1 Introduction

1.1 Definition and properties of probability space

Definition 1.1 (Probability space)

(Ω, B, P) is called a probability space if the following conditions (i) and (ii) hold:

(i) B is a σ-field of Ω, that is, B is a family of subsets of Ω, and (B1) \sim (B3) are satisfied.

(B1) $\Omega \in B$.

(B2) $A \in B \Rightarrow A^c \in B$.

(B3) $A_1, A_2, \ldots \in B \Rightarrow \bigcup_{i=1}^{\infty} A_i \in B$.

Ω and (Ω, B) are called a sample space and a measurable space, respectively. Elements of B (subsets of Ω) are called events.

(ii) P is a probability measure on (Ω, B), that is, P is a real valued function on B, and (P1 \sim P3) holds.

(P1) $0 \leq P(A) \leq 1$ for any $A \in B$.

(P2) $P(\Omega) = 1$.

(P3) If $A_1, A_2, \ldots \in B$ and $A_i \cap A_j = \emptyset$ ($i \neq j$) \Rightarrow $P\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} P(A_i)$.

Theorem 1.1 (Properties of probability spaces)

(Ω, B, P) : a probability space

$\{A_n\}_{n=1,2,\ldots}$: a sequence of events in B

1. $P\left(\bigcup_{n=1}^{\infty} A_n\right) \leq \sum_{n=1}^{\infty} P(A_n)$.

2. $A_n \subset A_{n+1}$ ($n = 1, 2, \ldots$) $\Rightarrow P\left(\bigcup_{n=1}^{\infty} A_n\right) = \lim_{n \rightarrow \infty} P(A_n)$.
(3) $A_n \supset A_{n+1}$ ($n = 1, 2, \ldots$) \Rightarrow $P\left(\bigcap_{n=1}^{\infty} A_n\right) = \lim_{n \to \infty} P(A_n)$.

(4) $\overline{\lim}_{n \to \infty} A_n = \liminf_{n \to \infty} A_n$ \Rightarrow $P(\lim_{n \to \infty} A_n) = \lim_{n \to \infty} P(A_n)$.

Problem 1.1
Prove Theorem 1.1.

Thoerem 1.2 (The first Borel–Cantelli lemma)
\{A_n\}_{n=1,2,\ldots} : a sequence of events.
\[\sum_{n=1}^{\infty} P(A_n) < \infty \Rightarrow P(\overline{\lim}_{n \to \infty} A_n) = 0 \quad (P(\lim_{n \to \infty} A_n^c) = 1).\]

Thoerem 1.3 (The second Borel–Cantelli lemma)
\{A_n\}_{n=1,2,\ldots} : a sequence of independent events.
\[\sum_{n=1}^{\infty} P(A_n) = \infty \Rightarrow P(\overline{\lim}_{n \to \infty} A_n) = 1 \quad (P(\lim_{n \to \infty} A_n^c) = 0).\]

Definition 1.2 (Borel field)
The minimum σ-field which includes all open subsets of \mathbb{R} is called the (one dimensional) Borel field, which is denoted by \mathcal{B}. The measurable space $(\mathbb{R}, \mathcal{B})$ is called the Borel space.

Definition 1.3 (Random variable)
(Ω, \mathcal{B}, P) : a probability space
X : $\Omega \mapsto \mathbb{R}$
If X is Borel measurable, X is called a random variable on (Ω, \mathcal{B}, P), which means
\[\forall B \in \mathcal{B}, X^{-1}(B) := \{\omega \in \Omega \mid X(\omega) \in B\} \in \mathcal{B}.\]
Here $P_X : B \in \mathcal{B} \mapsto P(X^{-1}(B))$ becomes a probability measure on $(\mathbb{R}, \mathcal{B})$, which is called the distribution of X.

Definition 1.4 (Expectation)
X : a random variable
f : a Borel measurable function ($\forall B \in \mathcal{B}, f^{-1}(B) \in \mathcal{B}$)
\[E[f(X)] = \int f(x) dP_X(x)\] is called the expectation of $f(X)$.
\[E[X] : \text{the mean of } X, \quad \text{Var}[X] = E[(X - E[X])^2] : \text{the variance of } X.\]

Lemma 1.1 (Chebyshev’s inequality)
X : a random variable such that $E[X]$ exists.
\[\forall a > 0, P(|X - E[X]| \geq a) \leq \frac{\text{Var}[X]}{a^2}\]

Definition 1.5 (Convergence in probability)
\{X_n\}_{n=1,2,\ldots} : a sequence of random variables defined on (Ω, \mathcal{B}, P).
X : a random variable defined on (Ω, \mathcal{B}, P).
We say “X_n converges to X in probability”, and denote “$X_n \xrightarrow{P} X$ ($n \to \infty$)” if
\[\forall \delta > 0, \lim_{n \to \infty} P(|X_n - X| > \delta) = 0.\]
Example 1.1 (Weak law of large numbers)
\{X_n\}_{n=1,2,\ldots} : a sequence of independent random variables on (\Omega, \mathcal{B}, P)
E[X_i] = \mu, \text{Var}[X_i] = \sigma^2 (i = 1, 2, \ldots; \mu, \sigma^2 \in \mathbb{R})

\Rightarrow \bar{X}_n := \frac{1}{n} \sum_{i=1}^{n} X_i \overset{p}{\rightarrow} \mu (n \to \infty).

