0,1,0)となる.さらに θ を正方向に回すと, $\delta = \pi$ になったときに垂直直線偏光 (σ 偏光)の状態が実現 し,P = (0,0,1)となる.この変化の様子を図 6.4 に示す.

6.1.3 位相差と吸収の相反関係

 γ は移相子結晶による X 線吸収を計算するのに用いられる. 厚さ t_0 の結晶が角度 γ だけ傾いているとき,結晶 を透過する X 線の経路 t は

$$t = \frac{t_0}{\cos \gamma}$$

である.結晶の吸収係数がµであるとき,透過後のX線の強度は透過前と比べて

 $\exp(-\mu t)$

だけ減衰する.この計算は、X線のエネルギーに対して、移相子の厚さ t_0 をどの程度にすればよいかを見積もるのに必要である.厚さが大きければ、(6.1)より、 $\theta - \theta_B$ が大きくても十分な位相差 δ を得ることができ、角度やエネルギーの分解能の面で有利であるが、その反面、吸収が大きくなり、強度が必要な実験にとっては不利になる.一方で厚さが薄ければ、強度的には有利になるが、十分な位相差を得るためには $\theta - \theta_B$ を小さくとる必要が出てきて、角度やエネルギーの分解能の面で不利になる.

分解能については、厚さを2倍に設定して、At = 0.06 (rad·deg.) として計算した図 6.5, 6.6 をみるとよいだろう. 図 6.3, 6.4 と同様な計算である. $\delta = \pi/2 \, \hat{\nu} \, \pi$ のところの変化率がAt = 0.03 のときよりもずっとゆるやかになっている. その結果、 $P_2 = \pm 1 \, \hat{\nu} \, P_3 = 1 \, \epsilon \, \delta \, \theta \, dell$ での曲率がゆるやかである. これはつまり、少しくらい θ がずれても $P_2 = \pm 1 \, \hat{\nu} \, P_3 = 1$ である状況が影響を受けにくいことを意味する.

実際のビームは完全に平行な一直線のビームではなく、ある程度の角度発散を持っている.また、エネルギー (波長)も完全に単一ではなく、ある程度の幅をもっている^{*123)}.ということは、横軸の θ もただ1点でみるので はなく、角度発散程度の幅をもたせてみる必要がある.また、エネルギーが違えば $\theta_{\rm B}$ も違うので、その意味でも

図 6.5: At = 0.06 (rad·deg.) のときの,位相差 δ/π の変化.

図 6.6: At = 0.06 (rad·deg.), $\chi = -45^{\circ}$ のときの, P_2 , P_3 の変化.

^{*123)} $\Delta E/E \sim 3 \times 10^{-4}$ 程度.

横軸のθには幅をもたせる必要がある^{*124)}.厚さが薄いとδの変化率が大きくなり、その結果、目標とする P_2 や P_3 になるよう移相子のθを決めても、その周辺の異なる P_2 や P_3 の状態が混じってきて、偏光度が期待通りにならない可能性がでてくるのである.

 δ の変化率がゆるやかな領域を利用するため移相子を厚くすることと、実験に支障がない程度の強度が得られる よう移相子の厚さを薄くすること、この2点を両立する厚さを選択することが肝要である。図 6.7 に代表例である ダイヤモンド 111 反射および 220 反射における各種パラメータのエネルギー依存性を示す^{*125)}. 目標の移相量を 得るためにオフセット角を 0.012° より小さくしなければならないようだと、分解能としては非常に厳しい状態に なる^{*126)}. 一方の強度面については、透過率がたとえ 1% を下回ろうとも、強度的に差し支えなければ問題はな いのであるが、一応の目安として 5% の線を示した.

^{*124)} 移相子の角度 θ はモーターの精度で決まる 1 点に決まるが、そのときの $\theta - \theta_{\rm B}$ がいくらのかは、厳密な 1 点には定まらず、ビームの角 度幅とエネルギー幅で決まる幅をもたせなければならない.

^{*125)}移相子を2枚合わせた値を計算しているのは、後に説明する色収差の補償のため、移相子を2重連結させることによる.

^{*126)} わずかな角度の差が大きな移相量の差につながる領域に突入する.

図 6.7: ダイヤモンド 111 反射および 220 反射での各種パラメータのエネルギー依存性. Bragg 角 $\theta_{\rm B} = \sin^{-1}(\lambda/2d)$, $\gamma = \alpha - \theta_{\rm B}$,式 (6.2) で計算した係数 *A*,厚さ *t* の移相子 2 枚分での透過率,式 (6.1) で $\delta = \pm \pi/2$ となるオフセッ ト角 $\Delta \theta = \theta - \theta_{\rm B}$,移相子を 2 枚合わせた透過率が 0.05, 0.06, 0.07 となるような移相子 1 枚の厚さ,オフセット 角が 0.012°, 0.013°, 0.014° となるような移相子 1 枚の厚さ.

6.2 移相子を透過した X線の偏光ベクトル

この節では、移相子を透過した X 線の偏光ベクトルをきちんと座標系を定義して計算し、 $\chi \ge \delta$ の関数として表す. 座標系は図 6.1 に示すとおりである.まず、入射 X 線の偏光ベクトル (0,1) を結晶の座標軸 x'y' で表すと、

$$\boldsymbol{\varepsilon}_{\mathbf{0}} = \begin{pmatrix} \varepsilon_{x'} \\ \varepsilon_{y'} \end{pmatrix} = \begin{pmatrix} \cos \chi & -\sin \chi \\ \sin \chi & \cos \chi \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} -\sin \chi \\ \cos \chi \end{pmatrix} .$$
(6.3)

移相子を透過した後の偏光ベクトルを ϵ とすると、 π 成分には位相差 δ が生じているので、

$$\boldsymbol{\varepsilon} = \begin{pmatrix} -\sin\chi\\ \cos\chi e^{i\delta} \end{pmatrix} \,. \tag{6.4}$$

