業績

In preparation
Tempo and mode of genomic individuality and phenotypic differences in inbred strains of X. tropicalis.


(* corresponding author)

2024
[67] 1Sakagami K, 1Igawa T, 1Saikawa K, 1Sakaguchi Y, Hosain N, Kato C, Kinemori K, Suzuki N, Suzuki M, Kawaguchi A, Ochi H, Tajika Y, *Ogino H, Development of a heat-stable alkaline phosphatase reporter system for cis-regulatory analysis and its application to three-dimensional digital imaging of Xenopus embryonic tissues. Development Growth & Differentiation (in press). 1These authors contributed equally to this work. [ DOI I http I PDF ]


2023
[66] *Ogino H, Kamei Y, Hayashi T, Sakamoto J, Suzuki M, Igawa T, Kondo M, Taira M, Invention sharing is the mother of developmental biology (part 4). Development Growth & Differentiation 65: 286-287 August 2023. [ DOI | http | PDF ]
[65] Kitamura K, Yamamoto T, Ochi H, Suzuki M, Suzuki N, Igawa T, Yoshida T, Futakuchi M, Ogino H, *Michiue T, Identification of tumor-related genes via RNA sequencing of tumor tissues in Xenopus tropicalis. Scientific Reports 13: 13214 August 2023. [ DOI | http | PDF ]
[64] Hossain N, Igawa T, Suzuki M, Tazawa I, Nakao Y, Hayashi T, Suzuki N, *Ogino H, Phenotype-genotype relationships in Xenopus sox9 crispants provide insights into campomelic dysplasia and vertebrate jaw evolution. Development Growth & Differentiation 65: 481-497 July 2023. [ DOI | http | PDF ]
[63] Lau Q, Igawa T, Kosch TA, Dharmayanthi AB, Berger L, Skerratt LF, *Satta Y, Conserved evolution of MHC supertypes among Japanese frogs suggests selection for Bd resistance. Animals 13: 2121 June 2023. [ DOI | http | PDF ]
[62] Asaeda Y, Shiraga K, Suzuki M, Sambongi Y, Ogino H, *Igawa T, Rapid and collective determination of the complete “hot-spring frog” mitochondrial genome containing long repeat regions using Nanopore sequencing. PLoS One 18: e0280090 October 2023 [ DOI | http | PDF ] (preprint@bioRxiv)


2022
[61] *Hasan M, Kurniawan N, Soewondo A, Nalley WMM, Matsui M, Igawa T, Sumida M, Postmating isolation and evolutionary relationships among Fejervarya species from Lesser Sunda, Indonesia and other Asian countries revealed by crossing experiments and mtDNA Cytb sequence analyses.  Ecology and Evolution e9436 October 2022. [ DOI | http | PDF ]
[60] *Saito S, Saito CT, Igawa T, Takeda N, Komaki S, Ohta T, Tominaga M, Evolutionary tuning of TRPA1 underlies the variation in heat avoidance behaviors among frog species inhabiting diverse thermal niches. Molecular Biology and Evolution 39: msac180 August 2022. [ DOI | http | PDF ]
[59] *Fujii S, Somei K, Asaeda Y, Igawa T, Hattori K, Yoshida T, *Sambongi Y, Heterologous expression and biochemical comparison of two homologous SoxX proteins of endosymbiontic Candidatus Vesicomyosocius okutanii and free-living Hydrogenovibrio crunogenus from deep-sea environments. Protein Expression and Purification 200: 106157 August 2022. [ DOI | http | PDF ]
[58] Ogata S, Doi H, Igawa T, Komaki S, *Takahara T, Environmental DNA methods for detecting two invasive alien species (American bullfrog and red swamp crayfish) in Japanese ponds. Ecology Research 37: 701-710 Nov 2022 [ DOI | http | PDF ]
[57] Yoshimi T, Fujii S, Oki H, Igawa T, Adams HR, Ueda K, Kawahara K, Ohkubo T, Hough MA, *Sambongi Y, Crystal structure of thermally stable homodimeric cytochrome c’-beta from Thermus thermophilus. Acta Crystallographica Section F 78: 217-225 May 2022. [ DOI | http | PDF ]
[56] Tanouchi M, Igawa T, Suzuki N, Suzuki M, Hossain N, Ochi H, *Ogino H, Optimization of CRISPR/Cas9-mediated gene disruption in Xenopus laevis using a phenotypic image analysis technique. Development Growth and Differentiation 64: 219-225 May 2022. [ DOI | http | PDF ]
[55] Uemasu H, Ikuta H, Igawa T, Suzuki M, Kyakuno M, Iwata Y, Tazawa I, Ogino H, Satoh Y, Takeuchi T, Namba N, *Hayashi T, Cryo-injury procedure-induced cardiac regeneration shows unique gene expression profiles in the newt Pleurodeles waltl. Developmental Dynamics 251: 864-876 May 2022. [ DOI | http | PDF ]
[54] *Ogino H, Kamei Y., Hayashi T, Sakamoto J, Suzuki M, Igawa, T, Invention sharing is the mother of developmental biology (Part 3). Development Growth & Differentiation 64: 4 January 2022. [ DOI | http | PDF ]


