確率・統計 A 演習問題 No.7

- 1. $\Omega = \{1, 2, 3, 4\}$ とする. Ω の部分集合族 $\{\{1\}, \{2\}\}$ を含む最小の σ -集合体を求めよ.
- 2. σ -集合体の定義のみを用いて, \mathcal{B} が σ -集合体であるとき, $A, B \in \mathcal{B}$ ならば $A \cap B \in \mathcal{B}$ であることを示せ.
- 3. P を, 可測空間 (Ω, \mathcal{B}) 上の確率とする. 確率の定義のみを用いて, $A, B \in \mathcal{B}$ ならば $P(A \cup B) = P(A) + P(B) P(A \cap B)$ であることを示せ. ただし, σ -集合体の性質 $(A \cap B \in \mathcal{B}$ であること) などは証明せずに用いてよい.
- 4. \mathbb{R}^2 の閉区間の族 $K = \{[a,b]; -\infty < a < b < \infty\}$ を含む最小の σ -集合体を $\sigma[K]$ と表す. このとき, 以下の問いに答えよ.
 - (a) 任意の実数 a,b (a < b) に対して, $(a,b] \in \sigma[K]$ であることを示せ.
 - (b) $\sigma[K] = \mathbb{B}_1$ (1次元ボレル集合体) であることを示せ.
- 5. $\Omega=(0,1]$ とし、 $\mathcal{B}=\{A\subset\Omega;\ A\in\mathbb{B}_1\}$ と定義する. ただし、 \mathbb{B}_1 は 1 次元ボレル集合体である. このとき、以下の問いに答えよ.
 - (a) \mathcal{B} は Ω 上の σ -集合体であることを示せ.
 - (b) P は (Ω, \mathbb{B}) 上の確率で、 $(a,b] \subset \Omega$ に対して P((a,b]) = b a を満たすとする. このとき $P(\{2^{-n}; n = 1, 2, ...\})$ の値を求めよ.
- 6. (Ω, \mathcal{B}, P) を確率空間とし, $A, B \in \mathcal{B}, 0 < P(B) < 1$ であるとする. このとき, 次の (a), (b), (c) は同値であることを示せ.
 - (a) A, B は独立

(b) P(A|B) = P(A)

- (c) $P(A|B^c) = P(A)$
- 7. (Ω, \mathcal{B}, P) を確率空間とし, $A, B \in \mathcal{B}, P(A) > 0, 0 < P(B) < 1$ であるとする. このとき, $P(A|B) > P(A|B^c)$ ならば P(B|A) > P(B) であることを証明せよ.
- 8. X を (Ω, \mathbb{B}, P) 上の確率変数とする. Y = [X] は確率変数であるかどうか調べよ. ただし, 実数値 x に対して [x] はガウス記号, すなわち, x を超えない最大の整数値を表わす.
- 9. 標本空間 $\Omega = \{1, 2, 3, 4\}$ 上の関数 $X(k) = (k-2)^2$ が確率変数となるような, 最小の σ -集合体を求めよ.
- 10. X を集合 Ω 上の実数値関数とする. $A \subset \mathbb{R}$ に対して $X^{-1}(A^c) = \{X^{-1}(A)\}^c$ であることを示せ.
- 11. \mathbb{R}^2 上のひし形領域 $\Omega = \{(x,y); \ |x+y| \leq 1, \ |x-y| \leq 1\}$ からランダムに点を選ぶ試行を考える. ここで, ランダムとは, 領域 (ボレル集合) $A \subset \mathbb{R}^2$ から点が選ばれる確率が, $A \cap \Omega$ の面積に比例することを意味する. この試行によって選ばれた点を (X,Y) とするとき, 以下の問いに答えよ.
 - (a) Z=X+Y, W=X-Y と定義するとき, $P(Z\leq z, W\leq w)$ の値を求めよ. ただし, $-1\leq z\leq 1, -1\leq w\leq 1$ とする.
 - (b) (Z, W) の同時分布関数を求めよ.
 - (c) Z,W は独立であることを示せ.