これを xy 系に戻すと,

$$\varepsilon = \begin{pmatrix} \cos \chi & \sin \chi \\ -\sin \chi & \cos \chi \end{pmatrix} \begin{pmatrix} -\sin \chi \\ \cos \chi e^{i\delta} \end{pmatrix}$$
$$= \begin{pmatrix} -\cos \chi \sin \chi (1 - \cos \delta) + i \cos \chi \sin \chi \sin \delta \\ \cos^2 \chi \cos \delta + \sin^2 \chi + i \cos^2 \chi \sin \delta \end{pmatrix} \equiv \begin{pmatrix} \varepsilon_x \\ \varepsilon_y \end{pmatrix}$$
(6.5)

である.これが実験室系への入射ビームとなる. $(\varepsilon_x, \varepsilon_y)$ には、つぎのような性質がある.

$$|\varepsilon_x|^2 + |\varepsilon_y|^2 = 1 \tag{6.6}$$

$$|\varepsilon_x|^2 - |\varepsilon_y|^2 = -(\cos^2 2\chi + \sin^2 2\chi \cos \delta) \tag{6.7}$$

 $\chi = -\pi/4$ のとき

$$\varepsilon = \begin{pmatrix} \varepsilon_x \\ \varepsilon_y \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ e^{i\delta} \end{pmatrix}$$
$$= \frac{1}{2} \begin{pmatrix} 1 - e^{i\delta} \\ 1 + e^{i\delta} \end{pmatrix}$$
$$= \frac{1}{2} \begin{pmatrix} 1 - \cos \delta - i \sin \delta \\ 1 + \cos \delta + i \sin \delta \end{pmatrix}$$
(6.8)

 $\chi=-\pi/4,\,\delta=+\pi/2$ のとき

$$\begin{pmatrix} \varepsilon_x \\ \varepsilon_y \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 1-i \\ 1+i \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} e^{-i\pi/4} \\ e^{i\pi/4} \end{pmatrix} = \frac{e^{-i\pi/4}}{\sqrt{2}} \begin{pmatrix} 1 \\ e^{i\pi/2} \end{pmatrix} = \frac{e^{-i\pi/4}}{\sqrt{2}} \begin{pmatrix} 1 \\ i \end{pmatrix}$$
(6.9)

である.これは、 ε_y の位相が ε_x より $\pi/2$ だけ進んでいることを示している. $\begin{pmatrix} 1\\ i \end{pmatrix}$ と書かれる偏光状態は右円偏光 (RHC) であり、Stokes パラメータで表すと、この偏光状態は、

 $P_2 = 1$

の状態であるといえる.

 $\chi=-\pi/4,\,\delta=-\pi/2$ のとき

$$\begin{pmatrix} \varepsilon_x \\ \varepsilon_y \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 1+i \\ 1-i \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} e^{i\pi/4} \\ e^{-i\pi/4} \end{pmatrix} = \frac{e^{i\pi/4}}{\sqrt{2}} \begin{pmatrix} 1 \\ e^{-i\pi/2} \end{pmatrix} = \frac{e^{i\pi/4}}{\sqrt{2}} \begin{pmatrix} 1 \\ -i \end{pmatrix}$$
(6.10)

である.これは、 ε_y の位相が ε_x より $\pi/2$ だけ遅れていることを示している. $\begin{pmatrix} 1\\ -i \end{pmatrix}$ と書かれる偏光状態は左円 偏光 (LHC) であり、Stokes パラメータで表すと、この偏光状態は、

 $P_2 = -1$

の状態であるといえる.

6.3 移相子を透過した X 線の Stokes Parameter

この節では,移相子を透過した X 線の Stokes パラメータ (P_1, P_2, P_3) を $\chi \geq \delta$ の関数として表す.移相量 δ は (6.1) を通して θ と直接結びついており、 δ の関数として表されていれば、 $\chi \geq \theta$ という機械的な数値と、散乱強度の計算に直接関係する Stokes パラメータとを結びつけることができる.

6.3.1 ϵ_x, ϵ_y を使った表記

まず, (6.5) のように, 実験室系への入射ビームが, 移相子の xyz 系で

$$\begin{pmatrix} \varepsilon_x \\ \varepsilon_y \end{pmatrix} = \begin{pmatrix} ae^{i\alpha} \\ be^{i(\alpha+\varphi)} \end{pmatrix} = e^{i\alpha} \begin{pmatrix} a \\ be^{i\varphi} \end{pmatrix}$$
(6.11)

の形で表されるとき、Stokes パラメータを書き表してみよう. このとき、 $e^{i\alpha}$ の部分は位相差とは関係ないので、 考えなくてよい. ε_x を実数にして ε_y の位相を考える. x成分を σ 、y成分を π とすると、

$$P_{1} = 2ab\cos\varphi = \operatorname{Re}\left[2\varepsilon_{x}\varepsilon_{y}\right]$$

$$P_{2} = 2ab\sin\varphi = \operatorname{Im}\left[2\varepsilon_{x}\varepsilon_{y}\right]$$

$$P_{3} = a^{2} - b^{2} = |\varepsilon_{x}|^{2} - |\varepsilon_{y}|^{2} = -(\cos^{2}2\chi + \sin^{2}2\chi\cos\delta)$$
(6.12)

図 6.8: 実験室での XYZ 座標系と各種ベクトルおよび回転角度の定義. 図 4.3 の再掲. 移相子を透過した X 線の Stokes パラメータは、この図に示すとおり、偏光ベクトルの X 軸成分を σ 、YZ 散乱面内成分を π として定義する. SPring-8 の BL22 や KEK-PF の BL3A でのマグネットを使った水平散乱面での実験はこの図のとおりであり、縦振りの 4 軸回折計を使う垂直散乱面の場合は、この図を Y 軸まわりに 90° 回転させた配置になる. と表すことができる^{*127)}. P_1 は ϵ の x 成分と y 成分が同位相で変化する部分, P_2 は ϵ の x 成分と y 成分が位相 差 $\pi/2$ で変化する部分, P_3 は ϵ の x 成分と y 成分の絶対値の差を表していることが読み取れる.