Problem 1.2
Prove Example 1.1 with using Chebyshev’s inequality.

Definition 1.6 (Almost sure convergence)
\{X_n\}_{n=1,2,\ldots} : a sequence of random variables defined on (\Omega, \mathcal{B}, P).
X : a random variable defined on (\Omega, \mathcal{B}, P).

We say “\(X_n\) converges to \(X\) almost surely”, and denote \(\overline{X}_n \overset{a.s.}{\rightarrow} X (n \to \infty)\)” if
\[\exists \Omega_0 \in \Omega \ s.t. \ P(\Omega_0) = 1, \ and \ \forall \omega \in \Omega_0, \ \lim_{n \to \infty} X_n(\omega) = X(\omega) \]

1.2 Strong law of large numbers

Theorem 1.4 (Kolmogorov’s inequality)
\{X_n\}_{n=1,2,\ldots} : a sequence of independent random variables on (\Omega, \mathcal{B}, P).
\[S_j = X_1 + \cdots + X_j.\]
E[\(X_j\)] = 0, \(j = 1, \ldots, n \Rightarrow \)
\[P(\max_{i=1,\ldots,n} |S_i| \geq a) \leq \frac{E(S_n^2)}{a^2}, \quad a > 0. \tag{1.1} \]

Theorem 1.5 (Convergence of the partial sum)
\{X_n\}_{n=1,2,\ldots} : a sequence of independent random variables on (\Omega, \mathcal{B}, P).
\[S_j = X_1 + \cdots + X_j.\]
E[\(X_n\)] = 0, \(n = 1, 2, \ldots\) and \[\sum_{n=1}^{\infty} \text{Var}[X_n] < \infty \]

\Rightarrow \(S_n = \sum_{k=1}^{n} X_k\) converges to a certain random variable almost surely.

Lemma 1.2 (Kronecker’s lemma)
\{m_n\}_{n=1,2,\ldots} : a sequence of positive numbers such that \(m_n \leq m_{n+1}\) \((n = 1, 2, \ldots)\) and \[\lim_{n \to \infty} m_n = \infty. \]
\{x_n\} : a sequence of real numbers.
\[\lim_{n \to \infty} \sum_{k=1}^{n} \frac{x_k}{m_k} < \infty \Rightarrow \lim_{n \to \infty} \frac{1}{m_n} \sum_{k=1}^{n} x_k = 0. \]

Theorem 1.6
\{X_n\}_{n=1,2,\ldots} : a sequence of independent random variables on (\Omega, \mathcal{B}, P).
E[\(X_n\)] = 0 and \[\sum_{n=1}^{\infty} \frac{E[X_n^2]}{n^2} < \infty \Rightarrow \frac{1}{n} \sum_{k=1}^{n} X_n \overset{a.s.}{\rightarrow} 0 (n \to \infty). \]
Theorem 1.7 (Kolmogorov’s strong law)

\(\{X_n\}_{n=1,2,...} \) : a sequence of independent random variables on \((\Omega, \mathcal{B}, P)\).

\[
E[X_n] = a, \ Var[X_n] \leq \nu, \ n = 1, 2, \ldots \Rightarrow \frac{1}{n} \sum_{k=1}^{n} X_n \overset{a.s.}{\rightarrow} a \ (n \to \infty).
\]

Problem 1.3

Prove Kolmogorov’s strong law. (You can use Theorem 1.6 without proof.)

Theorem 1.8 (Khinchin)

\(X_1, X_2, \ldots \) : independent identically distributed random variables on \((\Omega, \mathcal{B}, P)\)

\(p \) : real number such that \(2 > p \geq 1 \)

\[
n^{-1/p} \sum_{k=1}^{n} (X_k - m) \overset{a.s.}{\rightarrow} 0 \iff E[|X_1|^p] < \infty \text{ and } m = E[X_1]
\]

Lemma 1.3

\(X_1, X_2, \ldots \) : independent identically distributed random variables on \((\Omega, \mathcal{B}, P)\)

\(p \) : real number such that \(2 > p \geq 1 \)

Assume

\[
E[|X_1|^p] < \infty \text{ and } E[X_1] = 0.
\]

Define

\[
Y_n(\omega) = \begin{cases}
X_n(\omega), & |X_n(\omega)| \leq n^{1/p} \\
0, & |X_n(\omega)| > n^{1/p}
\end{cases}
\]

Then

\[
\sum_{n=1}^{\infty} P(X_n \neq Y_n) < \infty, \quad (1.2)
\]

\[
\sum_{n=1}^{\infty} n^{-2/p} E[Y_n^2] < \infty, \quad (1.3)
\]

\[
\lim_{n \to \infty} n^{-1/p} \sum_{k=1}^{n} E[Y_k] = 0. \quad (1.4)
\]

1.3 Central limit theorem

Definition 1.7 (Characteristic function)

\(X \) : a random variable

\(\varphi_X(t) = E[e^{itX}] \) is called the *characteristic function* of \(X \).