2021
[53] *Ogino H, Kamei Y., Hayashi T, Sakamoto J, Suzuki M, Igawa, T, Invention sharing is the mother of developmental biology (Part 2). Development Growth & Differentiation 63: 458-458 December 2021. [ DOI | http | PDF ]
[52] *Ogino H, Kamei Y., Hayashi T, Sakamoto J, Suzuki M, Igawa, T, Invention sharing is the mother of developmental biology. Development Growth & Differentiation 63: 395–396 October 2021. [ DOI | http | PDF ]
[51] Komaki S, Matsunami M, Lin JW , Lee KH, Lin YP , Lee Y, Lin SM, *Igawa T, Transcriptomic changes in hot spring frog tadpoles (Buergeria otai) in response to heat stress. Frontiers in Ecology and Evolution 9: 658 October 2021. [ DOI | http | PDF ]


2020
[50]
Hata A, Takenouchi A, Kinoshita K, Hirokawa M, Igawa T, *Nunome M, *Suzuki T, *Tsudzuki M, Geographic origin and genetic characteristics of Japanese indigenous chickens inferred from mitochondrial D-loop region and microsatellite DNA markers. Animals 10: 2074 November 2020. [ DOI | http | PDF
[49]
*Komaki S, Sutoh Y, Kobayashi K, Saito S, Saito CT, Igawa T, Lau Q, Hot spring frogs (Buergeria japonica) prefer cooler water to hot water. Ecology and Evolution 10: 9466-9473 September 2020. [ DOI | http | PDF
[48]
Suzuki M, Igawa T, Suzuki N, Ogino H, *Ochi H, Spontaneous neoplasia in the western clawed frog Xenopus tropicalis. microPublication Biology August 2020. [ DOI | http | PDF ]
[47] *Lau Q, Igawa T, Ogino H, Katsura Y, Ikemura T, Satta Y, Heterogeneity of synonymous substitution rates in the Xenopus frog genome. PLoS One 15(8): e0236515 August 2020. [ DOI | http | PDF ]
[46]
*Igawa T, Okamiya H, Ogino H, Nagano M, Complete mitochondrial genome of Hynobius dunni (Amphibia, Caudata, Hynobiidae) and its phylogenetic position. Mitochondrial DNA Part B 5(3): 2241-2242 Jun 2020. [ DOI | http | PDF ]
[45]
*Takahara T, Iwai N, Yasumiba K, Igawa T, Comparison of the detection of 3 endangered frog species by eDNA and acoustic surveys across three seasons. Freshwater Science  39: 18-27 February 2020. [ DOI | http | PDF ]
[44] *Igawa T, Sugawara H, Honda M, Tominaga A, Oumi S, Katsuren S, Ota H, Matsui M, Sumida M, Detecting inter- and intra-island genetic diversity: population structure of the endangered crocodile newt, Echinotriton andersoni, in the Ryukyus. Conservation Genetics 21: 13-26 February 2020. [ DOI | httpPDF ]
[43]
*Lau Q, Igawa T, Komaki S, Satta Y, Expression Changes of MHC and other Immune Genes in Frog Skin during Ontogeny. Animals 10: 91 January 2020. [ DOI | http | PDF ]