ただし、実際に必要な Stokes パラメータは、試料での散乱を扱うのに必要なパラメータであるから、移相子での xyz 系でのパラメータではなく、図 6.8 で定義される実験室の XYZ 系でのパラメータである. これを次に示す.

水平散乱面の場合 図 6.8 のような水平散乱面の場合,次のようになる.

$$P_{1} = \operatorname{Re}\left[2\varepsilon_{x}\varepsilon_{y}\right]$$

$$P_{2} = \operatorname{Im}\left[2\varepsilon_{x}\varepsilon_{y}\right]$$

$$P_{3} = |\varepsilon_{x}|^{2} - |\varepsilon_{y}|^{2} = -(\cos^{2}2\chi + \sin^{2}2\chi\cos\delta)$$
(6.13)

垂直散乱面の場合図 6.8 を Y 軸のまわりに 90° まわした垂直散乱面の場合^{*128)},次のようになる.

$$P_{1} = -\operatorname{Re}\left[2\varepsilon_{x}\varepsilon_{y}\right]$$

$$P_{2} = \operatorname{Im}\left[2\varepsilon_{x}\varepsilon_{y}\right]$$

$$P_{3} = |\varepsilon_{y}|^{2} - |\varepsilon_{x}|^{2} = (\cos^{2}2\chi + \sin^{2}2\chi\cos\delta)$$
(6.14)

注意:

- $\eta = 45^{\circ}$ の直線偏光を使って格子基本反射を観測すると, $\phi_A = 45^{\circ}$ で最大強度になるが, $\eta = 45^{\circ}$ が $P_1 = 1$ (45° 直線偏光) なのか -1 (-45° 直線偏光) なのかは $\sigma \ge \pi$ をどう定義するか (散乱面をどうとるか) で 変わる.
- P2 は実験室系の軸の取り方によらず決まるものである.
- 円偏光の右左は $\epsilon_{\sigma} \times \epsilon_{\pi} = \hat{k}$ と関係しているので、 $\epsilon_{\pi} \times \epsilon_{\sigma} = \hat{k}$ にすると逆になる.また、 $G_{\sigma\pi'}$ と $G_{\pi\sigma'}$ の 符号も逆転する.

6.3.2 χ と δ の関数としての表記

(6.13) や (6.14) の P_1 や P_2 はまだ χ と δ から直接計算できる形になっておらず,不便である.そこで,これら を χ と δ の関数として書き表す. (6.5),または (6.6)(6.7)より,

$$|\varepsilon_x|^2 = \frac{1}{2}(1 - \cos \delta) \sin^2 2\chi$$
$$|\varepsilon_x| = \sqrt{\frac{1}{2}(1 - \cos \delta) \sin^2 2\chi} \equiv a$$

(6.5) より,実数 $a \ge b$,位相を表すパラメータ $\alpha \ge \varphi$ を用いて,

$$\begin{pmatrix} \varepsilon_x \\ \varepsilon_y \end{pmatrix} = \begin{pmatrix} -\cos\chi\sin\chi(1-\cos\delta) + i\cos\chi\sin\chi\sin\delta \\ \cos^2\chi\cos\delta + \sin^2\chi + i\cos^2\chi\sin\delta \end{pmatrix} = \begin{pmatrix} ae^{i\alpha} \\ be^{i(\alpha+\varphi)} \end{pmatrix}$$

と書ける. したがって,

$$e^{i\alpha} = (-\cos\chi\sin\chi(1-\cos\delta) + i\cos\chi\sin\chi\sin\delta)/|\varepsilon_x|$$
$$e^{-i\alpha} = -(\cos\chi\sin\chi(1-\cos\delta) + i\cos\chi\sin\chi\sin\delta)/|\varepsilon_x|$$

^{*127)} $\sigma \ge \pi$ の定義は散乱面をどのようにとるかによって変化してくる.ここは移相子での座標系 xy で考えている. x'y' ではないことに注意.実験室の XYZ でもない.

^{*128)} KEK-PF での 4 軸回折計を使った実験はこのような垂直散乱面の配置である.

となり、 ε_x と ε_y の両方に $e^{-i\alpha}$ をかければ、位相関係を変えることなく、 ε_x だけを実数 $a = |\varepsilon_x|$ にできる.計算をすると、

$$\begin{aligned} a &= |\varepsilon_x| \\ b e^{i\varphi} &= \varepsilon_y e^{-i\alpha} \\ &= \frac{1}{2|\varepsilon_x|} \left\{ \sin 2\chi \cos 2\chi (1 - \cos \delta) - i \sin 2\chi \sin \delta \right\} \end{aligned}$$

となるので、Stokes パラメータは次のようにまとめることができる.

水平散乱面の場合

$$P_{1} = \operatorname{Re}\left[2\varepsilon_{x}\varepsilon_{y}\right] = \frac{1}{2}\sin 4\chi(1 - \cos \delta)$$

$$P_{2} = \operatorname{Im}\left[2\varepsilon_{x}\varepsilon_{y}\right] = -\sin 2\chi \sin \delta$$

$$P_{3} = |\varepsilon_{x}|^{2} - |\varepsilon_{y}|^{2} = -(\cos^{2} 2\chi + \sin^{2} 2\chi \cos \delta)$$
(6.15)

垂直散乱面の場合

$$P_{1} = -\operatorname{Re}\left[2\varepsilon_{x}\varepsilon_{y}\right] = -\frac{1}{2}\sin 4\chi(1-\cos\delta)$$

$$P_{2} = \operatorname{Im}\left[2\varepsilon_{x}\varepsilon_{y}\right] = -\sin 2\chi\sin\delta$$

$$P_{3} = |\varepsilon_{y}|^{2} - |\varepsilon_{x}|^{2} = (\cos^{2}2\chi + \sin^{2}2\chi\cos\delta)$$
(6.16)

