確率・統計 A 演習問題 No.5

- 1. $A, B \in \mathcal{B}$ (0 < P(A) < 1, 0 < P(B) < 1) について次を示せ. $A \succeq B$ が独立 $\Leftrightarrow A^c \succeq B$ が独立 $\Leftrightarrow A \succeq B^c$ が独立 $\Leftrightarrow A^c \succeq B^c$ が独立
- 2. 事象 $A_1, \ldots, A_n \in \mathcal{B}$ に対して, $B_i = A_i$ または $B_i = A_i^c$ とする. このとき次を示せ.
 - (a) A_1, \ldots, A_n が独立であれば $P(B_1 \cap \cdots \cap B_n) = P(B_1) \cdots P(B_n)$
 - (b) すべての B_1, \ldots, B_n の組み合わせに対して, $P(B_1 \cap \cdots \cap B_n) = P(B_1) \cdots P(B_n)$ であれば A_1, \ldots, A_n は 独立.
- 3. 赤玉 3 つと白玉 2 つが入っている袋から 2 回玉を取り出す試行において, 1 回目に白玉が出る事象を A, 2 回目に赤玉が出る事象を B とする. このとき, 以下の問いに答えよ.
 - (a) 1回目の試行の後に取り出された玉を袋に戻したとする. このとき事象 $A \ge B$ は独立であるか.
 - (b) 1回目の試行の後に取り出された玉を袋に戻さなかったとする. このとき事象 A と B は独立であるか.
- 4. 10 個の機械が繋がって出来ているシステムの故障確率を考える. A_i を i 番目 $(i=1,\ldots,10)$ の機械が故障したという事象とし、それぞれは独立であるとする. $P(A_i) = p \ (i=1,\ldots,10)$ として以下の問いに答えよ.
 - (a) 機械が直列に繋がっているとすると, 10 個の機械のうち 1 つでも壊れたらシステムは故障する. このときシステムの故障確率を求めよ. また, システムの故障確率を 10^{-10} 以下に抑えたいとき, p をどれくらいまで下げる必要があるか. ただし, p が十分小さいとき, $(1-p)^{\alpha} \approx 1-\alpha p$ という近似式を用いてもよい.
 - (b) 機械が並列に繋がっているとすると, 10 個の機械のうち少なくとも 1 つが故障してなかったらシステムは正常に機能する. このときシステムの故障確率を求めよ. また, システムの故障確率を 10^{-10} 以下に抑えたいとき, p をどれくらいまで下げる必要があるか.
- 5. $a \ge b$ を定数とし、 $X \ge (\Omega, \mathcal{B}, P)$ 上の確率変数とする. このとき aX + b も確率変数であることを示せ.
- 6. X を (Ω, \mathcal{B}, P) 上の確率変数とする. このとき, X^2 は確率変数となるかどうか調べよ.
- 7. 標本空間 $\Omega = \{1,2,3,4\}$ と Ω 上の σ -集合体 $\mathcal{B} = \{\emptyset, \{2\}, \{3\}, \{1,4\}, \{2,3\}, \{1,2,4\}, \{1,3,4\}, \{1,2,3,4\}\}$ について以下の問いに答えよ.
 - (a) X(k) = k (k = 1, 2, 3, 4) とする. X が確率変数になるかどうか調べよ.
 - (b) $X(k) = (k \lambda)^2$ $(k = 1, 2, 3, 4; \lambda \in \mathbb{R})$ とする. X を確率変数にするためには、どのような λ を選べばよいか.
- 8. 標本空間 $\Omega = \{1,2,3,4\}$ に対し, X(k) = 0 (k = 1,3), X(k) = 1 (k = 2,4) となる関数を考える. X が確率変数になるような最小の σ -集合体 $\mathcal B$ を求めよ.
- 9. 標本空間 $\Omega=\{1,2,3,4\}$ 上の σ -集合体 $\mathcal{B}=\{\emptyset,\{1\},\{2,3,4\},\{1,2,3,4\}\}$ とし, X を Ω 上で定義された実数値 関数とする. このとき, X が確率変数になるための条件を求めよ.
- 10. X を (Ω, \mathcal{B}, P) 上の確率変数とし、任意の $A \in \mathbb{B}_1$ に対して $P_X(A) = P(X^{-1}(A))$ とする. このとき以下を示せ.
 - (a) $A_1, A_2, \ldots \in \mathbb{B}_1$ のとき, $X^{-1}(\bigcup_{n=1}^{\infty} A_n) = \bigcup_{n=1}^{\infty} X^{-1}(A_n)$
 - (b) P_X は (\mathbb{R}^1 , \mathbb{B}_1) 上の確率である.