2019
[42] *
Igawa T, *Takahara T, Lau Q, Komaki S, An application of PCR-RFLP species identification assay for environmental DNA detection. PeerJ 7: e7597 October 2019. [ DOI | http | PDF
[41]
Horb M, Wlizla M, Abu-Daya A, MacNamara S, Gajdasik D, Igawa T, Suzuki A, Ogino H, Noble A, Centre de Ressource Biologique Xenope Team in France, Robert J, James-Zorn C, *Guille M.  Xenopus Resources: Transgenic, Inbred and Mutant Animals, Training Opportunities, and Web-Based Support. Frontiers in Physiology 10: 387 April 2019. [ DOI | http | PDF
[40]
Ono T, Ohara K, Ishikawa A, Kouguchi T, Nagano AJ, Takenouchi A, Igawa T, *Tsudzuki M. Mapping of Quantitative Trait Loci for Growth and Carcass-Related Traits in Chickens Using a Restriction-Site Associated DNA Sequencing Method. The Journal of Poultry Science 56: 166-176 July 2019 [ DOI | http | PDF ]
[39]
 Ono T, Kouguchi T, Ishikawa A, Nagano AJ, Takenouchi A, Igawa T, *Tsudzuki M. Quantitative Trait Loci Mapping for the Shear Force Value in Breast Muscle of F2 Chickens. Poultry Science 98: 1096-1101 March 2019. [ DOI | http | PDF ]


2018
[38]
 *Lau Q, Igawa T, Kosch TA, Satta Y. Selective constraint acting on TLR2 and TLR4 genes of Japanese Rana frogs. PeerJ 6:e4842. May 2018. [ DOI | http | PDF ]


2017
[37] 
*Lau Q, Igawa T, Minei R, Kosch TA, Satta Y. Transcriptome analyses of immune tissues from three Japanese frogs (genus Rana) reveals their utility in characterizing major histocompatibility complex class II. BMC Genomics 18: 994 December 2017. [ DOI | http | PDF ]
[36] Igawa T, Nozawa M, Suzuki DG, Reimer JD, Morov AR, Wang Y, Henmi Y, *Yasui K. Evolutionary history of the extant amphioxus lineage with shallow-branching diversification. Scientific Reports. 7: 1157 April 2017. [ DOI | http | PDF ]
[35] *Okamiya H, *Igawa T, Nozawa M, Sumida M, Kusano T. Development and Characterization of 23 Microsatellite Markers for the Montane Brown Frog (Rana ornativentris). Current Herpetology. 36: 63-68 February 2017. [ DOI | http | PDF ]
[34] Komaki S, Lin S-M, Nozawa M, Oumi S, Sumida M, *Igawa T. Fine-scale demographic processes resulting from multiple overseas colonization events of the Japanese stream tree frog, Buergeria japonica. Journal of Biogeography. 44: 1586-1597 July 2017. [ DOI | http | PDF ]