水平散乱面の場合の計算例を図 6.9 に示す. 一般には P_1 , P_2 , P_3 のすべてが混じってくるが,特別な場合はどれ かがゼロになる. 代表的な例は $\chi = \pm \pi/4$ のときに θ を回して δ を変化させる場合である. このとき, $P_1 = 0$ であ り, δ が変化すると, P_2 と P_3 とが入れかわるように変化する. 具体的には,直線偏光に円偏光が混じって楕円偏 光となり,完全な円偏光を経て,やがて,はじめと 90° 異なった方向に偏光した直線偏光へと変化する. $\chi = -\pi/4$ のときに θ を回す状況を考えると, $\theta \ll \theta_{\rm B}$ のときは $\delta \simeq 0$ であり,水平方向の直線偏光 (π 偏光) である. θ が $\theta_{\rm B}$ に近づくにつれて δ が増加し,右円偏光成分が混じった横長の楕円偏光となり, $\delta = \pi/2$ になったところで完全 な右円偏光になる. さらに δ が増加すると縦長の楕円偏光になっていき, $\delta = \pi$ になったところで鉛直方向の直線 偏光 (σ 偏光) になる. $\theta \simeq \theta_{\rm B}$ の領域では激しく位相が変化して入り乱れる. $\theta > \theta_{\rm B}$ となった $\delta < 0$ の側は反対 で, $\delta = -\pi$ での σ 偏光に左円偏光が混じっていき, $\delta = -\pi/2$ での完全な左円偏光を経て, $\theta \gg \theta_{\rm B}$ で再び π 偏 光に戻っていく.

もう一つの例は $\delta = \pm \pi \operatorname{c} \chi$ を変化させる場合である.このとき, $P_2 = 0$ であり, P_1 と P_3 とが入れかわるように変化する.具体的には、直線偏光のまま偏光方向が χ とともに回転する. $\chi = 0$ のときは水平面内で直線偏光した π 偏光であり、 χ をマイナス側に回していくと直線偏光の偏光面も傾いていき、 $\chi = -\pi/8$ になったところでちょうど -45° 直線偏光になる.さらに χ をマイナス側に回していくと、偏光面の傾きが増加し、 $\chi = -\pi/4$ になったところで鉛直方向に偏光した σ 偏光の光になる. χ をプラス側に回すとこの逆で、 $\chi = +\pi/8$ での $+45^\circ$ 直線偏光を経て、 $\chi = +\pi/4$ で σ 偏光になる.

図 6.9: 水平散乱面の場合に、いくつかの移相子の角度 χ について、移相量 δ に対する Stokes パラメータの変化 を計算したもの.

6.4 SPring-8, BL22 における 2 重連結移相子システム

図 6.8 の移相子システム部分にも描かれているように, SPring-8 の BL22 に設置されている移相子システムで は、1つの χ 軸上で互いに 90° ずれた位置に、2つの移相子が配置されている。これはビームが有限のエネルギー 幅をもつことによる偏光度の低下を、2つの移相子を通すことで補償 (Chromatic Aberration) するための仕 組みである^{*129)}.本節ではこれについて詳しく述べる。

6.4.1 システム全体の構成と座標軸の定義

図 6.10 に 2 重連結移相子システムの配置と各種角度の定義を示す。第一移相子を PR₁,第二移相子を PR₂ と呼ぶ。PR₁ までは図 6.1 と同じである。上流の放射光源から、水平面内に直線偏光した X 線が PR₁ に入射してくる。この偏光ベクトルを $\epsilon_0 = (0,1,0)$ とする。X 線の進行方向を z 軸とし、移相子系での鉛直上向きを x 軸、水平面を y 軸とする。PR₁ での Bragg 反射の散乱面が y'z 面となるよう、PR₁ での x'y' 軸を定義する。このとき、PR₁ では偏光ベクトルの y' 成分が π 偏光、x' 成分が σ 偏光となる。同様に、PR₂ での Bragg 反射の散乱面が y'z 面となるよう、PR₂ での x''y'' 軸を定義する。PR₂ では偏光ベクトルの y'' 成分が π 偏光、x'' 成分が σ 偏光となる。PR₁ と PR₂ の χ は互いに 90° ずれており、共通のパラメータ χ_{PR} を用いて、

$$\chi_1 = \chi_{\rm PR} + \frac{\pi}{2}, \quad \chi_2 = \chi_{\rm PR}$$

と表すことにする. χ の定義は図 6.1 のとおりである. たとえば, $\chi_{PR} = -45^{\circ}$ のとき, $\chi_1 = +45^{\circ}$, $\chi_2 = -45^{\circ}$ である.

 $\chi_1 \ge \chi_2$ が互いに 90° ずれているため、PR₁ での σ 偏光は PR₂ での π 偏光であり、PR₁ での π 偏光は PR₂ で の σ 偏光となる. これが後に色収差を補償する鍵になる.

移相子を通過するたびに偏光状態は変わる.そこで、PR₁の後の偏光ベクトルを ϵ_1 , PR₂の後の偏光ベクトル を ϵ_2 とする. ϵ_2 が実験室系(図 6.8)への入射偏光ベクトル ϵ となる.水平散乱面の実験室系では垂直成分(移 相子系のy成分)が σ ,水平成分(移相子系の-x成分)が π である.

6.4.2 移相子 1 と 2 での Bragg 反射

PR₁ と PR₂ で Bragg 反射が起こるときの様子を図 6.11, 6.12 に示す. 逆格子ベクトルが散乱ベクトルと一致する ($\tau = k' - k$ である) ことが Bragg 反射の条件であり, このとき $\theta = \theta_{\rm B}$ が実現する. この点については PR₁

図 6.10: 色収差補償のための2重連結移相子システムの配置と各種角度の定義.

