次へ: 記号メモ
上へ: パターン認識とニューラルネットワーク
戻る: RBFネットワークでの学習
-
- 1
- C.M.Bishop, Neural Networks for Pattern
Recognition, Oxford Univ. Press, 1995.
- 2
- B.D.Ripley, Pattern Recognition and Neural
Networks, Cambridge Univ. Press, 1996.
- 3
- C.K.Chow, ``An optimum character recognition system
using decision functions,'' IRE Trans., Vol.EC-6, pp.247-254, 1957.
- 4
- 麻生(1988):``ニューラルネットワーク情報処理,'' 産業図
書, .
- 5
- Minsky,M. and Papert,S.(1969): ``Perceptrons,'' MIT Press, .
- 6
- Rumelhart,D.E.,Hinton, G.E. and
Williams,R.J.(1986): ``Learning representaions by back-propagating
errors,'' Nature, Vol.323-9, pp.533-536.
- 7
- Rumelhart,D.E., Hinton,G.E., and Williams,R.J.,(1986):
``Learning internal represenations by error propagation,'' in Parallel Distributed Processing Volume 1, J.L.McCleland,
D.E.Rumelhard, and The PDP Ressearch group, MIT Press.
- 8
- Hopfield,J.J.,(1982): ``Neural networks and
phisical systems with emargent collective computational abilities,''
Proc. of the National Academy of Sciences USA 79, pp.2254-2258.
- 9
- Hopfield,J.J.(1984): ``Neurons with graded
responce have collective computational properties like those of
two-state neurons,'' Proc. of the National Academy of Sciences USA
81, pp.3088-3092.
- 10
- Farlman,S.E.,Hinton,G.E., and
Sejnowski,T.J.,(1983): ``Massively parallel architectures for AI:
NETL, Thistle, and Boltzman Machines,'' Proc. of the National
Conf. on Artificial Intelligence AAAI-83, pp.109-113.
- 11
- Hinton,G.E., Sejnowski,T.J. and Ackley,D.H.,(1984):
``Boltzmann Machines : Constraint satisfaction networks that learn,''
Tech. Rep. CMU-CS-84-119.
- 12
- Hinton,G.E. and Sejnowski,T.J.,(1986): ``Learning
and relearning in Boltzmann Machines,'' in Parallel Distributed
Preocessing Volume 1, J.L.McCleland, D.E.Rumelhard, and The PDP
Ressearch group, MIT Press.
- 13
- Hush,D.R. and Horne,B.G.,(1993): ``Progress in
supervised neural networks,'' IEEE Signal Processing Magazine,
pp.8-39.
- 14
- Otsu,N.(1982): ``Optimal linear and nonlinear
solutions for least-square discriminant feature extraction,''
Proc. 6th ICPR, pp.557-560.
- 15
- Otsu,N. Kurita,T. and Asoh,H.(1988): ``A unified
study of multivariate analysis methods by nonlinear extensions and
underlying probabilistic structures,'' in Recent Developments of
Clustering and Data Analysis, E.Diday et al. eds., Academic
Press.
- 16
- Cybenko,G.,(1989): ``Approximation by
superpositions of a sigmoidal function,'' Mathematics of Control,
Signals, and Systems, Vol.2, No.4, pp.303-314.
- 17
- 栗田,(1991): ``階層型ニューラルネットのパラメータの
最尤推定について,'' 電子情報通信学会, ニューラルコンピューティング研究
会資料, NC91-36.
- 18
- Kurita,T.(1992): ``Iterative weighted least squares
algorithms for neural networks classifiers,'' Proc. of the Third
Workshop on Algorithmic Learning Theory, Tokyo, Oct. 20-22.
- 19
- Baum,E.B. and Haussle,D.,(1989): ``What size net
gives valid generalization ?,'' Neural Computation, Vol.1, pp.151-160.
- 20
- Akaho,S.,(1992): ``Regularization learning of neural
networks for generalization,'' Proc. of the Third Workshop on
Algorithmic Learning Theory, Tokyo, Oct. 20-22.
- 21
- Hanson,S.J. and Pratt,L.Y.,(1989): `` Comparing
biases for minimal network construction with back-propagation,'' In
D.S.Touretzky, ed. Advances in Neural Information Processing
Systems 1, pp.177-185, Morgan kaufmann.
- 22
- Sekita,I., Kurita,T., Asoh,H., and Chiu,D.(1993):
``Reconfigurating feedforward networks with fewer hidden nodes,''
Proc. of SPIE conf. on Adaptive and Learning Systems II. (to be
appear).
- 23
- Miller,R.G.,(1974): ``The jacknife -a review,''
Biometrika, Vol.61, No.1, pp.1-15.
- 24
- Stone,M.,(1974): ``Cross-validatory choice and
assessment of statistic al predictions,'' Journal of Royal Statistical
Society, Vol.B36, pp.111-147.
- 25
- Efron,B.,(1979): ``Bootstrap methods: anothoe look
at the jackknife,'' The Annals of Statistics, Vol.7, No.1, pp.1-26.
- 26
- Efron,B.,(1983): ``Estimating the error rate of a
prediction rule: imp rovements in cross-validation,'' Journal of
Amerian Statistical Association, Vol .78, pp.316-331.
- 27
- Efron,B.,(1985): ``The bootstrap method for
assessing statistical accu racy,'' Behaviormetrika, Vol.17, pp.1-35.
- 28
- Akaike,H.,(1974): ``A new look at the statistical
model identification,'' IEEE Trans. on Automatic Control, vol.AC-19,
No.6, pp.716-723.
- 29
- 坂本, 石黒, 北川,(1983): ``情報量統計学,'' 共立出
版.
