Height Mapping of Dwarf Nova Accretion Disks

M. Uemura, T. Kato, T. Ohshima, and H. Maehara, “Reconstruction of the Structure of Accretion Disks in Dwarf Novae from the Multi-Band Light Curves of Early Superhumps,” PASJ, vol. 64, p. 92, 2012.

We propose a new method to reconstruct the structure of accretion disks in dwarf novae using multi-band light curves of early superhumps. Our model assumes that early superhumps are caused by the rotation effect of non-axisymmetrically flaring disks. We have developed a Bayesian model for this reconstruction, in which a smoother disk-structure tends to have a higher prior probability. We analyzed simultaneous optical and near-infrared photometric data of early superhumps of the dwarf nova, V455 And using this technique. The reconstructed disk has two flaring parts in the outermost region of the disk. These parts are responsible for the primary and secondary maxima of the light curves. The height-to-radius ratio is h/r 0.20-0.25 in the outermost region. In addition to the outermost flaring structures, flaring arm-like patterns can be seen in an inner region of the reconstructed disk. The overall profile of the reconstructed disk is reminiscent of the disk structure that is deformed by the tidal effect. However, an inner arm-like pattern, which is responsible for the secondary minimum in the light curve, cannot be reproduced only by the tidal effect. It implies the presence of another mechanism that deforms the disk structure. Alternatively, the temperature distribution of the disk could be non-axisymmetric. We demonstrate that the disk structure with weaker arm-like patterns is optimal in the model including the irradiation effect. However, the strongly irradiated disk gives quite blue colors, which may conflict with the observation. Our results suggest that the amplitude of early superhumps depends mainly on the height of the outermost flaring regions of the disk. We predict that early superhumps can be detected with an amplitude of > 0.02 mag in about 90% of WZ Sge stars.
uem12esh

Photopolarimetric Monitoring of Blazars

We report on the correlation between the flux, color, and polarization variations on time scales of days-months in blazars, and discuss their universal aspects. We performed monitoring of 42 blazars in the optical and near-infrared bands from 2008 to 2010 using TRISPEC attached to the “Kanata” 1.5-m telescope. We found that 28 blazars exhibited “bluer-when-brighter” trends in their whole or a part of time-series data sets. This corresponds to 88% of objects that were observed for >10 days. Thus, our observation unambiguously confirmed that the “bluer-when-brighter” trend is common in the emission from blazar jets. This trend was apparently generated by a variation component with a constant and relatively blue color and an underlying red component. Prominent short-term flares on time scales of days-weeks tended to exhibit a spectral hysteresis; their rising phases were bluer than their decay phases around the flare maxima. In contrast to the strong flux-color correlation, the correlation of the flux and polarization degree was relatively weak; only 10 objects showed significant positive correlations. Rotations of polarization were detected only in three objects: PKS 1510-089, 3C 454.3, and PKS 1749+096, and possibly in S5 0716+714. We also investigated the dependence of the degree of variability on the luminosity and the synchrotron peak frequency, νpeak. As a result, we found that lower luminosity and higher νpeak objects had smaller variations in their amplitudes both in the flux, color, and polarization degree. Our observation suggests the presence of several distinct emitting sources, which have different variation time-scales, colors, and polarizations. We propose that the energy injection by, for example, internal shocks in relativistic shells is a major factor for blazar variations on time scales of both days and months.

ike11blazar

This work was published in PASJ, as 2011PASJ…63..639I.

1 25 26 27 28 29 31