^{*129)} エネルギーまたは波長は、可視光でいえば「色」にあたるので、「色収差」と呼んでいる. 収差とは光学用語でレンズを通した結像がぼや けることを差し、屈折率が光の波長によって異なるために起こる収差を色収差という. この用語をそのまま X 線に持ち込んだ言い方である.

図 6.11: PR₁ で Bragg 条件が満たされるときの様子 を図 6.10 の x' 軸方向からみたもの.正方向である反 時計回りに θ_1 を回転させると,反射面に対して高角 入射するところから始まり, Bragg 反射を経て,低角 入射で終わる.

図 6.12: PR₂ で Bragg 条件が満たされるときの様子 を図 6.10 の x'' 軸方向からみたもの.正方向である反 時計回りに θ_2 を回転させると,反射面に対して低角 入射するところから始まり, Bragg 反射を経て,高角 入射で終わる.

も PR₂ も共通である.しかし、両者ではその配置(k'の方向)が逆になっている.ここで、移相子の回転軸である $\theta_1 \ge \theta_2$ は、いずれも反時計回りを正方向として回転するよう定義されている^{*130}.

PR₁ PR₁では,反時計回りに θ_1 を回転させると,反射面に対して高角で入射するところから始まり,Bragg反 射が起こる $\theta_1 = \theta_B$ を経て,低角入射へと変わっていく.回転の際に, θ_1 の目盛りは $\theta_1 < \theta_B$ から始まり, $\theta_1 = \theta_B$ を経て, $\theta_1 > \theta_B$ となって終わるのだが,実際には高角入射から低角入射へと変化しているので,式(6.1)に θ_1 を 当てはめるときには,全体の符号を逆にしなければならない.

PR₂ PR₂では、反時計回りに θ_2 を回転させると、反射面に対して低角で入射するところから始まり、Bragg 反射が起こる $\theta_1 = \theta_B$ を経て、高角入射へと変わっていく。 θ_2 の目盛りは $\theta_1 < \theta_B$ から始まり、 $\theta_1 = \theta_B$ を経て、 $\theta_1 > \theta_B$ となって終わるので、目盛りと実際の動きが一致している。したがって、式 (6.1) に θ_2 をそのまま当ては めてよい。

6.4.3 色収差の補償

図 6.13(a), (b) にそれぞれ PR₁, PR₂ を正方向(θ_1 , θ_2 が増加する方向,反時計回り)に回したときの, σ 偏光 に対する π 偏光成分の位相差(移相量)を示す.ただし, σ と π の定義は, PR₁ では x'y' 軸について, PR₂ では x''y'' 軸についてなされている.

PR₁: 図 6.13(a) PR₁ では, θ_1 が増加するとき,ビームと結晶の関係は高角入射 (high) から低角入射 (low) へ と変わっていく. つまり,図(a) で, $\theta_1 - \theta_B < 0$ のとき,実際は高角入射 (high) になっている. そのため,式(6.1) に θ_1 を当てはめるとき,全体の符号が逆になり,高角入射である $\theta - \theta_B < 0$ のとき $\delta < 0$ になる. また,X線の エネルギーはある値を中心に有限の幅をもって分散しているので,図では緑の線が中心エネルギー,赤が低エネ ルギー側,青が高エネルギー側での移相量変化を表すように描かれている.高いエネルギーの光ほど, θ_B が小さ くなるので,全体が低角入射側(図(a)では $\theta - \theta_B > 0$ のほう)にずれる.

^{*130)}回転軸は反時計回りを正方向とすることを原則とし、逆配置へはソフト上で対応するという考え方に基づく

図 6.13: (a) PR₁ で θ_1 を正方向に回したときの, σ に対する π の位相差の変化 (x'y' 軸での定義). (b) PR₂ で θ_2 を正方向に回したときの, σ に対する π の位相差の変化 (x''y'' 軸での定義). (c) 図 (b) を PR₁ と同じ x'y' 軸 での定義で言いかえた図.緑 (点線) は中心エネルギーの光, 青 ((()) は高エネルギー側, 赤 (()) (()) は高エネル ギー側にわずかにずれた光を表す.

PR₂ I: 図 6.13(b) PR₂ では、 θ_2 が増加するとき、ビームと結晶の関係も低角入射 (low) から高角入射 (high) へと変わっていく。図 (b) で、 $\theta_2 - \theta_B < 0$ のとき、実際も低角入射 (low) である。したがって、式 (6.1) にはその まま θ_2 を当てはめればよい。低角入射である $\theta - \theta_B < 0$ のとき $\delta > 0$ になる。また、高いエネルギーの光ほど、全体が低角入射側(図 (b) では $\theta - \theta_B < 0$ のほう)にずれる。

PR₂ II: 図 6.13(c) PR₁ と PR₂ では, $\sigma \ge \pi$ の定義が入れかわっている. PR₂ で π の位相が進むということ は、同じ x''y'' 系でいえば, σ の位相が遅れることと等価である. そして, PR₂ で σ の位相が遅れることを, PR₁ の x'y' 系で言い表すと, π の位相が遅れることと等価である. したがって, 図 (b) の縦軸の上下を逆転させれば, PR₂ での位相変化を PR₁ の x'y' 系で言い表したことになる. これが図 (c) である.

色収差の補償 図 (a) と図 (c) を重ね合わせると、エネルギー分散による移相量のぼやけが補償されることがわか るだろう. 実際には、PR₁ と PR₂ を連結させ、同じオフセット角 $\Delta \theta = \theta - \theta_{\rm B}$ を設定することに相当する. 全体 で $\delta = -\pi$ の移相量が欲しいときには、PR₁ で $\delta_1 = -\pi/2$, PR₂ で $\delta_2 = -\pi/2$ の移相量を作り、両者合わせて $\delta = -\pi$ にするようにすれば、エネルギー分散による移相量のぼやけが補償された偏光ビームを作ることができる のである.