Theorem 1.9

Let \(\varphi_X(t) \) be a characteristic function. Then we have

(1) \(\varphi_X(0) = 1 \).

(2) \(|\varphi_X(t)| \leq 1 \).

(3) \(\varphi_X(t) \) is uniformly continuous
(4) \(\varphi_{X+a}(t) = e^{itd}\varphi_X(ct) \). where \(c, d \) are constants.

(5) If \(\text{E}(|X|^n) < \infty \), then \(\varphi_X(t) \) is \(C^n \)-class and

\[
\left. \frac{d^n}{dt^n} \varphi_X(t) \right|_{t=0} = i^n\text{E}(X^n).
\]

Problem 1.4
Prove Theorem 1.9.

Lemma 1.4
(1) \(\gamma_y \geq 0 \),

\[
0 \leq (\text{sgn } \alpha) \int_0^y \frac{\sin \alpha x}{x} \, dx \leq \int_0^\pi \frac{\sin x}{x} \, dx.
\]

(2) \(\int_0^\infty \frac{\sin \alpha x}{x} \, dx = \frac{\pi}{2} \text{sgn } \alpha. \)

where

\[
\text{sgn } \alpha = \begin{cases}
1, & \alpha > 0 \\
0, & \alpha = 0 \\
-1, & \alpha < 0.
\end{cases}
\]

Theorem 1.10 (Inversion formulae)

\(X \): a random variable
\(F_X \): the distribution function of \(X \)
\(\varphi_X \): the characteristic function of \(X \)

If \(F_X \) is continuous at \(a \) and \(b \) \((a < b)\), it holds that

\[
F_X(b) - F_X(a) = \lim_{T \to \infty} \frac{1}{2\pi} \int_{-T}^{T} \frac{e^{-ita} - e^{-itb}}{it} \varphi_X(t) \, dt.
\]

Theorem 1.11 (one-to-one correspondence)

\(X_1, X_2 \): random variables
\(\mu_k \): the distribution of \(X_k \) \((k = 1, 2)\)
\(\varphi_k \): the characteristic function of \(X_k \) \((k = 1, 2)\)

Then it holds that

\(\varphi_1 = \varphi_2 \iff \mu_1 = \mu_2. \)

Problem 1.5

Cauchy distribution with the location parameter \(\mu \) and the scale parameter \(\sigma \) is denoted as \(Ca(\mu, \sigma) \), and defined by the following probability density function:

\[
f(x; \mu, \sigma) = \frac{\sigma}{\pi \{\sigma^2 + (x - \mu)^2\}}
\]

(1) Derive the characteristic function of \(Ca(0, 1) \). (Hint: residue theorem)

(2) Show that if \(X_1, \ldots, X_n \overset{i.i.d.}{\sim} Ca(\mu, 1), \bar{X}_n \sim Ca(\mu, 1). \)
Definition 1.8 (分布収束)

\[\{X_n\}_{n=1,2,\ldots} : \text{a sequence of random variables} \]

\[X : \text{a random variables} \]

\[F_n : \text{the distribution function of } X_n \ (n = 1, 2, \ldots) \]

\[F : \text{the distribution function of } X \]

We say “\(X_n \) converges to \(X \) in distribution”, and denote “\(X_n \overset{d}{\to} X \ (n \to \infty) \)” if

\[\lim_{n \to \infty} F_n(x) = x \]

for any continuous point \(x \) of \(F \).

Lemma 1.5

If \(X_n \overset{d}{\to} X \ (n \to \infty) \), \(\lim_{n \to \infty} E[f(X_n)] = E[f(X)] \) for any continuous and bounded function \(f \).

Theorem 1.12 (Lévy’s continuity theorem)

\(\varphi_n(t) : \text{the characteristic function of a random variable } X_n \ (n = 1, 2, \ldots) \)

If \(\varphi_n(t) \) converges to \(\varphi(t) \) at each \(t \) and \(\varphi(t) \) is continuous at \(t = 0 \), \(\varphi(t) \) is the characteristic function of certain distribution \(P_X \), and \(X_n \overset{d}{\to} P_X \ (n \to \infty) \).