2016
[33] *Lau Q, and Igawa T, Komaki S, and Satta Y. Characterization of major histocompatibility complex class I genes in Japanese Ranidae frogs. Immunogenetics. 68:797-806 July 2016  [ DOI | http | PDF ]
[32] *Komaki S, Lau Q, and Igawa T. Living in a Japanese onsen: field observations and physiological measurements of hot spring amphibian tadpoles, Buergeria japonica. Amphibia-Reptilia. 37: 311-314 September 2016. [ DOI | http | PDF ]
(appeared in news sites: Hiroshima Univ., AlphaGalieo, EurekAlert!, ScienceDaily, Asian Scientist and so on.)
[31] *Matsunami M, Igawa T, Michimae H, Miura T, and Nishimura K. Population structure and evolution after speciation of the Hokkaido salamander (Hynobius retardatus). PLoS One. 11(6): e0156815 June 2016. [ DOI | http | PDF ]
[30] *Sumida M, Islam MM, Igawa T, Kurabayashi A, Furukawa Y, Sano N, Fujii T, and Yoshizaki N. The first see-through frog created by breeding: description, inheritance patterns, and dermal chromatophore structure. Scientific Reports. 6: 24431 April 2016. [ DOI | http | PDF ]
[29] †Sultana N, *†Igawa T, Islam MM, Hasan M, Alam MS, Komaki S, Kawamura K, Khan MMR, and Sumida M. Inter- and intra-specific genetic divergence of Asian tiger frogs (genus Hoplobatrachus), with special reference to the population structure of H. tigerinus in Bangladesh. Genes & Genetic Systems. 91: 217-228 August 2016. († The first two authors contributed equally to the study.) [ DOI | http | PDF ]
[28] Komaki S, *Igawa T, Lin S-M, Sumida M. Salinity and thermal tolerance of Japanese stream tree frog (Buergeria japonica) tadpoles from island populations. Herpetological Journal. 26(3): 207-211 July 2016. [ DOI | http | PDF ]


2015
[27] *Igawa T, Watanabe A, Suzuki A, Kashiwagi A, Kashiwagi K, Noble A, Guille M, Simpson DE, Horb ME, Fujii T, and Sumida M. Inbreeding ratio and genetic relationships among strains of the Western clawed frog, Xenopus tropicalis. PLoS One. 10(7): e0133963 July 2015. [ DOI | http | PDF ]
[26] Komaki S, *Igawa T, Lin S-M, Tojo K, Min M-S, and Sumida M. Robust molecular phylogeny and palaeodistribution modelling resolve a complex evolutionary history: glacial cycling drove recurrent mtDNA introgression among Pelophylax frogs in East Asia. Journal of Biogeography. 42:2159-2171 November 2015. [ DOI | http | PDF ] 解説
[25] *Matsunami M, Igawa T, Nozawa M, Michimae H, Miura T, and Nishimura K. Development and characterization of 12 microsatellite markers for the Hokkaido salamander (Hynobius retardatus). Current Herpetology. 34:177-181 August 2015. [ DOI | http | PDF ]
[24] Kakehashi R, *Igawa T, and Sumida M. Genetic population structure and demographic history of an endangered frog, Babina holsti. Conservation Genetics. 16:987-1000 July 2015. [ DOI | http | PDF ]
[23] *Takahara T, Endo S, Takada M, Oba Y, Nursal WI, Igawa T, Doi H, Yamada T, and Okuda T. Radiocesium accumulation in the anuran frog, Rana tagoi tagoi, in the forest ecosystems after the Fukushima Nuclear Power Plant accident. Environmental Pollution. 199:89-94 April 2015. [ DOI | http | PDF ]
[22] Uno Y, Nishida C, Chiyo Takagi, Igawa T, Ueno N, Sumida M, and *Matsuda Y. Extraordinary diversity in the origins of sex chromosomes in anurans inferred from comparative gene mapping. Cytogenetic and Genome Research. 145 (3-4): 218-229. August 2015. [ DOI | http | PDF ]
[21] *Igawa T, Komaki S, Takahara T, and Sumida M. Development and Validation of PCR-RFLP Assay to Identify Three Japanese Brown Frogs of The True Frog Genus Rana. Current Hepetology. 34: 89-94 February 2015.  [ DOI | http | PDF ]
[20] *Igawa T, Nozawa M, Nagaoka M, Komaki S, Oumi S, Fujii T, and Sumida M. Microsatellite Marker Development by Multiplex Ion Torrent PGM Sequencing: A Case Study of the Endangered Odorrana narina Complex of Frogs. Journal of Heredity. 106:131-137 January 2015. [ DOI | http | PDF ] 解説