6.4.4 2 重連結移相子を透過した X 線の偏光状態 I: $\chi_{ m PR}=-45^\circ$ の場合

ここでは、円偏光や垂直直線偏光を作る $\chi_{PR} = -45^{\circ}$ の配置について、 $PR_1 \ge PR_2$ を透過した後の X 線の偏光 状態 (Stokes Parameter) を θ_1 および θ_2 の関数として表す. $\chi_{PR} = -45^{\circ}$ のとき、

$$\chi_1 = +45^\circ, \quad \chi_2 = -45^\circ$$

である.まず、 PR_1 を透過した X 線の偏光ベクトル ϵ_1 を xy 系で表すと、(6.5) より、

$$\begin{pmatrix} \varepsilon_{1x} \\ \varepsilon_{1y} \end{pmatrix} = \begin{pmatrix} \cos \chi_1 & \sin \chi_1 \\ -\sin \chi_1 & \cos \chi_1 \end{pmatrix} \begin{pmatrix} -\sin \chi_1 \\ \cos \chi_1 e^{i\delta_1} \end{pmatrix}$$
$$= \frac{1}{2} \begin{pmatrix} -1 + \cos \delta_1 + i \sin \delta_1 \\ 1 + \cos \delta_1 + i \sin \delta_1 \end{pmatrix}.$$
(6.17)

これが PR_2 への入射 X 線となる.次に、 PR_2 での x''y'' 系で ε_1 を表すと、

$$\begin{pmatrix} \varepsilon_{1x''} \\ \varepsilon_{1y''} \end{pmatrix} = \begin{pmatrix} \cos \chi_2 & -\sin \chi_2 \\ \sin \chi_2 & \cos \chi_2 \end{pmatrix} \begin{pmatrix} \varepsilon_{1x} \\ \varepsilon_{1y} \end{pmatrix}$$

$$= \frac{1}{\sqrt{2}} \begin{pmatrix} \varepsilon_{1x} + \varepsilon_{1y} \\ -\varepsilon_{1x} + \varepsilon_{1y} \end{pmatrix}$$

$$= \frac{1}{\sqrt{2}} \begin{pmatrix} \cos \delta_1 + i \sin \delta_1 \\ 1 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} e^{i\delta_1} \\ 1 \end{pmatrix}.$$

$$(6.18)$$

この後、 PR_2 を透過すると、 π 成分 (y''成分) に位相差 δ_2 がつくので、

$$\begin{pmatrix} \varepsilon_{2x''} \\ \varepsilon_{2y''} \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} e^{i\delta_1} \\ e^{i\delta_2} \end{pmatrix}$$
$$= \frac{e^{i\delta_1}}{\sqrt{2}} \begin{pmatrix} 1 \\ e^{i(\delta_2 - \delta_1)} \end{pmatrix} \longrightarrow \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ e^{i(\delta_2 - \delta_1)} \end{pmatrix}$$
(6.19)

となる. 最後は位相差 $\delta_2 - \delta_1 \epsilon r$ ラメータとする形に変形し, 共通因子である $e^{i\delta_1} \epsilon 1$ で置き換えて $\epsilon_{2x''} \epsilon$ 実数にした. これを xy系での表記に戻すと,

$$\varepsilon = \frac{1}{\sqrt{2}} \begin{pmatrix} \cos \chi_2 & \sin \chi_2 \\ -\sin \chi_2 & \cos \chi_2 \end{pmatrix} \begin{pmatrix} 1 \\ e^{i(\delta_2 - \delta_1)} \end{pmatrix}$$
$$= \frac{1}{2} \begin{pmatrix} 1 - \cos(\delta_2 - \delta_1) - i\sin(\delta_2 - \delta_1) \\ 1 + \cos(\delta_2 - \delta_1) + i\sin(\delta_2 - \delta_1) \end{pmatrix}$$
(6.20)

となり、これが実験室系への入射 X 線の偏光ベクトル ϵ となる. この ϵ には、次のような性質がある.ただし、 $\delta_{21} = \delta_2 - \delta_1$ である.

 $|\varepsilon_x|^2 = \frac{1}{2} (1 - \cos \delta_{21}) \tag{6.21}$

$$|\varepsilon_y|^2 = \frac{1}{2}(1 + \cos\delta_{21}) \tag{6.22}$$

$$|\varepsilon_x|^2 + |\varepsilon_y|^2 = 1 \tag{6.23}$$

$$|\varepsilon_x|^2 - |\varepsilon_y|^2 = -\cos\delta_{21} \tag{6.24}$$

Stokes Parameter Stokes パラメータ (P_1, P_2, P_3) を求めるため, $\boldsymbol{\varepsilon} = (\varepsilon_x, \varepsilon_y)$ に

$$\frac{\varepsilon_x^*}{|\varepsilon_x|} = \frac{1 - \cos \delta_{21} + i \sin \delta_{21}}{\sqrt{2(1 - \cos \delta_{21})}}$$

をかけて、 ε_x を実数にする. すると、

$$\frac{\varepsilon_x \varepsilon_x^*}{|\varepsilon_x|} = |\varepsilon_x| = \sqrt{\frac{1 - \cos \delta_{21}}{2}} \tag{6.25}$$

$$\frac{\varepsilon_y \varepsilon_x^*}{|\varepsilon_x|} = i \frac{\sin \delta_{21}}{\sqrt{2(1 - \cos \delta_{21})}} \tag{6.26}$$

であることがわかる.したがって,

図 6.8 のような水平散乱面の実験室系において、
$$\chi_{PR} = -45^{\circ} \mathcal{O}$$
とき、

$$P_1 = 0$$

$$P_2 = \operatorname{Im}[2\varepsilon_x \varepsilon_y] = \sin \delta_{21}$$

$$P_3 = |\varepsilon_x|^2 - |\varepsilon_y|^2 = -\cos \delta_{21}$$
(6.27)

BL22の定義では、PR₁は、 θ_1 が増加するとき高角入射から低角入射へ変化し、PR₂は、 θ_2 が増加するとき低角入射から高角入射へ変化するので^{*131})、

$$\delta_{1} = +\frac{At}{\theta_{1} - \theta_{B}} = +\frac{At}{\Delta\theta_{1}}$$

$$\delta_{2} = -\frac{At}{\theta_{2} - \theta_{B}} = -\frac{At}{\Delta\theta_{2}}$$

$$\delta_{21} = -At\left(\frac{1}{\Delta\theta_{1}} + \frac{1}{\Delta\theta_{2}}\right)$$
(6.28)

である.