Lemma 1.6

Under the assumptions of Theorem 1.12, for any positive number \(\varepsilon \), there exists \(A \) such that

\[P(|X_n| \leq A) > 1 - \varepsilon, \quad n = 1, 2, \ldots \] (1.5)

Lemma 1.7

For any real number \(x \), it holds that

\[\left| e^{ix} - \sum_{k=0}^{n-1} \frac{(ix)^k}{k!} \right| \leq \frac{|x|^n}{n!} \]

Theorem 1.13 (Central limit theorem (Lindeberg))

\(X_{n,1}, X_{n,2}, \ldots, X_{n,n} : \text{independent random variables for each } n \)

Assume \(E[X_{n,k}] = 0, \sum_{k=1}^{n} \text{Var}[X_{n,k}] = 1 \) and

\[\forall \tau > 0, \quad \lim_{n \to \infty} \sum_{k=1}^{n} E[X_{n,k}^2 1_{|X_{k,n}| > \tau}] = 0, \] (1.6)

Then \(Z_n := \sum_{k=1}^{n} X_{n,k} \overset{d}{\to} N(0, 1) \).

Theorem 1.14 (Central limit theorem)

\(\{X_n\}_{n=1,2,\ldots} : \text{a sequence of independent and identically distributed random variables} \)

Suppose \(E(X_j) = \mu, \text{Var}(X_j) = \sigma^2, \quad j = 1, 2, \ldots. \)

Then

\[Z_n = \frac{1}{\sqrt{n} \sigma} \sum_{j=1}^{n} (X_j - \mu) = \frac{\sqrt{n}(\bar{X} - \mu)}{\sigma} \overset{d}{\to} N(0, 1). \]

Problem 1.6

Prove Theorem 1.14.
2 最尤推定量の分布

Definition 2.1 (標本と母集団分布)
確率変数 X_1, \ldots, X_n が互いに独立で、同一の確率分布 P に従うとき、X_1, \ldots, X_n は、分布 P から、大きさ n 無作為標本といい、P を母集団分布という。

Definition 2.2 (統計モデル)
母集団分布が、ある確率分布の集まり

$$P = \{P_\theta; \theta \in \Theta\}, \Theta \subset \mathbb{R}^p \ (p \text{ ある自然数})$$

に属すると想定されるとき、P を母集団分布の統計モデルという。このとき、θ を母数、Θ を母数空間と呼ぶ。

Example 2.1
小学校6年男児 n 人の身長 $X_1, \ldots, X_n \ (\text{cm})$ を測定するとする。このとき、X_1, \ldots, X_n の母集団分布は正規分布 $N(\mu, \sigma^2)$ からの無作為標本と考えられる。このとき、母数は、$\theta = (\mu, \sigma^2)$、母数空間は $\Theta = \mathbb{R} \times (0, \infty)$ となる。平均 μ、分散 σ^2 の値がわかれば、例えば、小学6年男児の内、身長が130cm以下の人数の比率は

$$\frac{1}{\sqrt{2\pi\sigma^2}} \int_{-\infty}^{130} \exp\left\{-\frac{(x-\mu)^2}{2\sigma^2}\right\} dx$$

によって近似することができる。

Definition 2.3 (カルバック-ライブラーの擬距離)
X の確率密度関数を $f(x)$ とする。確率密度関数 $g(x)$ に対して

$$\text{KL}(f; g) = E\left[\frac{f(X)}{g(X)} \right]$$

をカルバック-ライブラーの擬距離と呼ぶ。ただし、$P(f(X) > 0, g(X) = 0) > 0$ のときは、$\text{KL}(f; g) = \infty$ と定義する。

Lemma 2.1
任意の g に対して、$\text{KL}(f; g) \geq 0$ が成り立ち、等号は確率1で $f(X) = g(X)$ のときに限る。

$$X_1, \ldots, X_n \overset{i.i.d.}{\sim} f(x; \theta_0), \theta_0 \in \Theta \text{ とし、次の仮定 (A0) が成り立つとする。}

(A0) $\theta \neq \theta'$ ならば $P(f(X; \theta) \neq f(X; \theta')) > 0$。

大数の法則から

$$\frac{1}{n} \sum_{i=1}^{n} \log \frac{f(X_i; \theta)}{f(X_i; \theta_0)} \xrightarrow{a.s.} -\text{KL}(f(\cdot; \theta_0); f(\cdot; \theta)) \ (n \to \infty)$$

である。仮定 (A0) が成り立つとき、右辺は $\theta = \theta_0$ のときのみ最大値をとることから、左辺、すなわち $\prod_{i=1}^{n} f(X_i, \theta)$ を最大とする θ を $\hat{\theta}_n = \hat{\theta}_n(X)$ とするとき、$\hat{\theta}_n$ は、$n \to \infty$ のとき θ_0 に収束することが期待される。
標本変量 \(\mathbf{X} = (X_1, \ldots, X_n)' \) に対する統計モデルを

\[
P(\mathbf{X} \in A) = \begin{cases}
\sum_{x \in A} f(x; \theta), & \mathbf{X} \text{が離散型の場合} \\
\int_{x \in A} f(x; \theta) dx, & \mathbf{X} \text{が連続型の場合}
\end{cases}
\]

