確率・統計 A 演習問題 No.10

- 1. Ω を空でない集合とし, $\mathcal{B} \subset \wp(\Omega)$ とする. $\mathcal{B} = \{\emptyset, A, B, C, \Omega\}$ は Ω の σ -集合体ではないことを証明せよ. ただし, $\emptyset, A, B, C, \Omega$ は互いに異なる Ω の部分集合である.
- 2. \mathcal{B} を σ -集合体とする. σ -集合体の定義のみを用いて, $A_1, A_2, \ldots \in \mathcal{B}$ ならば $\overline{\lim}_{n\to\infty} A_n \in \mathcal{B}$ を示せ.
- 3. A, B を事象とする. 確率の定義のみを用いて, $A \subset B \Rightarrow P(A) \leq P(B)$ を示せ.
- 4. $A_n, B_n \subset \Omega$ (n = 1, 2, ...) で, $A_n \supset A_{n+1}, B_n \subset B_{n+1}$ (n = 1, 2, ...) を満たすとする. $C_{2m} = A_m, C_{2m-1} = B_m$ (m = 1, 2, ...) と定義するとき, $\overline{\lim}_{n \to \infty} C_n = \{\bigcup_{n=1}^{\infty} B_n\} \cup \{\bigcap_{n=1}^{\infty} A_n\}, \underline{\lim}_{n \to \infty} C_n = \{\bigcap_{n=1}^{\infty} A_n\} \cap \{\bigcup_{n=1}^{\infty} B_n\}$ であることを示せ.
- 5. 2次元ボレル集合体 \mathbb{B}_2 は, \mathbb{R}^2 の部分集合の属 $J_2 = \{(a,b] \times (c,d]; \ a < b,c < d\}$ を含む最小の σ -集合体として定義される. このとき, $[a,b] \times [c,d] \in \mathbb{B}_2$, $(a,b) \times (c,d) \in \mathbb{B}_2$ を示せ.
- 6. ある学校では、血液型が A 型、B 型、O 型、AB 型である人数比が丁度 4:3:2:1 である. また、占いを信じるかどうかのアンケート調査を行ったところ、血液型別に分類して、占いを信じる人の割合が

A型:30%, B型:50%, O型:70%, AB型:10%,

であった.この学校で無作為に一人選んだ人が占いを信じているとき,血液型が 〇 型である確率を求めよ.

- 7. ある学校では、12 星座をすべて言える人の割合は 30%、星占いを信じている人の割合は 40% であった。この学校で無作為に選んだ人が 12 星座をすべて言えるという事象を A、星占いを信じているという事象を B とするとき、A、B は独立である。このとき、12 星座をすべて言える人の中で、星占いを信じている人の割合を求めよ。
- 8. a < b < c とする. 区間 (a,b),(a,c) を含む, $\mathbb R$ の最小の σ -集合体を $\mathcal B$ とする. $\mathbb R$ 上の実数値関数 Y(x) が $(\mathbb R,\mathcal B)$ 上の確率変数であるならば, Y は離散型であることを示せ. このとき, Y の取り得る値は最大で何個か.
- 9. X を確率空間 (Ω, \mathbb{B}, P) 上の確率変数とし、関数 G を G(x) = P(X < x) によって定義する. このとき、 G(x-0) = G(x) を証明せよ.
- 10. X,Y を確率空間 (Ω, \mathbb{B}, P) 上の確率変数とする.
 - (1) X,Y が独立であることの定義を書け.
 - (2) (1) の定義のみを用いて, X,Y が独立ならば $P(X \le a,Y \ge b)P(X \le a)P(Y \ge b)$ であることを証明せよ. (確率や σ -集合体の性質などは証明なしに用いてよい.)
- 11. 赤玉が 4 個, 白玉が 6 個入っている袋から, 無作為に 3 個玉を取り出すときの赤玉の個数を X とする. また, この袋から無作為に玉を 1 個取り出して色をチェックしたら戻す, という操作を 3 回繰り返した時の赤玉が取り出された回数を Y とする.
 - (1) X, Y それぞれの確率関数を求めよ.
 - (2) *X*, *Y* それぞれの平均を求めよ.
- 12. 2次元確率変数 (X,Y) の確率密度関数が $f(x,y)=g(x^2+y^2)$ と表されるとする. ただし, g は微分可能な非負値連続関数である. $X=R\cos\theta,Y=R\sin\theta$ $(R\geq 0,\ 0\leq \Theta<2\pi)$ によって, R,Θ を定義する.
 - (1) (R,Θ) の同時確率密度関数 $h(r,\theta)$ を g を用いて表わせ.
 - (2) R, Θ の周辺確率密度関数を、それぞれ、g を用いて表わせ.
 - (3) R,Θ は独立であることを示せ.
 - (注. (x,y)=(0,0) においてヤコビ行列式が 0 となり、また、(X,Y)=(0,0) のとき、 Θ の値は一意に定まらないが、P((X,Y)=(0,0))=0 なので、定理 3.3 において、 $\mathcal X$ は原点を含まないものと考えて良い.)