2014
[19] Kuruniawan N, Djong TH, Maideliza T, Hamidy A, Hasan M, Igawa T, and *Sumida M. Genetic Divergence and Geographic Distribution of Frogs in Genus Fejervarya from Indonesia Inferred from Mitochondrial 16S rRNA Gene Analysis. Treubia 41:1-16 December 2014. [ DOI | http | PDF ]
[18] Sultana N, *Igawa T, Nozawa M, Islam MM, Hasan M, Alam MS, Mukhlesur Raman Khan, and Sumida M. Development and characterization of 27 new microsatellite markers of Indian Bullfrog, Hoplobatrachus tigerinus and its congeneric species. Genes & Genetic Systems, 89: 137-141, June 2014. [ DOI | http | PDF ]
[17] Komaki S, *Igawa T, Nozawa M, Lin S-M, Oumi S, and Sumida M. Development and characterization of 14 microsatellite markers for Buergeria japonica (Amphibia, Anura, Rhacophoridae). Genes & Genetic Systems, 89: 35-39, May 2014. [ DOI | http | PDF ]
[16] Hasan M, Islam MM, Khan MMR, Igawa T, Alam MS, Djong TH, Kurniawan N, Joshy H, Sen YH, Belabut DM, Kurabayashi A, Kuramoto M, and *Sumida M. Genetic divergences of South and Southeast Asian frogs: a case study of several taxa based on 16S ribosomal RNA gene data with notes on the generic name Fejervarya. Turkish Journal of Zoology, 38:1-22, April 2014. [ DOI | http | PDF ]


2013
[15] *Igawa T, Oumi S, Katsuren S, and Sumida M. Population structure and landscape genetics of two endangered frog species of genus Odorrana: different scenarios on two islands. Heredity, 110:46-56, January 2013. [ DOI | http | PDF ] 解説
[14] Igawa T, Sugawara H, Tado M, Nishitani T, Kurabayashi A, Islam MM, Oumi S, Katsuren S, Fujii T, and *Sumida M. An Attempt at Captive Breeding of the Endangered Newt Echinotriton andersoni, from the Central Ryukyus in Japan. Animals, 3:680-692, July 2013.[ DOI | http | PDF ]
[13] Kakehashi R, Igawa T, Iwai N, Shoda-Kagaya E, and *Sumida M. Development and characterization of new microsatellite loci in the Otton frog (Babina subaspera) and cross-amplification in a congeneric species, Holst’s frog (B. holsti). Conservation Genetics Resources, 5(4):1071-1073, June 2013. [ DOI | http | PDF ]
[12] *Yasui K, Igawa T, Kaji T, and Henmi Y. Stable aquaculture of the Japanese lancelet Branchiostoma japonicum for 7 years. Journal of experimental zoology. Part B, Molecular and developmental evolution, 320B:538-547, September 2013. [ DOI | http | PDF ]


2012
[11] Hasan M, Islam MM, Khan MMR, Alam MS, Kurabayashi A, Igawa T, Kuramoto M, and *Sumida M. Cryptic Anuran Biodiversity in Bangladesh Revealed by Mitochondrial 16S rRNA Gene Sequences. Zoological science, 29(3):162-72, March 2012. [ DOI | http | PDF ]
[10] Kim HL, Mineyo Iwase, Igawa T, Nishioka T, Kaneko S, Katsura Y, Takahata N, and *Satta Y. Genomic structure and evolution of multigene families: “flowers” on the human genome. International journal of evolutionary biology, 2012:917678, January 2012. [ DOI | http | PDF ]
[9] Sugawara H, Igawa T, Yokogawa M, Okuda M, Oumi S, Katsuren S, Kaneko S, Umino T, Isagi Y, and *Sumida M. Isolation and characterization of ten microsatellite loci of endangered Anderson’s crocodile newt, Echinotriton andersoni. Conservation Genetics Resources, 4(3):595-598, January 2012. [ DOI | http | PDF ]