とする。ここで, \(\theta \in \Theta \)。確率密度関数 \(f(x; \theta) \) を \(x \) を固定して \(\theta \) の関数とみなすとき

\[
L(\theta; x) \quad (= f(x; \theta))
\]

(2.7)

と表し, 尤度関数とよぶ。

Definition 2.4
尤度関数 \(L(\theta; x) \) の最大を実現する \(\theta \) を \(\hat{\theta} = \hat{\theta}(x) \) と表し, \(\theta \) の最尤推定値という。すなわち

\[
L(\hat{\theta}; x) = \sup_{\theta \in \Theta} L(\theta; x).
\]

また, \(\hat{\theta}(X) \) を \(\theta \) の最尤推定値という。

対数尤度 \(\log L(\theta; x) \) を \(\ell(\theta; x) \) と表す。多くの場合, 尤度推定値は尤度方程式

\[
\frac{\partial}{\partial \theta} \ell(\theta; x) = 0
\]

の解として与えられる。

Problem 2.1
(1) \(X_1, \ldots, X_n \overset{i.i.d.}{\sim} B(1, \theta), \theta \in (0, 1) \) すなわち \(P(X_i = 1) = 1 - P(X_i) = \theta, \, i = 1, \ldots, n \) とする。\(\theta \) の最尤推定値を求めよ。

(2) \(X_1, \ldots, X_n \overset{i.i.d.}{\sim} N(\mu, \sigma^2), \theta = (\mu, \sigma^2) \) とする。\(\mu, \sigma^2 \) の最尤推定値を求めよ。

(3) \(X_1, \ldots, X_n \overset{i.i.d.}{\sim} U(0, \theta) \) (区間 \((0, \theta) \) 上の一様分布) とする。\(\theta \) の最尤推定値を求めよ。

Lemma 2.2
\(\{X_n \} \) を \((\Omega, B, P) \) 上の確率変数列とするとき, \(X_n \overset{a.s.}{\Rightarrow} X \) であるための必要十分条件は

\[
A_n(\varepsilon) = \{ \omega; |X_n - X| \leq \varepsilon \}
\]

とするとき,

\[
\forall \varepsilon > 0, \quad P(\lim_{n \to \infty} A_n(\varepsilon)) = 1
\]

である。

Theroem 2.1 (最尤推定値の一致性)
\(X_1, \ldots, X_n \overset{i.i.d.}{\sim} P_{\theta_0}, P_{\theta} \) は確率密度関数, あるいは確率関数 \(f(x; \theta), \theta \in \Theta \subset \mathbb{R} \) を持つ。次の (A1, A2) を仮定する。

(A1) 任意の \(\theta_*(\theta_* \neq \theta_0) \) に対して正数 \(\delta = \delta(\theta_*) \) が存在して

\[
\eta(\theta_*) := E\left[\sup_{\theta \in U_{\theta_*, \delta}} \log \frac{f(X_1; \theta)}{f(X_1; \theta_0)} \right] < 0.
\]

ただし, \(U_{\theta_*, \delta} = \{ \theta \in \Theta; \|\theta - \theta_*\| < \delta \} \).
(A2) Θのコンパクト部分集合 \(K \) が存在して
\[
\eta_K := E \left[\sup_{\theta \in K} \log \frac{f(X_1; \theta)}{f(X_1; \theta_0)} \right] < 0.
\]
このとき，各 \(n \) に対して確率 1 で尤度推定量 \(\hat{\theta}_n \) が存在するならば \(\hat{\theta}_n \overset{a.s.}{\to} \theta_0 \) \((n \to \infty)\).

Theorem 2.2 (漸近正規性；クラメルの十分条件)
\(X_1, \ldots, X_n \) を確率密度関数 \(f(x; \theta_0) \) を持つ連続型分布からのランダム標本とする。ただし，\(\theta_0 \in \Theta \subseteq \mathbb{R} \)，\(\Theta \) は開集合である。また，\(\theta_0 \) の近傍 \(U \)，関数 \(F_1(x) \)，\(F_2(x) \)，\(H(x) \) と定数 \(M \) が存在して次の条件が成り立つと仮定する。

(A1) \(f(x; \theta) \) を \(\theta \) に関して 3 回微分可能である。

(A2) \(\theta \in U \) で，\(\left| \frac{\partial f(x; \theta)}{\partial \theta} \right| < F_1(x) \)，\(\left| \frac{\partial^2 f(x; \theta)}{\partial \theta^2} \right| < F_2(x) \) かつ，\(\left| \frac{\partial^3 \log f(x; \theta)}{\partial \theta^3} \right| < H(x) \) である。また，\(F_1(x) \)，\(F_2(x) \) は可積分で，\(H \)，\(M \) は
\[
E_{\theta_0} \{ H(X) \} \leq M
\]
を満たす。