したがって,

6.4.5 2 重連結移相子を透過した X 線の偏光状態 II: $\delta_1 = \mp \pi/2, \delta_2 = \pm \pi/2$ の場合

もう一つの代表的なケースとして、 $\delta_1 = \mp \pi/2, \delta_2 = \pm \pi/2$ となるように θ_1, θ_2 を固定して^{*132)}、 χ_{PR} を動かす場合を考えよう. 添字を省略して $\chi_{PR} = \chi$ とし、

$$\chi_1 = \chi + \frac{\pi}{2}$$
, $\chi_2 = \chi$, $\delta_1 = \mp \pi/2$, $\delta_2 = \pm \pi/2$

とする.

まず、 PR_1 を透過した X 線の偏光ベクトル ε_1 を xy 系で表すと、(6.5) より、

$$\begin{pmatrix} \varepsilon_{1x} \\ \varepsilon_{1y} \end{pmatrix} = \begin{pmatrix} \cos \chi_1 & \sin \chi_1 \\ -\sin \chi_1 & \cos \chi_1 \end{pmatrix} \begin{pmatrix} -\sin \chi_1 \\ \cos \chi_1 e^{i\delta_1} \end{pmatrix}$$

$$= \begin{pmatrix} -\sin \chi & \cos \chi \\ -\cos \chi & -\sin \chi \end{pmatrix} \begin{pmatrix} -\cos \chi \\ \pm i \sin \chi \end{pmatrix}$$

$$= \begin{pmatrix} \sin \chi \cos \chi (1 \pm i) \\ \cos^2 \chi \mp i \sin^2 \chi \end{pmatrix}.$$

$$(6.29)$$

 $^{^{*131)}}$ ここでの δ_1 は x'y' 系, δ_2 は x''y'' 系での値になるので, δ_1 は図 6.13 の (a), δ_2 は (b) に対応する. (c) ではない.

^{*&}lt;sup>132)</sup> $\delta_1 = -\pi/2, \delta_2 = +\pi/2$ のとき、 θ_1 は高角入射側、 θ_2 は低角入射側にオフセットがかかる。軸の目盛りでいえば、両方とも θ_B よりもマイナス側にオフセットがかかる。

これが PR_2 への入射 X 線となる.次に、 PR_2 での x''y'' 系で ε_1 を表すと、

$$\begin{pmatrix} \varepsilon_{1x''} \\ \varepsilon_{1y''} \end{pmatrix} = \begin{pmatrix} \cos \chi_2 & -\sin \chi_2 \\ \sin \chi_2 & \cos \chi_2 \end{pmatrix} \begin{pmatrix} \varepsilon_{1x} \\ \varepsilon_{1y} \end{pmatrix}$$
$$= \begin{pmatrix} \pm i \sin \chi \\ \cos \chi \end{pmatrix} = \begin{pmatrix} \sin \chi e^{\pm i\pi/2} \\ \cos \chi \end{pmatrix}$$
(6.30)

この後、 PR_2 を透過すると、 π 成分 (y''成分) に位相差 $\delta_2 = \pm \frac{\pi}{2}$ がつくので、

$$\begin{pmatrix} \varepsilon_{2x''} \\ \varepsilon_{2y''} \end{pmatrix} = \begin{pmatrix} \sin \chi e^{\pm i\pi/2} \\ \cos \chi e^{\pm i\pi/2} \end{pmatrix}$$
$$= e^{\pm i\pi/2} \begin{pmatrix} \sin \chi \\ \cos \chi \end{pmatrix} \longrightarrow \begin{pmatrix} \sin \chi \\ \cos \chi \end{pmatrix} \tag{6.31}$$

となる. 最後は共通因子である $e^{\pm i\pi/2}$ を1 で置き換えて $\varepsilon_{2x''}$ を実数にした. これを xy 系での表記に戻すと,

$$\varepsilon = \begin{pmatrix} \cos \chi_2 & \sin \chi_2 \\ -\sin \chi_2 & \cos \chi_2 \end{pmatrix} \begin{pmatrix} \sin \chi \\ \cos \chi \end{pmatrix} \\
= \begin{pmatrix} 2\sin \chi \cos \chi \\ \cos^2 \chi - \sin^2 \chi \end{pmatrix} \\
= \begin{pmatrix} \sin 2\chi \\ \cos 2\chi \end{pmatrix} \tag{6.32}$$

となり、これが実験室系への入射 X 線の偏光ベクトル ϵ となる。結局、予想通りの当然の結果であるが、x, y 両 成分が同位相で振動する直線偏光であり、その偏光方向が χ に伴って回転することがわかる。 最後に、この結果を Stokes Parameter の形に直しておく。

図 6.8 のような水平散乱面の実験室系において、
$$\delta_1 = \mp \pi/2, \delta_2 = \pm \pi/2$$
のとき、

$$P_1 = \operatorname{Re}[2\varepsilon_x \varepsilon_y] = \sin 4\chi_{\operatorname{PR}}$$

$$P_2 = 0$$

$$P_3 = |\varepsilon_x|^2 - |\varepsilon_y|^2 = -\cos 4\chi_{\operatorname{PR}}$$
(6.33)

図 6.8 では、移相子を透過して出てきた直線偏光の角度をηと定義している。ηを使うと、

$$P_1 = -\sin 2\eta$$
, $P_2 = 0$, $P_3 = \cos 2\eta$

である. したがって、 $\eta \ge \chi_{PR}$ とは、

$$\chi_{\rm PR} = \frac{\eta - 90^{\circ}}{2} \tag{6.34}$$

の関係で結ばれている*133).