2011
[8] Igawa T, Okuda M, Oumi S, Katsuren S, Kurabayashi A, Umino T, and *Sumida M. Isolation and characterization of twelve microsatellite loci of endangered Ishikawa’s frog (Odorrana ishikawae). Conservation Genetics Resources, 3(3):421-424, December 2011. [ DOI | http | PDF ]
[7] *Sumida M, Satou N, Yoshikawa N, Kurabayashi A, Islam MM, Igawa T, Oumi S, Katsuren S, Ota H, Shintani N, Fukuniwa H, Sano N, and Fujii T. Artificial Production and Natural Breeding of the Endangered Frog Species Odorrana ishikawae, with Special Reference to Fauna Conservation in the Laboratory. Zoological science, 28(11):834-9, November 2011. [ DOI | http | PDF ]


2010
[6] †Kim HL, †Igawa T, Kawashima A, Satta Y, and *Takahata N. Divergence, demography and gene loss along the human lineage. Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 365(1552):2451-7, August 2010. († The first two authors contributed equally to the study.) [ DOI | http | PDF ]
[5] Kurniawan N, Islam MM, Djong TH, Igawa T, Belabut DM, Yong HS, Wanichanon R, Khan MMR, Iskandar DT, Nishioka M, and *Sumida M. Genetic divergence and evolutionary relationship in Fejervarya cancrivora from Indonesia and other Asian countries inferred from allozyme and MtDNA sequence analyses. Zoological science, 27(3):222-33, March 2010. [ DOI | http | PDF ]


2008
[4] Alam MS, Igawa T, Khan MMR, Islam MM, Kuramoto M, Matsui M, Kurabayashi A, and *Sumida M. Genetic divergence and evolutionary relationships in six species of genera Hoplobatrachus and Euphlyctis (Amphibia: Anura) from Bangladesh and other Asian countries revealed by mitochondrial gene sequences. Molecular phylogenetics and evolution, 48(2):515-27, August 2008. [ DOI | http | PDF ]
[3] Igawa T, Kurabayashi A, Usuki C, Fujii T, and *Sumida M. Complete mitochondrial genomes of three neobatrachian anurans: A case study of divergence time estimation using different data and calibration settings. Gene, 407(1-2):116-129, January 2008. [ DOI | http | PDF ]
(解説)両生類の3種のミトコンドリアゲノムを決定した上で、既存データを網羅したデータセットを用いて分岐年代推定の際に問題となるcalibration point(校正点)の影響を解析している。現在では共通認識となっているカエル亜目におけるミトコンドリア遺伝子の突然変異固定率の上昇傾向を明らかにし、分岐年代推定における校正点の選択の重要性を議論している。


2007
[2] *Sumida M, Kotaki M, Islam MM, Djong TH, Igawa T, Kondo Y, Matsui M, Anslem DS, Khonsue W, and Nishioka M. Evolutionary relationships and reproductive isolating mechanisms in the rice frog (Fejervarya limnocharis) species complex from Sri Lanka, Thailand, Taiwan and Japan, inferred from mtDNA gene sequences, allozymes, and crossing experiments. Zoological science, 24(6):547-62, June 2007. [ DOI | http | PDF ]


2006
[1] Igawa T, Kurabayashi A, Nishioka M, and *Sumida M. Molecular phylogenetic relationship of toads distributed in the Far East and Europe inferred from the nucleotide sequences of mitochondrial DNA genes. Molecular phylogenetics and evolution, 38(1):250-60, January 2006. [ DOI | http | PDF ]
(解説)本州産の両生類について初めて具体的な種分化メカニズムを論じた意欲作。日本を中心とするヒキガエルの系統関係についてミトコンドリア遺伝子に基づく分子系統解析と分岐年代推定を行い、その種分化のメカニズムを地殻変動の関係から考察した。日本産と外国産のヒキガエルは約600万年前、日本国内の2亜種は約500万年前に分化したことを解明した。これらは、日本周辺の海洋プレートの変動時期と対応し、大陸との陸橋の分断と、本州中央部の海没あるいは、巨大湖の存在によって種分化が引き起こされたと考えられた。