(A3) フィッシャー情報量 \(J(\theta_0) \) は有限かつ正である。
このとき，任意の正数 \(\varepsilon \) に対して \(N \) が存在して，\(n \geq N \) ならば \(1 - \varepsilon \) より大きい確率で，尤度方程式 \(\partial l(\theta, X) / \partial \theta = 0 \) は，\((\theta_0 - \delta, \theta_0 + \delta) \) 内に解を持つ。この解で \(\hat{\theta}_n \) とすると
\[
\sqrt{n}(\hat{\theta}_n - \theta_0) \overset{d}{\to} N(0, J(\theta_0)^{-1}) \quad (2.8)
\]
が成り立つ。

Example 2.2
\(X_1, \ldots, X_n \overset{i.i.d.}{\sim} Ca(\theta_0, 1) \) とする。以下，\(\theta_0 = 0 \) とする。
\[
\log \frac{f(x; \theta)}{f(x; 0)} = \log \frac{1 + x^2}{1 + (x - \theta)^2}
\]

\(0 < \delta_0 < \theta_* \) とする。\(|\theta - \theta_*| < \delta \) のとき
\[
0 \leq (x - \theta)^2 \leq \max\{(\theta_* + \delta - x)^2, (x - \theta_* + \delta)^2\}
\]
であるから
\[
\sup_{\theta \in U_{\delta_* + \delta_0}} \log \frac{1 + x^2}{1 + (x - \theta)^2} \\
\leq \log(1 + x^2) + \log(1 + (x - \theta_* + \delta)^2) \\
+ \log(1 + (x - \theta_* - \delta)^2), \\
E_{\theta_0} \{ \log(1 + (X_1 - \alpha)^2) \} < \infty
\]
であるからルベーグの収束定理より
\[
\lim_{\delta \to 0} E_{\theta_0} \left[\sup_{\theta \in U_{\delta_* + \delta}} \log \frac{f(X; \theta)}{f(X; \theta_0)} \right] = E_{\theta_0} \left[\log \frac{f(X; \theta_*)}{f(X; \theta_0)} \right]
\]
また、補題2.1より、\(\theta_s \neq \theta_0 \) ならば \(E_{\theta_0} [\log \frac{f(x; \theta_s)}{f(x; \theta_0)}] < 0 \)。したがって、定理2.1の(A1)を満たす。

\[
\sup_{|\theta| > k} \log \frac{f(x; \theta)}{f(x; \theta_0)} = \begin{cases}
\log(1 + x^2), & |x| > k \\
\log \frac{1 + x^2}{1 + (x - k)^2}, & 0 \leq x \leq k \\
\log \frac{1 + x^2}{1 + (x + k)^2}, & 0 > x \geq -k
\end{cases}
\]

\[
E[\sup_{|\theta| > k} \log \frac{f(X_1; \theta)}{f(X_1; \theta_0)}] \\
= E[\log(1 + X_1^2)] - E[1_{0 \leq X_1 \leq k} \log \{1 + (k - X_1)^2\}] \\
- E[1_{0 > X_1 > -k} \log \{1 + (k + X_1)^2\}] \\
= E[\log(1 + X_1^2)] \\
- 2E[1_{0 \leq X_1 \leq k} \log \{1 + (k - X_1)^2\}] \\
\geq 1 \text{ とす}
\]

であるから定理2.1の(A2)が成り立つ。
対数尤度関数は

\[
l(\theta, X) = - \sum_{i=1}^{n} \log \{1 + (X_i - \theta)^2\} - n \log \pi
\]

であり、\(\lim_{\theta \to \pm \infty} l(\theta, X) = -\infty, l(\theta, X) \leq -n \log \pi \)であるから、確率1で尤度推定量 \(\hat{\theta}_n \) は存在し、定理2.1より \(\hat{\theta}_n \overset{a.s.}{\to} \theta_0 \) である。

Example 2.3

\(X_1, \ldots, X_n \overset{i.i.d.}{\sim} Ca(\theta_0, 1), \theta_0 = 0 \) とする。

\[
\frac{\partial f(x; \theta)}{\partial \theta} = \frac{2(x - \theta)}{\pi \{1 + (x - \theta)^2\}^2}, \\
\frac{\partial^2 f(x; \theta)}{\partial \theta^2} = \frac{-8}{\pi \{1 + (x - \theta)^2\}^3} + \frac{6}{\pi \{1 + (x - \theta)^2\}^2}, \\
\frac{\partial \log f(x; \theta)}{\partial \theta} = \frac{2(x - \theta)}{\pi \{1 + (x - \theta)^2\}}, \\
\frac{\partial^3 \log f(x; \theta)}{\partial \theta^3} = \frac{-16(x - \theta)}{\pi \{1 + (x - \theta)^2\}^3} + \frac{4(x - \theta)}{\pi \{1 + (x - \theta)^2\}^2}
\]
\[\sup_{|\theta| < \delta} \left| \frac{x - \theta}{1 + (x - \theta)^2} \right| \leq \sup_{|\theta| < \delta} \frac{1}{1 + (x - \theta)^2}^{k-1/2} \]

