Shintaro HASHIMOTO (橋本 真太郎)

Associate Professor

Department of Mathematics, Graduate School of Science, Hiroshima University,

1-7-1, Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8521, JAPAN

Email: s-hashimoto(at)hiroshima-u.ac.jp

I am a member of ISBA (International Society for Bayesian Analysis), MJS (Mathematical Society of Japan) and JSS (Japan Statsitical Society)
### Research Interests

### Publications

### Teaching (in Japanese)

### Grants

- Bayesian inference
- Higher order asymptotic theory
- Non-regular statistical models

**Hashimoto, S.**(2021). Predictive probability matching priors for a certain non-regular model. Statistics and Probability Letters. web**Hashimoto, S.**(2021). Reference priors via α-divergence for a certain non-regular model in the presence of a nuisance parameter. Journal of Statistical Planning and Inference. web- Sugasawa, S. and
**Hashimoto, S.**(2021). Robust Bayesian changepoint analysis in the presence of outliers. Proceedings of the 13th KES-IDT 2021 Conference (eds. Czarnowski, I., Howlett, R. J. & Jain, L. C.), Smart Innovation, Systems and Technologies. web - Koike, K. and
**Hashimoto, S.**(2021). Improvement of Bobrovsky-Mayor-Wolf-Zakai bound. Entropy. web - Nakagawa, T. and
**Hashimoto, S.**(2021). On default priors for robust Bayesian estimation with divergences. Entropy, arXiv, web **Hashimoto, S.**and Sugasawa, S. (2020). Robust Bayesian regression with synthetic posterior distributions. Entropy, R-code, arXiv, web- Nakagawa, T. and
**Hashimoto, S.**(2020). Robust Bayesian inference via γ-divergence, Communications in Statistics - Theory and Methods. web **Hashimoto, S.**(2019). Moment matching priors for non-regular models, Journal of Statistical Planning and Inference. web**Hashimoto, S.**(2017). Robust estimation for skew-normal distribution with location and scale parameters via log-regularly varying functions. International Journal of Statistics and Systems. web- Akahira, M.,
**Hashimoto, S.**, Koike, K. and Ohyauchi, N. (2016). Second order asymptotic comparison of the MLE and MCLE for a two-sided truncated exponential family of distributions. Communications in Statistics - Theory and Methods. web **Hashimoto, S.**and Koike, K. (2015). Bhattacharyya type information inequality for the Bayes risk. Communications in Statistics - Theory and Methods. web

- Grant-in-Aid for Early-Career Scientists, Grant Number: 21K13835, 2021-2024 (
**Principal Investigator**) - Grant-in-Aid for Scientific Research (B), Grant Number: 21H00699, 2021-2024 (Co-Investigator)
- Grant-in-Aid for Scientific Research (C), Grant Number: 20K11702, 2020-2022 (Co-Investigator)
- Grant-in-Aid for Young Scientists (B), Grant Number: 17K14233, 2017-2020 (
**Principal Investigator**) - University of Tsukuba Basic Research Support Problem Type A, 360,000 yen, 2014-2015