^{*} $\overline{133}$ $\chi_{PR} = (\eta + 90^{\circ})/2$ としてもよいが、 $\eta = 90^{\circ}$ のとき、 $\chi_{PR} = 90^{\circ}$ 、このとき $\chi_1 = 180^{\circ}$ となってしまい、ケーブル等がひっかかる危険がある不自然な配置になる。 $\chi_{PR} = (\eta - 90^{\circ})/2$ のほうが $\eta = -90^{\circ} \sim +90^{\circ}$ の領域を自然な配置で動かせる。

6.4.6 Direct Beam を使ったオフセット値の決定

図 6.14 に $\chi_{PR} = -45^{\circ}$ の配置での Direct Beam を Cu-220 アナライザー結晶を通して観測した結果を示す. X 線のエネルギーは 6.712 keV で、ダイヤモンド移相子 1 枚の厚さは 0.5 mm であり、220 反射を使っている. この ように、移相子を通しただけの Direct beam を直接アナライザーで解析する場合は、非共鳴 Thomson 散乱に対す る式 (5.45) で 2 $\theta = 0$ とすればよい.

左側の図は, $\theta_2 & \epsilon \theta_B$ から +1° ずらし (オフセットをかけ) た状態で θ_1 の scan を行った結果である. +1° の オフセットをかけると, PR₂ は移相子としての機能をほとんどなさなくなる^{*134)}. (6.27), (6.28) を参考にしなが ら, θ_1 -scan についてみてみよう.まず, scan のはじめの $\theta_1 < \theta_B$ の領域はほとんど入射 X 線の π 偏光 ($P_3 = -1$) の状態であり, $\phi_A = 90^\circ$ での強度が強い. θ_1 を増やしていくと, PR₁ での移相量が増えていき, 円偏光成分が混 じってくる. $\theta_1 - \theta_B = -0.017^\circ$ 付近がちょうど $\delta_{12} = -\pi/2$ であり, このとき, (6.27) より $P_2 = 1$, $P_3 = 0$ であ る. さらに θ_1 を増やしていくと, $\theta_1 - \theta_B = -0.0085^\circ$ 付近で $\delta_{12} = -\pi$ となり, $P_2 = 0$, $P_3 = 1$ (σ 偏光) となる. 計算上はこのとき $\phi_A = 90^\circ$ での強度がゼロになるはずであるが, このあたりは移相量の変化が激しく, ぼやけが 生じて $\delta_{12} = -\pi$ 付近の移相量が混じるため, 有限の強度が残る. この様子は θ_1 に分解能幅を設定してたたみ込 み積分をかけることでうまくフィットできている^{*135)}. そして, PIN1 の強度がピーク値をとる $\theta_1 = -0.912^\circ$ の とき, $\theta_1 = \theta_B$ となる. このあたりは移相量が発散し, 偏光がぐちゃぐちゃに入り乱れた状態である. さらに θ_1 を増やしていくと, この逆コースをたどり, $\theta_1 - \theta_B = +0.0085^\circ$ 付近で $\delta_{12} = +\pi$, $P_2 = 0$, $P_3 = 1$ (σ 偏光), $\theta_1 - \theta_B = +0.017^\circ$ 付近でちょうど $\delta_{12} = +\pi/2$, $P_2 = -1$, $P_3 = 0$ となる. さらに θ_1 を増やしていくと, δ_{12} が ゼロに近づいていき, π 偏光状態に戻っていく.

右側の図は同様な scan を PR₂ について行った結果である. これら合計 4 種類の測定を行い,式 (5.45) を使っ てたたみ込みフィッティングをかけることで,At などの実験パラメータを決定することができる.図 6.14 では, At₁ = 0.0264, At₂ = 0.0274 (rad·deg) と求まった.各種のパラメータが決まれば,目的の移相量を得るための適切 なオフセット値を求めることができる.たとえば,σ偏光ビームを作るには, $\Delta \theta_1 = -0.0168^\circ, \Delta \theta_2 = -0.0174^\circ$ として,両者合わせて $\delta_{12} = -\pi$ になるようにする.そうすることで,色収差が補償された,偏光度の高いσ偏光 ビームが得られる.そして,どの程度の品質のσ偏光ビームが得られたかを確かめるために,図 5.4 のような測 定を行うのである.

^{*134)} といっても PR2 での移相量が完全にゼロになるわけではないので、フィッティングではこのオフセットをきちんと考慮する必要がある.

^{*135)} 分解能幅もフィッティングパラメータになっていて,図 6.14 では半値幅約 0.008° である.

図 6.14: $\chi_{PR} = -45^{\circ}$ の配置での Direct Beam を Cu-220 アナライザー結晶を通して観測した結果. X 線のエ ネルギーは 6.712 keV で,ダイヤモンド移相子 1 枚の厚さは 0.5 mm, 220 反射を使用. $2\theta_A = 92.552^{\circ}$ である. PRth1 は θ_1 , PRth2 は θ_2 , PIN1 は PR₁ の検出器, PIN2 は PR₂ の検出器, I1 は移相子の下流側に置かれた強 度モニター, Det はアナライザーの後の検出器, POL は ϕ_A のこと. PRth2 offset は θ_1 -scan を行うときに θ_2 に かけるオフセット. PRth1 offset は θ_2 -scan を行うときに θ_1 にかけるオフセット. 実線はフィッティング結果で, $At_1 = 0.0264, At_2 = 0.0274$ (rad·deg.). ただし, θ_1 の分解能幅を 0.0086°, θ_2 の分解能幅を 0.0080° としてたた み込みをかけている.