\[H_k(x; \delta) := \begin{cases}
1, & |x| < \delta \\
\frac{1}{(1 + (x - \delta)^2)^{k-1/2}}, & x > \delta \\
\frac{1}{(1 + (x + \delta)^2)^{k-1/2}}, & x < -\delta
\end{cases} \]

\[\int_{-\infty}^{\infty} H_k(x; \delta) dx = 2\delta + 2 \int_{0}^{\infty} \frac{dx}{(1 + x^2)^{k-1/2}} \]

よ り \(k > 1 \) ならば \(\int_{-\infty}^{\infty} H_k(x; \delta) dx < \infty \). \(\frac{\partial^2 \log f(x; \theta)}{\partial \theta^2} \) は有界であるから, 定理 2.2 の (A1), (A2) が成り立つ. また, \(J(\theta_0) = \frac{1}{2} \) となるので (A3) も成り立つ.

尤度方程式の解は一意ではないが, 例 2.2 で, 最尤推定量の収束を示しており, 最尤推定量也尤度方程式の解となっているので, 定理 2.2 で存在が保証されている解が最尤推定量であり, したがって最尤推定量の漸近正規性が示される.
3 検定計量の分布

3.1 仮説検定の基礎

\[X = (X_1, \ldots, X_n)', \quad X_1, X_2, \ldots, X_n \overset{i.i.d.}{\sim} P_\theta \]

\[P_\theta \in \mathcal{P} = \{P_\theta; \theta \in \Theta\}, \Theta \subset \mathbb{R}^n \]

とする。\(X \) の実現値 \(x = (x_1, \ldots, x_n)' \) から、仮説

\[H_0 : \theta \in \Theta_0 (\Theta_0 \subset \Theta) \]

が正しいかどうか判定する問題を仮説検定問題と呼ぶ。\(H_0 \) を帰無仮説、また、

\[H_1 : \theta \in \Theta \setminus \Theta_0 \]

を対立仮説と呼ぶ。

仮説検定法は、\(X \) の値域 (\(\mathbb{R}^n \)) の部分集合 \(\mathcal{W} \) を指定することによって与えられる。実際、\(\mathcal{W} \) に対して

\[x \in \mathcal{W} \Rightarrow H_0 \] を棄却する

\[x \notin \mathcal{W} \Rightarrow H_0 \] を棄却しない

とすれば良い。このとき、\(\mathcal{W} \) を、これによって与えられる検定の棄却域と呼ぶ。

\(H_0 \) が正しいのに \(H_0 \) を棄却する誤りを、第 1 種の過誤、\(H_1 \) が正しいのに \(H_0 \) を棄却しない誤りを、第 2 種の過誤と呼ぶ。

\[\beta(\theta; \mathcal{W}) = P_\theta (X \in \mathcal{W}) \]

とすると、第 1 種、第 2 種の過誤の起こる確率は、それぞれ

\[\beta(\theta; \mathcal{W}) \quad (\theta \in \Theta_0), \]

\[1 - \beta(\theta; \mathcal{W}) \quad (\theta \notin \Theta_0) \]

と表される。\(\beta(\theta; \mathcal{W}) (\theta \notin \Theta_0) \) を検出力と呼ぶ。実用上は第 1 種の過誤は、それによって被る被害が大きい場合が多いので、通常は、第 1 種の過誤確率の上限として 0.05 や 0.01 など小さな値を設定する。\(\sup_{\theta \in \Theta_0} \beta(\theta; \mathcal{W}) \leq \alpha \) となるような検定を有意水準 \(\alpha \) の検定と呼ぶ。

最適化問題 0 < \alpha < 1 とし,

\[\sup_{\theta \in \Theta_0} \beta(\theta; \mathcal{W}) \leq \alpha \]

の条件下で、\(\theta \in \Theta \setminus \Theta_0 \) に対して、検出力 \(\beta(\theta; \mathcal{W}) \) を最大とする \(\mathcal{W} \) を求める。そのような検定を最強力検定と呼ぶ。最強力検定は一般に \(\theta \notin \Theta_0 \) に依存するが、任意の \(\theta \notin \Theta_0 \) に対して検出力を最大にする検定があれば、それを一样最強力検定と呼ぶ。
単純仮説の検定 \(\Theta_0 = \{ \theta_0 \} \) のとき, \(H_0 \) を単純仮説と呼ぶ。
\(\Theta = \{ \theta_0, \theta_1 \} (\theta_0 \neq \theta_1), \Theta_0 = \{ \theta_0 \} \) とする. このとき, 帰無仮説, 対立仮説はともに単純仮説で,

\[
H_0 : \theta = \theta_0, \quad H_1 : \theta = \theta_1
\] となる.