- 30
- Rissanen,J.,(1983): ``A universal prior for
integers and estimation by minimum description length,'' The Annals of
Statistics, Vol.11, NO.2, pp.416-431.
- 31
- Rissanen,J.,(1986): ``Stochastic complexity and
modeling,'' The Annals of Statistics, Vol.14, No.3, pp.1080-1100.
- 32
- 栗田,(1990): ``情報量基準による3層ニューラルネット
の隠れ層のユニット数の決定法,'' 電子情報通信学会論文誌, Vol.J73-D-II,
No.11, pp.1872-1878.
- 33
- Possio,T. and Girosi,F.,(1990): ``Networks for
approximation and learning,'' Proc. of the IEEE, Vol.78, No.9,
pp.1481-1497.
- 34
- Fahlman,S.E.,(1988): ``An empirical study of
learning speed in back-propagation networks,'' Tech. Report,
CMU-CS-88-162.
- 35
- Fahlman,S.E. and Lebiere,C.,(1990): ``The
cascade-correlation learning architecture,'' in D.Touretzky, editor,
Advances in Neural Information Precessing Systems 2, pp.524-532,
Morgan Kaufmann.
- 36
- Ivakhnenko,A.C.,(1971): ``Polynomial theory of
complex systems,'' IEEE Trans. on Systems, Man, and Cybernetics,
Vol.SMC-1, No.4, pp.364-378.
- 37
- Tenorio,M.F. and Lee,G.,(1990): ``Self-organizeing
Network for optimum supervised learning,'' IEEE Trans. on Neural
Networks, Vol.1, No.1.
- 38
- Iba,H., Kurita,T., deGaris,H. and Sato,T.,(1993):
``System identification using structured genetic algorithms,'' Proc. of 5h Inter. Joint Conf. on Genetic Algorithms.
- 39
- Cun,Y.L., Denker,J.S. and Solla,S.A.,(1990): ``Optimal
brain damage,'' in D.Touretzky, editor, Advances in Neural
Information Processing Systems 2, pp.598-605.
- 40
- Hassibi,B. and Stork,D.G.,(1993): ``Second order
derivatives for network pruning: Optimal brain surgeon,'' S.J.Handon,
J.D.Cowan, and C.L.Giles, editers, Advances in Neural Information
Processing Systems 5, Morgan Kaufman, pp.164-171.
- 41
- Ishikawa,M.,(1989): ``A structural learning
algorithm with forgetting of link weights,'' Porc. Inter. Joint. Conf. on Neural Networks.
- 42
- 石川,(1990): ``忘却を用いたコネクショニストモデル
の構造学習アルゴリズム,'' 人工知能学会誌, Vol.5, No.5, pp.595-603.
- 43
- Nowlan,S.J. and Hinton,G.E.,(1992): ``Simplifying
neural networks by soft weight-sharing,'' Neural Computation,
Vol.4, No.4, pp.473-493.
- 44
- 栗田, 麻生, 梅山, 赤穂, 細美, (1993):``独立なノイズ
の付加による多層パーセプトロンの構造化学習,'' 電子情報通信学会技術報告,
NC93-21, pp.71-77.
- 45
- Murray,A.F. and Edwards,P.J.,(1993): ``Synaptic
weight noise during multilayer perceptron training: falst tolerance
and trainig improvements,'' IEEE Trans. on Neural Networks,
Vol.4, NO.4, pp.722-725.
- 46
- Asoh,H. and Otsu,N.,(1989): ``Nonlinear data analysis
and multilayer perceptrons,'' Proc. of Inter. Joint Conf. on
Neural Networks,'' Vol.II, pp.411-415.
- 47
- Asoh,H. and Otsu,N.,(1990): ``An approximation of
nonlinear discriminant analysis by multilayer neural networks,'' Proc. of Inter. Joint Conf. on Neural Network, Vol.III, pp.211-216.
- 48
- Webb,A.R. and Lowe,D.,(1990): ``The optimised
internal representaion of multilayer classifier networks performs
nonlinear discriminant analysis,'' Neural Networks, Vol.3,
pp.367-375.
- 49
- Lowe,D. and Webb,A.R.,(1991): ``Optimized feature
extraction and the Bayes decision in feed-forward classifier
networks,'' IEEE Trans. on Pattern Analsysis and Machine
Intelligence, VOl.PAMI-13, NO.4, pp.355-364.
- 50
- Vapnik,V.,(1982):''Estimation of Dipendences Based on
Empirical Data'' , Springer-Verlag.
- 51
- Vapnik,V.,(1992):''Principles of Risk Minimization
for Learning Theory'',Advanced in Neural Information Processing System
4,Morgan Kaufmann, pp.831-839.
- 52
- Jordan,M.,Jacobs,R.,(1993): ''Hierarchical mixtures
of experts and the EM algorithm,'' Proc. of IJCNN'93 NAGOYA.
- 53
- Mackey,D.J.C.,(1992) ``A Practical Bayesian Framework
for Backpropagation Networks,'' Neural Computation,4,pp.448-472.
- 54
- 甘利 他 ,(1993): ``ニューラルネットの新展開,'' サイエ
ンス社.
- 55
- 麻生,(1992): ``期待損失最小化学習のための基準の比較,''
電総研研究速報
- 56
- Dempster,A., Laird,N. and Rubin,D., (1977):
``Maximum likelihood from incomple data via the EM algorithm,''
J. Roy. Statist. Soc. B, Vol.39, pp.1-38.
- 57
- Amari,S., (1994): ``Information geometory of the EM
and em algorithms for neural networks,'' Technical Report METR 94-04,
University of Tokyo. (xxxxxx to appear in Neural Networks ****************)
平成14年7月19日