New publication

Chreng K, Lee HS, Tuy S. A Hybrid Model for Electricity Demand Forecast Using Improved Ensemble Empirical Mode Decomposition and Recurrent Neural Networks with ERA5 Climate Variables. Energies. 2022; 15(19):7434.


By conserving natural resources and reducing the consumption of fossil fuels, sustainable energy development plays a crucial role in energy planning. Specifically, demand-side planning must be researched and anticipated based on electricity consumption at the grounded level. Due to the global warming crisis, atmospheric conditions are among the most influential components that have altered electricity consumption patterns. In this study, 66 climate variables from the ERA5 reanalysis and the observed power demand at four grid substations (GSs) in Cambodia were examined using recurrent neural networks (RNNs). Using the cross-correlation function between power demand and each climate variable, statistically significant climate variables were sorted out. In addition, a wide range of feedback delays (FDs) was generated from the data on power demand and defined using 95% confidence intervals. The combination of the improved complete ensemble empirical mode decomposition with adaptive noise (ICEEMDAN) technique with a nonlinear autoregressive neural network with exogenous inputs (NARX) and a nonlinear autoregressive neural network (NAR) produced a hybrid electricity forecasting model. The data were decomposed into the intrinsic mode functions (IMFs) and were then used as inputs in optimized NARX and NAR models. The performance of the various benchmarked models was analyzed and compared using mainly statistical indicators such as the normalized root mean square error (NMSE) and the coefficient of determination (R2). The hybrid models perform exceptionally well in predicting electricity demand, and the ICEEMDAN-NARX hybrid model with correlated climate variables performs the best among the tested experiments as a useful prediction tool. View Full-Text

Keywords: electricity demandempirical mode decompositionneural networkclimate variablesCambodia