Theorem 3.1 (ネイマン-ピアソンの基本定理)
\(X \) の確率密度関数を \(f(x; \theta) \) とし, (3.9) に対する有意水準 \(\alpha \) の検定問題を考える.

\[
W_c = \{ x : f(x; \theta_1) \geq c f(x; \theta_0) \}
\]

とし,

\[
P_{\theta_0}(X \in W_c) = \alpha
\]

を満たす \(c \) が存在すると仮定する. このとき, \(W_c \) を棄却域とする検定は最強力検定である.

対立仮説が複合仮説であるとき, 各 \(\theta \in \Theta \setminus \Theta_0 \) に対して, 定理 3.1 により, 最強力検定が決定されるが, 一般に, 最強力検定は \(\theta \) ごとに異なる. 最強力検定が \(\theta \) に依存しないとき, その検定は, 一様最強力検定となる.

Example 3.1 (正規母集合の母平均に関する検定)
\(X_1, \ldots, X_n \overset{i.i.d.}{\sim} N(\mu, 1) \) とし

\[
H_0 : \mu = 0, \quad H_1 : \mu > 0
\]

の検定を考える.

3.2 \(\theta = \theta_0 \) の検定

\(X_1, \ldots, X_n \overset{i.i.d.}{\sim} P_\theta, P_\theta \) は確率密度関数 \(f(x; \theta), \theta \in \Theta \subset \mathbb{R}^p \) を持つとし

帰無仮説 \(H_0 : \theta = \theta_0 \), 対立仮説 \(H_1 : \theta \neq \theta_0 \)

の検定問題を考える.

本節では, 第 2 節で与えた定理のように, 最尤推定量 \(\hat{\theta}_n \) が存在して, 尤度方程式

\[
s_n(\theta) = \sum_{i=1}^{n} \log \frac{\partial f(X_i; \theta)}{\partial \theta} = 0 \tag{3.10}
\]

の解であるとする. このとき, 尤度比基準は

\[
\lambda = \frac{\prod_{i=1}^{n} f(X_i; \theta_0)}{\prod_{i=1}^{n} f(X_i; \hat{\theta}_n)}
\]

となり, 適当な正則条件の下で

\[
-2 \log \lambda \overset{d}{\to} \chi^2_p \quad n \to \infty
\]

13
ワルド検定統計量は

\[T_W = n(\hat{\theta}_n - \theta_0)'J(\hat{\theta}_n)(\hat{\theta}_n - \theta_0) \]

と定義される。適当な正則条件の下で

\[T_W \xrightarrow{d} \chi^2_p \quad n \to \infty \]

スコア検定統計量は

\[T_S = \frac{1}{n} s_n(\theta_0)'J(\theta_0)^{-1}s_n(\theta_0) \]

と定義される。適当な正則条件の下で

\[T_S \xrightarrow{d} \chi^2_p \quad n \to \infty \]

3.3 関数構造の検定

\[X_1, \ldots, X_n \overset{i.i.d.}\sim P_\theta, P_\theta \] は確率密度関数 \(f(x; \theta), \theta \in \Theta \subset \mathbb{R}^p \) を持つとする。\(\Theta_0 = \{\theta(\xi); \xi \in \Xi \subset \mathbb{R}^q\}, q < p \) とするとき

帰無仮説 \(H_0: \theta \in \Theta_0 \), 対立仮説 \(H_1: \theta \notin \Theta_0 \)

の検定問題を考える。ここで、\(\theta(\xi) \) は \(\Xi \) 上で定義された \(\Theta \) 内に値をとる \(C^3 \)−級のベクトル値関数とする。\(\xi \) は未知であるとする。

帰無仮説が正しく、真のパラメータが \(\theta_0 = \theta(\xi_0) \) であると仮定する。また、\(\Theta \) 全体での尤度推定量を \(\theta_n \), 帰無仮説の下での \(\xi \) の尤度推定量を \(\xi_n \) とする。このとき、尤度比基準は

\[\lambda = \frac{\prod_{i=1}^n f(X_i; \theta(\xi_n))}{\prod_{i=1}^n f(X_i; \theta_n)} \]

となる。

ワルド検定統計量、スコア検定統計量はそれぞれ、

\[T_W = n\{\theta_n - \theta(\xi_n)\}'J(\theta(\xi_n))\{\hat{\theta}_n - \theta(\xi_n)\}, \]

\[T_S = \frac{1}{n} s_n(\theta(\xi_n))'J(\theta(\xi_n))^{-1}s_n(\theta(\xi_n)) \]

と定義される。このとき、適当な正則条件の下で

\[-2 \log \lambda \sim T_W \sim T_S \xrightarrow{d} \chi^2_{p-q} \]